Skip to main content

Multi-target Tracking with Sparse Group Features and Position Using Discrete-Continuous Optimization

  • Conference paper
  • First Online:
Book cover Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

  • 1362 Accesses

Abstract

Multi-target tracking of pedestrians is a challenging task due to uncertainty about targets, caused mainly by similarity between pedestrians, occlusion over a relatively long time and a cluttered background. A usual scheme for tackling multi-target tracking is to divide it into two sub-problems: data association and trajectory estimation. A reasonable approach is based on joint optimization of a discrete model for data association and a continuous model for trajectory estimation in a Markov Random Field framework. Nonetheless, usual solutions of the data association problem are based only on location information, while the visual information in the images is ignored. Visual features can be useful for associating detections with true targets more reliably, because the targets usually have discriminative features. In this work, we propose a combination of position and visual feature information in a discrete data association model. Moreover, we propose the use of group Lasso regularization in order to improve the identification of particular pedestrians, given that the discriminative regions are associated with particular visual blocks in the image. We find promising results for our approach in terms of precision and robustness when compared with a state-of-the-art method in standard datasets for multi-target pedestrian tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3457–3464 (2011)

    Google Scholar 

  2. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, Boston (1988)

    MATH  Google Scholar 

  3. Liu, J., Carr, P., Collins, R., Liu, Y.: Tracking sports players with context-conditioned motion models. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2013)

    Google Scholar 

  4. Liu, J., Chu, M., Liu, J., Reich, J., F.Zhao: Distributed state representation for tracking problems in sensor networks. In: Third International Symposium on Information Processing in Sensor Networks, pp. 234–242 (2004)

    Google Scholar 

  5. Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target tracking. In: Conference on Computer Vision and Pattern Recognition, pp. 1926–1933 (2012)

    Google Scholar 

  6. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Collins, J., Uhlmann, J.: Efficient gating in data association with multivariate gaussian distributed states. IEEE Trans. Aerosp. Electron. Syst. 28, 909–916 (1992)

    Article  Google Scholar 

  8. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 685–692 (2010)

    Google Scholar 

  9. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 33, 1806–1819 (2011)

    Article  Google Scholar 

  10. Yang, B., Nevatia, R.: An online learned crf model for multi-target tracking. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2034–2041 (2012)

    Google Scholar 

  11. Butt, A.A., Collins, R.T.: Multiple target tracking using frame triplets. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 163–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Hofmann, M., Haag, M., Rigoll, G.: Unified hierarchical multi-object tracking using global data association. In: International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), pp. 16–18 (2013)

    Google Scholar 

  13. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. Roy. Stat. Soc.: Ser. B (Statistical Methodology) 70, 53–71 (2008)

    Article  MATH  Google Scholar 

  14. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22, 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, S.: Markov Random Field Modeling in Image Analysis. Springer-Verlag New York Inc., Secaucus (2001)

    Book  MATH  Google Scholar 

  16. Lee, S.I., Lee, H., Abbeel, P., Ng, A.: Efficient l1 regularized logistic regression. In: National Conference on Artificial Intelligence, pp. 1–9 (2006)

    Google Scholar 

  17. Liu, J., Ji, S., Ye, J.: SLEP: Sparse learning with efficient projections, vol. 1813. Arizona State University (2009)

    Google Scholar 

  18. Andriluka, M., Roth, S., Schiele, B.: Discriminative appearance models for pictorial structures. Int. J. Comput. Vis. 99, 259–280 (2012)

    Article  MathSciNet  Google Scholar 

  19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  20. Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J.S., Mostefa, D., Soundararajan, P.: The CLEAR 2006 evaluation. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 1–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was funded by FONDEF grant D10I1054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Peralta .

Editor information

Editors and Affiliations

A Derivation of Gradient and Hessian of Unregularized Energy Function

A Derivation of Gradient and Hessian of Unregularized Energy Function

In our method, we must minimize the unregularized version of energy function given by Eq. A.3, this problem is given by:

$$\begin{aligned} w_l^* = \text {arg min}_{w_l} E_{PL:d}^{T(u)} (w_l) = \text {arg min}_{w_l} \sum _{d \in D} \left\{ K_d + c_{j}^{t}\alpha \, log(1+exp(-y_{l}^{d}w_{l}^T x_{t}^{j}))\right\} \ \end{aligned}$$
(A.1)

By calling the gradient \(\nabla _{w_l} E_{PL:d}^{T(u)} (w_l)\) as \(G(w_l)\), this term is calculated as following:

$$\begin{aligned} G(w_l)= & {} \frac{\partial }{\partial w_l} \sum _{d \in D}\left\{ K_d + c_{j}^{t}( \alpha \, log(1+exp(-y_{l}^{d}(w_{l}^T x_{t}^{j})))) {- ln(Z_{loc}^{d})}\right\} \nonumber \\ G(w_l)= & {} \sum _{d \in D}\left\{ c_{j}^{t} \alpha \, \frac{\partial }{\partial w_l} log(1+exp(-y_{l}^{d}(w_{l}^T x_{t}^{j}))) - \frac{\partial }{\partial w_l} ln(Z_{loc}^{d})\right\} \nonumber \\ G(w_l)= & {} \sum _{d \in D}\left\{ c_{j}^{t} \alpha \, \frac{\frac{\partial \,}{\partial w_l} \left[ 1+exp(-y_{l}^{d}(w_{l}^T x_{t}^{j}))\right] }{1+exp(-y_{l}^{d}(w_{l}^T x_{t}^{j}))} - \frac{\frac{\partial \,}{\partial w_l} \left[ Z_{loc}^{d}\right] }{Z_{loc}^{d}}\right\} \nonumber \\ G(w_l)= & {} \sum _{d \in D}\left\{ c_{j}^{t} \alpha \, \frac{exp(-y_{l}^{d}(w_{l}^T x_{t}^{j})) -y_{l}^{d}(x_{t}^{j})}{1+exp(-y_{l}^{d}(w_{l}^T x_{t}^{j}))} \right. \nonumber \\&\left. - \frac{ \sum _m exp\left( E_{PL:d}^{T(u)} (w_l,y_{m}) \right) \frac{\partial \,}{\partial w_l}\left[ c_{j}^{t} \alpha log(1+exp(-y_{m}^{d}(w_{l}^T x_{t}^{j})))\right] }{Z_{loc}^{d}}\right\} \nonumber \\ G(w_l)= & {} \sum _{d \in D}\left\{ c_{j}^{t} \alpha \, \frac{exp(-y_{l}^{d}(w_{l}^T x_{t}^{j})) -y_{l}^{d}(x_{t}^{j})}{1+exp(-y_{l}^{d}(w_{l}^T x_{t}^{j}))} \right. \nonumber \\&\left. - \sum _m \frac{exp\left( E_{PL:d}^{T(u)} (w_l,y_{m}) \right) }{Z_{loc}^{d}} \left[ c_{j}^{t} \alpha \frac{exp(-y_{m}^{d}(w_{l}^T x_{t}^{j}))}{1+exp(-y_{m}^{d}(w_{l}^T x_{t}^{j}))} -y_{m}^{d}( x_{t}^{j})\right] \right\} \nonumber \\ G(w_l)= & {} -\alpha \, \sum _{d \in D}\left\{ c_{j}^{t} \, \left[ p_d(\bar{y}_{l}/d;w_{l}) y_{l}^{d}(x_{t}^{j}) \right] - \sum _m c_{j}^{t} \, p_m(y_{m}/d;w_{l}) \left[ p_d(\bar{y}_{m}/d;w_{l}) y_{m}^{d}( x_{t}^{j})\right] \right\} \nonumber \\ G(w_l)= & {} -\alpha \, \sum _{d \in D}\left\{ c_{j}^{t} \, \left[ p_d(\bar{y}_{l}/d;w_{l}) y_{l}^{d}(x_{t}^{j}) - \left\langle p_d(\bar{y}_{m}/d;w_{l}) y_{m}^{d}( x_{t}^{j})\right\rangle _{p_m(y_{m}/d;w_{l})} \right] \right\} \end{aligned}$$
(A.2)

We call the Hessian \(H_{w_l} (E_{PL:d}^{T(u)} (w_l))\) as \(H(w_l)\) and calculate it from gradient expression as following:

$$\begin{aligned} H(w_l)= & {} -\alpha \frac{\partial }{\partial w_l^T} \sum _{d \in D}\left\{ c_{j}^{t} \,\left[ p_d(y_{l}/d;w_{l}) y_{l}^{d}(x_{t}^{j}) - \left\langle p_d(y_{m}/d;w_{l}) y_{m}^{d}( x_{t}^{j})\right\rangle _{p_m(y_{m}/d;w_{l})} \right] \right\} \nonumber \\ H(w_l)= & {} -\alpha \sum _{d \in D}\left\{ c_{j}^{t} x_{t}^{j} {x_{t}^{j}}^T\, \left[ p_d(y_{l}/d;w_{l}) (1- p_d(y_{l}/d;w_{l})) \right. \right. \nonumber \\&\left. \left. - \left\langle (1- p_d(y_{l}/d;w_{l})) p_d(y_{m}/d;w_{l}) \right\rangle _{p_m(y_{m}/d;w_{l})} \right] \right\} \end{aligned}$$
(A.3)

With both terms, we can optimize the Eq. A.1 with Newton’s method in order to estimate the optimal value of weight vector w.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Peralta, B., Soto, A. (2015). Multi-target Tracking with Sparse Group Features and Position Using Discrete-Continuous Optimization. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics