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Abstract

Many microbes associate with higher eukaryotes and impact their vitality. In order to en-
gineer microbiomes for host benefit, we must understand the rules of community assembly and
maintenence, which in large part, demands an understanding of the direct interactions between
community members. Toward this end, we’ve developed a Poisson-multivariate normal hierar-
chical model to learn direct interactions from the count-based output of standard metagenomics
sequencing experiments. Our model controls for confounding predictors at the Poisson layer,
and captures direct taxon-taxon interactions at the multivariate normal layer using an `1 penal-
ized precision matrix. We show in a synthetic experiment that our method handily outperforms
state-of-the-art methods such as SparCC and the graphical lasso (glasso). In a real, in planta
perturbation experiment of a nine member bacterial community, we show our model, but not
SparCC or glasso, correctly resolves a direct interaction structure among three community mem-
bers that associate with Arabidopsis thaliana roots. We conclude that our method provides a
structured, accurate, and distributionally reasonable way of modeling correlated count based
random variables and capturing direct interactions among them.

Availibility: We have implemented our Poisson-multivariate normal hierarchical model in an
R package named MInt. The package will be made available on CRAN.

Introduction

Microbes are the most diverse form of life on the planet. Many associate with higher eukaryotes,
including humans and plants, and perform key metabolic functions that underpin host viability [1,2].
Importantly, they coexist in these ecologies in various symbiotic relationships [3]. Understanding
the structure of their interaction networks may simplify the list of microbial targets that can be
modulated for host benefit, or assembled into small artificial communities that are deliverable as
probiotics.
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Microbiomes can be measured by sequencing all host-associated 16S rRNA gene content. Be-
cause the 16S gene is a faithful phylogenetic marker, this approach readily reveals the taxonomic
composition of the host metagenome [4]. Given such sequencing experiments output an integral,
non-negative number of sequencing reads, the final output for such an experiment can be summa-
rized in a n-samples × s-taxa count table, Y , where Yij denotes the number of reads that map
taxon j in sample i. It is assumed Yij is proportional to taxon j’s true abundance in sample i.

To study interrelationships between taxa, we require a method that transforms Y into an
undirected graph represented by a symmetric and weighted o × o adjacency matrix, A, where a
non-zero entry in position (i, j) indicates an association between taxon i and taxon j. Correlation-
based methods are a popular approach to achieve this end [5–7]. Nevertheless, correlated taxa need
not directly interact if, for example, they are co-regulated by a third taxon. Gaussian graphical
models remedy this concern by estimating a conditional independence network in which Aij = 0
if and only if taxon i and taxon j are conditionally independent given all remaining taxa under
consideration [8–10]. However, they also assume the columns of Y are normally distributed, which
is unreasonable for a metagenomic sequencing experiment. Finally, neither correlation nor Gaussian
graphical modeling offer a systematic way to control for confounding predictors, such as measured
biological covariates (e.g. body site, or plant fraction), experimental replicate, sequencing plate, or
sequencing depth.

As baseline methods, we consider the commonly used correlation network method, SparCC [6],
and a state-of-the-art method for inferring Gaussian graphical models, the graphical lasso [9].
SparCC calculates an approximate linear correlation between taxa after taking the log-ratio of their
abundances, and through an iterative procedure, prunes correlation edges that are not robust. In
this way, it not only aims to produce a sparse network, but also avoids negative correlations between
taxa that arise from data compositionality – a common problem in metagenomics experiments, in
which counts of taxa can only be interpreted relative to eachother, and not as absolute abundance
measurements. Importantly, the authors point out that SparCC does not make any parametric
assumptions.

The graphical lasso aims to construct a sparse graphical model, in which non-zero edges can
be interpreted as direct interactions between taxa. Model inference proceeds by optimizing the
likelihood of a standard multivariate normal distribution with respect to the precision matrix,
subject to an `1 constraint on each entry. The magnitude of this `1 penalty controls the degree of
sparsity, or equivalently, model parsimony.

In this work, we develop a Poisson-multivariate normal hierarchical model that can account for
correlation structure among count-based random variables. Our model controls for confounding
predictors at the Poisson layer, and captures direct taxon-taxon interactions at the multivariate
normal layer using an `1 penalized precision matrix.

Materials and Methods

Preliminaries

Let n, p, and o denote the number of samples, number of predictors, and the number of response
variables under consideration, respectively. Throughout this paper, response variables will be read
counts of bacteria and will be referred to as such, though in practice, any count based random
variable is relevant. Let Y be the n × o response matrix, where Yij denotes the count of bacteria
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j in sample i. Let X be the n× p design matrix, where Xij denotes predictor j’s value for sample
i. For a matrix M , we will use the notation M:i and Mi: to index the entire ith column and row,

respectively. The Frobenius norm of M is defined to be ||M ||F =
√∑

i

∑
jM

2
ij .

The model

We wish to model direct interaction relationships among bacteria measured in a metagenomic
sequencing experiment while also controlling for the confounding biological and/or technical pre-
dictors encoded in X. Toward this end, we propose the following Poisson-multivariate normal
hierarchical model.

w ∼ Multivariate-Normal
(
0,Σ−1

)
Yij ∼ Poisson(exp{Xi:βj + wij})

Here 0 and Σ−1 are the 1 × o zero mean vector and o × o precision matrix of the multivariate
normal, and w is an n × o latent abundance matrix. The coefficient matrix, β, is p × o such that
βij denotes predictor i’s coefficient for taxon j.

The log-posterior of this model is given by

o∑
j=1

n∑
i=1

[yij(xi:β:j + wij)− exp{xi:β:j + wij}] +
n

2
log |Σ−1| − n

2
tr
(
S(w)Σ−1

)
(1)

where S(w) = wTw/n is the empirical covariance matrix of w.
Intuitively, the columns of w are adjusted, “residual” abundance measurements of each bacteria,

after controlling for confounding predictors in X. Assuming all relevant confounding covariates are
indeed included in X, the only signal that remains in these residuals must arise from interactions
between the bacteria being modeled. Therefore, we wish to model direct interactions, or equiva-
lently, conditional independences at the level of these latent abundances, rather than the observed
counts. Recall if Σ−1

ij = 0, then w:i and w:j are conditionally independent, and so too are Yi: and Yj:
since the probability density of Y:k given w:k is completely determined. Thus, assuming a correct
model, Σ−1

ij = 0 is sufficient to conclude that bacteria i and bacteria j do not interact, and are

conditionally independent given all other bacteria. Similarly, if Σ−1
ij 6= 0, we would conclude that

bacteria i and bacteria j do directly interact.
To appreciate the degree of coupling between two bacteria we must normalize Σ−1

ij to Σ−1
ii and

Σ−1
jj . A large |Σ−1

ij | need not be indicative of a strong coupling if, for example, Σ−1
jj and Σ−1

ii – the
conditional variance of bacteria i and j given all others – are much larger. Therefore, in subsequent
results and visualizations we consider a transformation of Σ−1 to its partial correlation matrix, P ,

whose entries are specified as Pij = −Σij/
√

Σ−1
ii Σ−1

jj .

Finally, we wish to have an estimate of an interaction network that not only well explains the
correlated count data we observe, but also does so parsimoniously, in a manner that maximizes
the number of correct hypotheses and minimizes the nubmer of false ones that lead to wasted
testing effort. Toward this end, we impose an adjustable `1-penalty on the entries of the precision
matrix during optimization, which encourages the precision matrix to be sparse. Importantly,
from a Bayesian perspective, the `1 penalty can be seen as a zero-mean Laplace distribution (with
parameter λ) over the model parameter it is regularizing.
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Model learning

The `1-penalized log-posterior, modulo unnecessary constants, is given by

argmax
β,w,µ,Σ−1

o∑
j=1

n∑
i=1

[yij(xi:β:j + wij)− exp{xi:β:j + wij}]

+
n

2
log |Σ−1| − n

2
tr
(
S(w)Σ−1

)
− λn

2
||Σ−1||1 + o2 log

(
nλ

4

)
(2)

where λ is a tuning parameter, and || · ||1 denotes the `1-norm, which for a matrix M equals∑
i

∑
j |Mij |. Note we have presented the `1 penalty as a Laplace distribution with parameter

2/(nλ). In other words, f(Σ−1
ij |2/(nλ)) = nλ exp(−nλ|Σ−1

ij |/2)/4.
We optimize this objective using an iterative conditional modes algorithm in which parameters

are sequentially updated to their mode value given current estimates of the remaining parameters
[11]. Given an estimates of w, µ, and Σ−1, the conditional objective for β is given by,

argmax
β

o∑
j=1

n∑
i=1

[yij(xi:β:j + ŵij)− exp{xi:β:j + ŵij}]

This is efficiently and uniquely optimized by setting β:k to the solution of the Poisson regression of
Y:k onto X using a log-link and w:k as an offset, for all k ∈ {1, 2, . . . , o}.

Given estimates for β, Σ−1, and µ, the conditional objective for w is given by

argmax
w

o∑
j=1

n∑
i=1

[
yijwij − exp{xi:β̂:j + wij}

]
− n

2
tr
(
S(w)Σ̂−1

)
Each row of w is independent of all other rows in this objective and can therefore be updated
separately. To obtain the conditional update for wi:, we apply Newton-Raphson. The gradient
vector, gi, and Hessian, Hi, are given by

gi = yi: − exp{xi:β̂:j + wij} − (wi: − µ̂)Σ̂−1 Hi = −Σ̂−1 − diag(exp{xi:β̂ + wi:})

Because Σ̂−1 is positive-definite and exp{xi:β̂+wi:} > 0 for all components, Hi is always negative-
definite. Thus, the conditional update for wi: is a unique solution.

Given β, w, and µ, the conditional objective for Σ−1 is given by,

argmax
Σ−1

log |Σ−1| − tr
(
S(w)Σ−1

)
− λ||Σ−1||1

which is convex, and efficiently optimized using the graphical lasso [9].

Model initialization

In a manner similar to our conditional update for β, we initialize β:k to be the solution of the
Poisson regression of Y:k onto X using a log-link, but with no offset, for all k ∈ {1, 2, . . . , o}. Given
this β, the predicted mean of the associated Poisson distribution is given by E(Yij |X) = exp(Xi:βj).
Note, however, in the original formulation of our model, we have E(Yij |X) = exp(Xi:βj+wij). This
suggests a natural initialization for wij : wij = log(Yij)−Xi:βj . To complete the initialization, we
set Σ−1 to be the generalized pseudoinverse of S(w) – a numerically stable estimate of the precision
matrix of w. The rationale behind this initialization is consistent with the previously presented
intuitions underlying the components of each model, and in practice leads to quick convergence.
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Model selection

The `1 tuning parameter, λ, is a hyperparameter that must be set before the model can be learned.
In supervised learning, cross validation is a popular method used to set such penalties. In our
model, however, w is a sample specific parameter that consequently must be estimated for held out
data before prediction error can be evaluated. This breaks the independence assumption between
training data and test data, and in general, results in poor or undeterminable model selection; less
penalizing (smaller) values of λ tend to always produce statistically lower test-set prediction error,
because w is allowed to “adapt” to the test set samples.

Instead of cross validation, we assume only for the purpose of selecting a value for λ that there is
a joint distribution between between λ and the remaining parameters, in which λ has an improper
flat prior (the prior probability density of λ always equals 1). Then, differentiating Equation 2,
setting equal to 0, and solving for λ, gives us λ̂ = 2o2/

(
n||Σ−1

init||
)
, which is the value of λ we use

throughout the optimization. Here, Σ−1
init is our initial estimate of Σ−1 and is obtained as described

in the previous section.
We note here a qualitative connection to empirical Bayes inference, in which hyperparameter

values are set to be the maximizers of the marginal likelihood – the probability density of the data
given only the hyperparameters. In effect, emperical Bayes calculates the expected posterior density
by averaging over model parameters, and then chooses the hyperparameter value that maximizes it.
In our case, instead of marginalizing over parameters, we make an intelligent guess at their value,
and condition on these values to set our hyperparameter λ. In both methods, hyperparameters are
set in an unbiased, and objective way by looking first at the data.

Synthetic Experiment

To test our model’s accuracy, efficiency, and performance relative to other leading methods, we
constructed a 20-node synthetic experiment composed of 100 samples. As our precision matrix,
Σ−1 we generated a random, 20 × 20, 85% sparse (total of 27 non-zero, off-diagonal entries)
positive-definite matrix using the sprandsym function in MATLAB. From Σ−1 we generated latent
abundances, w, for 100 samples using a standard multivariate normal random variable generator
based on the Cholesky decomposition. We then generated two “‘confounding” covariates, X1 and
X2. X1 was a vector of 100 independent and identically distributed Normal(4,1) random variables.
X2 was 100-long vector where the first 50 entries equaled 1 and the last 50 equaled 0. The weights,
β1j and β2j on each confounding covariate, were set to be -0.5 and 6, respectively, for all nodes (i.e.
for all j ∈ {1, 2, . . . , 20}). These coefficient values were chosen such that the combined effect size
of these confounding covariates on the response was 3 times larger than the effect size of the latent
abundances, or equivalently, the contribution of the interactions encoded in the precision matrix.
The 100 × 20 response matrix, Y , was generated according to Yij ∼ Poisson(Xi1β1j+Xi2β2j+wij).
Finally, for the same precision matrix, we generated 20 replicate response matrices in this manner.

We applied our model to the 100 × 20 synthetically generated response matrix Y , and entered
the counfounding covariates, X1 and X2 as predictors. We also applied SparCC and the graphical
lasso (glasso) to illustrate the performance of a state-of-the-art correlation based method and a
widely used method for inferring graphical models, respectively. While we applied SparCC to Y
only, we ran glasso on a matrix composed of the column-wise concatenation of Y and X, effectively
learning a joint precision matrix over nodes represented in Y and the covariates in X. Applying
glasso in this manner allowed it to account for the confounding predictors in X. To compare the
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glasso learned precision matrix to the true precision matrix, we use only the 20 × 20 subset matrix
corresponding to the nodes represented in Y . The `1 tuning parameter for glasso was chosen by
cross-validation, where the selection criterion was the test-set log-likelihood.

Artificial Community Experiment

To test the model with real data, we constructed a 9 member artificial community composed
of Escherichia coli (a putative negative root colonization control) and 8 other bacterial strains
originally isolated from Arabidopsis thaliana roots grown in two wild soils [2]. These 8 isolates were
chosen based on their potential to confer beneficial phenotypes to the host (unpublished data) and
to maximize phylogenetic diversity. Into each of 94 2.5-inch-square pots pots filled with 100mL
of a 2× autoclaved, calcined clay soil substrate, we inoculated the 9 isolates in varying relative
abundances in order to perturb their underlying interaction structure. For all pots, all strains were
present, but ranged in input abundance from 0.5-50%.

To each of these inoculated pots, we carefully and asceptically transferred a single sterilely
grown Col-0 A. thaliana seedling. Pots were spatially randomized and placed in growth chambers
providing short days of 8 h light at 21◦C and 16 h dark at 18◦C. The plants were allowed to
grow for four weeks, after which we harvested their roots and for each, performed 16S profiling
(includes DNA extraction, PCR, and sequencing) of the V4 variable region. To quantify the relative
amount of each input bacterium, sequencing reads were demultiplexed, quality-filtered, adjusted to
ConSeqs if applicable (see Batch B processing below), and then mapped using the Burrows Wheeler
Aligner [12], to a previously constructed sequence database of each isolate’s V4 sequence. Mapped
ConSeqs or reads to a given isolate in a given sample were counted and subsequently assembled
into a 94-samples × 9-isolates count matrix.

While all 94 samples were harvested over two days, they were thereafter processed in two
batches, A (52 samples) and B (42 samples), approximately 4 months apart. Batch B samples were
16S profiled using the method described in [13]. This PCR method partially adjusts for sequencing
error and PCR bias by tagging all input DNA template molecules with a unique 13-mer molecular
tag prior to PCR. After sequencing, this tag is then used to informatically collapse all tag-sharing
amplicon reads into a single consensus sequence, or ConSeq. Batch A samples were 16S profiled
by using a more traditional PCR. Having two distinct sample sets, each processed using different
protocols, allowed us to assess our model’s ability to statistically account for batch effects when
inferring the interaction network of our 9 member community.

In vitro Coplating Validation Experiments

To test predicted interactions from our artificial community experiment, we grew liquid cultures of
predicted interactors and non-interactors to OD 1 in 2XYT liquid media. We then coplated 6 5 uL
dots of predicted interactors and non-interactors on King’s B media agar plates, either 1 cm apart
(3 dots each) or 12 cm (3 dots each) apart on the same plate. We then examined each strain for
growth enhancement or restriction that was specific to its proximity to the potential interactor it
was tested against.
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Figure 1: The Poisson-multivariate normal hierarchical model outperforms SparCC and glasso in
a synthetic experiment. a) Frobenius norm of the difference between the partial correlation transformed
true precision matrix and the estimated precision matrix for each method. The graphical lasso was run
jointly over all response variables and covariates, and is therefore suffixed with “w.c.” (with covariates).
Shaded blue bands represent 2× standard deviation and shaded red bands represent 2× standard error. b)
False discovery rate of each method as a function of the number of magnitude-ordered edges called significant.
The solid thick line illustrates the average FDR curve across all replicates. The shaded bands illustrate the
5th and 95th percentile FDR curve considering all replicates. Network representations of the c) true partial
correlation transformed precision matrix d) correlation matrix outputted by SparCC, e) partial correlation
transformed precision matrix outputted by glasso w.c. and f) partial correlation transformed precision matrix
outputted by our Poisson-multivariate normal hierarchical model.

Results

Synthetic experiment

Figure 1 illustrates performances for the three methods. With the exception of SparCC, Figure 1a
illustrates the Frobenious norm of the difference between the partial correlation transformations of
the true precision matrix and the estimated one. The Frobenious norm, also called the Euclidean
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norm, is equivalent to an entry-wise Euclidean distance between two matrices, and is therefore a
measure of the closeness two matrices when computed on their entry-wise difference. For SparCC,
the difference is caluclated between the true partial correlation matrix and the estimated correlation
matrix.

SparCC’s correlation matrix is the most different from the true partial correlation matrix,
followed by glasso with covariates (w.c.) entered as variables. Our Poisson-multivariate normal
hierarchical model performs the best, and interestingly, is the most consistent across replicates
than the other methods.

Figure 1b illustrates a complimentary measure of accuracy, the false discovery rate, which is
defined to be the number of falsely non-zero edges inferred divided by the total number of non-zero
edges inferred. More specifically, Figure 1b illustrates FDR as a function of the number of edges
(ordered by descending magnitude) called significant.

Here again we see SparCC has the least desirable performance with and FDR curve that nearly
majorizes glasso w.c. and completely majorizes our method. The graphical lasso has the next most
desirable FDR curve, but still has 3 to 4 false discoveries in the top 10 non-zero edges. Our method
outperforms the other two and incurs nearly 0 false discoveries in the top 10 (in magnitude) edges
it discovers across all replicates.

Figure 1d, e, and f illustrate network representations for the average (across all replicates)
correlation or partial correlation matrix learned by each method. Figure 1c provides the network
representation of the true partial correlation matrix used in this synthetic experiment.

These networks visually support previous claims. The network produced by SparCC is not
sparse and is visually most distant from the true network. The glasso w.c. method is considerably
more sparse, and seems to recover several of the of the top positive edges. Our method’s network
is visually closest to the true network and recovers considerably more of the top edges. However,
it also detects them with less magnitude.

Artificial Community Experiment

We applied our model to the 94 root-samples × 9 isolates count matrix. Starting input abundances
and processing batch (Figure 2a, left) were entered as covariates in our model. Prior to running the
model, the design matrix was standardized so that coefficients on each variable could be directly
comparable.

In examining the response matrix (Figure 2, right) we notice a clear difference in the number of
counts between Batch A samples and Batch B samples. This is due to the molecule tag correction
that was available and applied to Batch B samples. The molecule tag correction collapses all reads
sharing the same molecule tag into a single ConSeq – a representative of the original template
molecule of DNA, prior to PCR. However, in examining the latent abundances, w, (Figure 2b) we
notice the model has successfully adjusted for these effects. As we would also expect, Figure 2c
illustrates that the learned effect size of the batch variable is an influential predictor of bacterial
read counts, more so than the starting abundance of each bacteria.

Interestingly, in further scrutinizing Figure 2b we notice an interesting correlation in the latent
abundances of i181 and i105, and to a lesser extent between i50 and i105. As a corallary, the
latent abundances of i181 and i50 are also correlated. These correlations are suggestive of direct
interaction relationships among these three bacteria, but a number of direct interaction structures
could explain these correlations.

8



Figure 2: Re-colonization and isolate-isolate interaction results from the 9 member synthetic
community. a) Design (left) and response (right) matrices. The design matrix was composed of a binary
vector idicating processing batch and the relative input abundances of each input isolate except E. coli (to
preserve rank). Prior to running the model, the design matrix was standardized so that coefficients on
each variable could be directly comparable. Response matrix illustrates raw-counts on a log10 scale. b)
Latent abundance matrix, w, inferred from our model. These latent abundances are read counts of each
bacteria “adjusted” for the covariates encoded in X. c) Dotted box-plot illustrating the effect size of each
predictor on each isolate, presented as a single dot for each predictor. Purple bands illustrate 2× standard
deviation and red bands illustrate 2× standard error. d) Network visualizations of correlation matrices
outputted from SparCC run on raw counts (left), partial correlation transformation of the precision matrix
outputted by glasso w.c. (middle), and the partial correlation matrix obtained from the sparse precision
matrix inferred from our mode (right)l. e) Interaction and non-interaction predictions tested in vitro on
agar plates. The rightmost co-plating among the “confirmed interactions” attempts to directly test the
conditional independence structure of the (i181, i50, and i105) triad.

Figure 2d illustrates network visualizations of either correlation matrices outputted from SparCC
(left), or partial correlation transformed precision matricess outputted by glasso with covariates
(w.c.) entered as variables, or by our model. SparCC applied to the raw response matrix suggests
a number of negative correlations that include all community members except i303. Interestingly,
SparCC, which operates on log-ratios of the bacterial counts, seems immune the positive corre-
lations among the community members one would expect to arise due to the processing batch
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effect. The graphical lasso with covariates entered as variables affords the simplest model, and only
suggests a positive interaction between i8 and i105.

The precision matrix our model infers is sparse, containing only two edges – one between i105
and i181, and another between i105 and i50. The network representation of the partial correlation
matrix of our precision matrix reveals a strong predicted direct antagonism between i181 and
i105 and also to a lesser extent between i105 and i50. Note that the model does not predict any
interaction between i181 and i50.

In vitro co-plating experiments corroborate the model’s predictions exactly in direction and
also semi-quantitatively (Figure 2e). In particular, they show that (i105, i181) and (i105, i50)
are, indeed, antagonistic interaction pairs, and moreover, that i181 and i50 are the inhibitors.
Additionally, the (i181, i105) inhibition appears more pronounced than the (i181, i50) inhibition,
just as the model suggests. The model also predicts conditional independence of i50 and i181 given
i105. Indeed, the inward facing edges of the i181 and i50 colonies do not appear deformed in either
the paired co-plating the triangular co-plating, and therefore suggest a non-interaction. Note that
naively interpreting the SparCC network edges as evidence of direct interaction would falsely lead
one to conclude that a direct, positive interaction exists between i50 and i181.

Finally, note that our model predicts that i181, i50, and i105 do not interact with many of the
other community members. As support for this prediction, we see that neither i105, i50, nor i181
interact with iEc.

Discussion

We demonstrated our Poisson-multivariate normal hierarchical model can infer true, direct microbe-
microbe interactions in synthetic and real data. Proper modeling of confounding predictors is
necessary to detect the (i105, i181) and (i105, i50) interactions. Though not illustrated for brevity,
without controlling for processing batch, the model detects a large number of positive interactions,
none of which are supported in our co-plating experiments.

While SparCC is capable of detecting the top correlations between directly interacting mem-
bers, it is unable to successfully resolve the correct conditional independence structure among them,
despite its intention to produce a sparse network. Though the graphical lasso can infer direct inter-
actions, its inability to properly model covariates or count based abundance measurements greatly
reduces its utility in metagenomic sequencing experiments. Finally, though not derived for brevity,
we note that the Poisson-multivariate normal model has as flexible as a mean-variance relation-
ship as a negative binomial model, and can therefore readly handle overdispersion. Intuitively, it’s
modeling the Poisson mean as a log-normal random variable affords this flexibility.

We conclude that our method provides a structured, accurate, and distributionally reasonable
way of modeling correlated count based random variables and capturing direct interactions among
them.
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