Skip to main content

3D Laplacian Pyramid Signature

  • Conference paper
  • First Online:
Book cover Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

Abstract

We introduce a simple and effective point descriptor, called 3D Laplacian Pyramid Signature (3DLPS), by extending and adapting the Laplacian Pyramid defined in 2D images to 3D shapes. The signature is represented as a high-dimensional feature vector recording the magnitudes of mean curvatures, which are captured through sequentially applying Laplacian of Gaussian (LOG) operators on each vertex of 3D shapes. We show that 3DLPS organizes the intrinsic geometry information concisely, while possessing high sensitivity and specificity. Compared with existing point signatures, 3DLPS is robust and easy to compute, yet captures enough information embedded in the shape. We describe how 3DLPS may potentially benefit the applications involved in shape analysis, and especially demonstrate how to incorporate it in point correspondence detection, best view selection and automatic mesh segmentation. Experiments across a collection of shapes have verified its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, Y., Sun, M., Ramani, K.: Temperature distribution descriptor for robust 3d shape retrieval. In: 4th Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (NORDIA 2011) (2011)

    Google Scholar 

  2. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3d object recognition. Int. J. Comput. Vis. 25, 63–85 (1997)

    Article  Google Scholar 

  3. Johnson, A.: Spin-images: a representation for 3-d surface matching. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997)

    Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: NIPS, pp. 831–837 (2000)

    Google Scholar 

  5. Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: CVPR, pp. 159–166 (2012)

    Google Scholar 

  6. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Symposium on Geometry Processing, pp. 225–233 (2007)

    Google Scholar 

  7. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing, SGP 2009, pp. 1383–1392 (2009)

    Google Scholar 

  8. Dey, T.K., Li, K., Luo, C., Ranjan, P., Safa, I., Wang, Y.: Persistent heat signature for pose-oblivious matching of incomplete models. Comput. Graph. Forum 29, 1545–1554 (2010)

    Article  Google Scholar 

  9. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: ICCV Workshops, pp. 1626–1633 (2011)

    Google Scholar 

  10. Burt, P.J.: The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 532–540 (1983)

    Article  Google Scholar 

  11. Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE Trans. Vis. Comput. Graph. 13, 261–271 (2007)

    Article  Google Scholar 

  12. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vision 89, 266–286 (2010)

    Article  Google Scholar 

  13. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: Geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1:20–1:20 (2011)

    Article  Google Scholar 

  14. Li, X., Guskov, I.: Multiscale features for approximate alignment of point-based surfaces. In: Symposium on Geometry Processing. Volume 255 of ACM International Conference Proceeding Series, pp. 217–226. Eurographics Association (2005)

    Google Scholar 

  15. Manay, S., Hong, B.-W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 87–99. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Paris, S., Hasinoff, S.W., Kautz, J.: Local laplacian filters: edge-aware image processing with a laplacian pyramid. ACM Trans. Graph. 30, 68 (2011)

    Article  Google Scholar 

  17. Sorkine, O.: Laplacian Mesh Processing. Ph.D. thesis, School of Computer Science, Tel Aviv University (2006)

    Google Scholar 

  18. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 351–358. ACM New York, NY, USA (1995)

    Google Scholar 

  19. Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23, 613–622 (2004)

    Article  Google Scholar 

  20. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Trans. Graph. 25, 1057–1066 (2006)

    Article  Google Scholar 

  21. Reuter, M., Biasotti, S., Giorgi, D., Patan, G., Spagnuolo, M.: Discrete laplacecbeltrami operators for shape analysis and segmentation. Comput. Graph. 33, 381–390 (2009)

    Article  Google Scholar 

  22. Meer, P., Baugher, E.S., Rosenfeld, A.: Frequency domain analysis and synthesis of image pyramid generating kernels. IEEE Trans. Pattern Anal. Mach. Intell. 9, 512–522 (1987)

    Article  Google Scholar 

  23. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 105–114. ACM New York, NY, USA (1998)

    Google Scholar 

  24. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Computer Graphics Proceedings (SIGGRAPH 99), pp. 325–334 (1999)

    Google Scholar 

  25. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24, 659–666 (2005)

    Article  Google Scholar 

  27. Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In: 3DPVT (2010)

    Google Scholar 

  28. Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Symposium on Geometry Processing (2006)

    Google Scholar 

  29. Sun, M., Fang, Y., Ramani, K.: Center-shift: an approach towards automatic robust mesh segmentation (arms), pp. 2145–2152. In: CVPR (2012)

    Google Scholar 

  30. Hu, K.M., Wang, B., Yuan, B., Yong, J.H.: Automatic generation of canonical views for cad models. In: CAD/Graphics, pp. 17–24 (2011)

    Google Scholar 

  31. Dutagaci, H., Cheung, C.P., Godil, A.: A benchmark for best view selection of 3d objects. In: Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR 2010, pp. 45–50 (2010)

    Google Scholar 

  32. Secord, A., Lu, J., Finkelstein, A., Singh, M., Nealen, A.: Perceptual models of viewpoint preference. ACM Trans. Graph. 30, 109 (2011)

    Article  Google Scholar 

  33. Mortara, M., Spagnuolo, M.: Semantics-driven best view of 3d shapes. Comput. Graph. 33, 280–290 (2009)

    Article  Google Scholar 

  34. Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A.G., Seidel, H.P.: Towards stable and salient multi-view representation of 3d shapes. In: SMI, vol. 40. IEEE Computer Society (2006)

    Google Scholar 

  35. Leifman, G., Shtrom, E., Tal, A.: Surface regions of interest for viewpoint selection. In: CVPR, pp. 414–421. IEEE (2012)

    Google Scholar 

  36. Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM Transa. Graph. (Proc. SIGGRAPH ASIA) 27, 145–157 (2008)

    Google Scholar 

  37. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249–259 (2008)

    Article  Google Scholar 

  38. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21, 649–658 (2005)

    Article  Google Scholar 

  39. Kun Lai, Y., Min Hu, S., Martin, R.R., Rosin, P.L.: Fast mesh segmentation using random walks. In. ACM Symposium on Solid and Physical Modeling (2008)

    Google Scholar 

  40. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22, 181–193 (2006)

    Article  Google Scholar 

  41. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. In: Computer Graphics Forum, pp. 219–228 (2002)

    Google Scholar 

  42. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 1–10 (2009)

    Google Scholar 

  43. Fang, Y., Liu, Y.S., Ramani, K.: Three dimensional shape comparison of flexible proteins using the local-diameter descriptor. BMC Struct. Biol. 9, 29 (2009)

    Article  Google Scholar 

  44. Fang, Y., Sun, M., Kim, M., Ramani, K.: Heat-mapping: a robust approach toward perceptually consistent mesh segmentation, pp. 2145–2152. In: CVPR (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, K., Fang, Y. (2015). 3D Laplacian Pyramid Signature. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics