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ABSTRACT

The somatic recombination of V, D, and J gene segments in B-cells introduces a great deal of
diversity, and divergence from reference segments. Many recent studies of antibodies focus
on the population of antibody transcripts that show which V, D, and J gene segments have
been favored for a particular antigen, a repertoire. To properly describe the antibody
repertoire, each antibody must be labeled by its constituting V, D, and J gene segment, a
task made difficult by somatic recombination and hypermutation events. While previous
approaches to repertoire analysis were based on sequential alignments, we describe a new de
Bruijn graph–based algorithm to perform VDJ labeling and benchmark its performance.
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1. INTRODUCTION

The antibody molecule is comprised of two pairs of two distinct proteins: the heavy and light chains.

In humans, there exist a single heavy chain locus, and two light chain loci. These heavy and light chains

pair with one another to form a ‘‘Y’’-shaped protein structure. The tips of this immunoglobulin (Ig) molecule

interact and bind to different antigens within one’s body, signaling an immune response. Unlike typical

transcripts within eukaryotic cells, the heavy and light chain transcripts are not directly taken from exonic

segments of the individual’s genome. Instead, there are three distinct classes of exon-esque gene segments,

termed the variable (V), diversity (D), and joining ( J) gene segments. Each of these classes of gene segments

contains many different variants encoded in an individual’s genome. The light chain transcript contains only

V and J gene segments, while the heavy chain transcript contains V, D, and J gene segments. Both heavy and

light chains also contain a constant (C) gene segment that does not contribute to combinatorial diversity.

Unlike typical exonic splicing, which is precise, somatic recombination of antibody gene segments is

inexact, with the exonuclease removing several base-pairs from each end of the gene segments. Ligation of D

to J, and subsequently DJ to the V gene segment, is also imprecise with deoxynucleotidyl transferase (TdT)

incorporating non templated base pairs into the resulting gene (Desiderio et al., 1984); a process known as

V(D)J recombination. In addition to the variability induced by somatic recombination, somatic hypermutation

(SHM) events introduce additional deviations from germline gene segments. The end result of this process is

a B-cell that produces a single type of antibody, a monoclonal antibody (mAb). This increased variability

allows for a larger search space of antibody configurations to be explored for specificity to a particular
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antigen. While this is advantageous from the perspective of our immune system’s adaptability to foreign

substances, analysis of these highly variable immunoglobulin genes becomes difficult.

Repertoire construction forms the basis for the analysis of antibodies; characterizing the pool of gene

segments that were selected for a particular antigen. A prerequisite step for repertoire analysis is the

labeling of V, D, and J gene segments for the read of each heavy and light chain. This VDJ labeling

problem can be described as the following: given reference gene-segment sets V, D, J , and a read, return

the ‘‘most likely’’ labels v 2 V, d 2 D, and j 2 J for this read. Despite this problem being easily described,

it remains unclear how to design an adequate and easy-to-compute likelihood estimator for VDJ classifi-

cation. As a result, this classification can be difficult and error prone, particularly for the heavy chain.

While all described approaches also operate on the light chain, we focus on the heavy chain due to its

difficulty in correctly identifying composite gene segments.

Existing tools for repertoire characterization rely on aligning reads against the reference sequences of V,

D, and J gene segments from the organism in question (Weinstein et al., 2009; Arnaout et al., 2011; Chen

et al., 2012; Jiang et al., 2013). This strategy is exemplified by IMGT-VQUEST (Brochet et al., 2008) (the

most widely used VDJ classification tool) and other tools (Volpe et al., 2006; Gaéta et al., 2007; Wang

et al., 2008; Ye et al., 2013; Souto-Carneiro et al., 2004; Ohm-Laursen et al., 2006). Most of these tools rely

on an iterative approach where first the best matching V gene segment is identified, then J, and finally D.

This specific order of alignments (from V to J to D gene segment) is appealing because it starts from the

longest (and thus resulting in the most confident alignment) gene segment and ends with the shortest (and

thus resulting in the least confident alignment) gene segment. However, it also suffers from uncertainties in

alignment (there are usually multiple optimal alignments) and sequential dependencies in the iterative

alignment (at each step, previously matched nucleotides are removed from future alignments).

To address this sequential dependency bias shortcoming, we describe a colored de Bruijn graph–based

approach, which leverages the current understanding of V(D)J structuring of antibody transcripts. Similarly

to recent attempts to remove biases of previous alignment-based approaches in genomics applications, we

now introduce the concept of de Bruijn graph to immunoinformatics. Iqbal et al. (2012) introduced the

colored de Bruijn graph for identifying variants across genomes; we repurpose this approach for use with

antibodies. The resulting algorithm IgGraph does away with the sequential nature of iterative alignment and

provides accurate labeling of reads. IgGraph is shown to perform well on both real immunoglobulin

sequencing (Ig-seq) datasets, and simulated datasets with varying levels of deviations from reference gene

segments. At the same time, we show that the problem of VDJ classification is far from being resolved as

the leading tools produce remarkably different results when applied to large Ig-seq datasets.

2. METHODS

2.1. Antibody sequencing and the CDRs

The transcripts of the heavy/light chains can be sequenced using reverse primers located in constant

regions, and forward primers located at different positions of the different V gene segments. Sequencing of

these transcripts can then be performed after PCR amplification. The VDJ region of heavy chains is

approximately 110 amino acids (330 bp), which is why the previous literature favored the Roche 454

platform due to its larger read lengths of approximately 450 bp. However, with Illumina’s increasing read

length and throughput, recent and future studies face the challenge of analyzing large repertoires with

millions of reads (Safonova et al., 2015).

The heavy and light chains have three subsequences, termed complementary determining regions

(CDRs) due to the role they play in defining a particular antibody’s antigen binding specificity. These

CDRs, denoted CDR1, CDR2, and CDR3, while located along the length of each immunoglobulin chain,

are in close spacial proximity at the physical ‘‘tips’’ of the antibody structure. The location at the junction,

along with exonucleotide chewback and nontemplated nucleotide addition, all contribute to the larger

variability in CDR3 length. Since CDR1 and CDR2 are located entirely within the V gene segment, they

are only subjected to somatic hypermutation.

2.2. V/D/J antibody segments

In all, 213 V, 30 D, and 13 J gene segments are annotated as functional (and complete) in the inter-

national ImMunoGeneTics (IMGT) database (Robinson et al., 2013). Of these 213 V gene segments, many
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are allelic variants of one another, differing in a few nucleotides from another allelic variant of the same

gene. High similarity between these allelic variants adds complexity to the problem of VDJ classification.

Even after collapsing allelic variants to their consensus sequences (that results in only 55 consensus V gene

segments), there are still many similar fragments between these consensus sequences. Figure 1a visualizes

similarities between 213 V gene segments and Figure 1b visualizes similarities between 55 consensus V

gene segments.

2.3. Simulating antibodies

To generate simulated data that properly represent the challenge of VDJ labeling from reads, we needed

to simulate the VDJ somatic recombination events that drive the diversity of the CDR3 region of anti-

bodies. Unfortunately, there are no publicly available antibody simulators, despite many existing tools

having used simulated antibody sequences to demonstrate performance (Arnaout et al., 2011; Volpe et al.,

2006; Wang et al., 2008). To this end, a simulated monoclonal antibody (smAb) is generated by the process

detailed in Supplementary Figure 1 (available online at www.liebertpub.com/cmb): selecting a V, D, and J

gene segment to comprise our smAb; exonuclease chewback on the 30 V, 50 and 30 D, and 50 J segments;

and finally, nontemplated nucleotide addition to these same regions. To simulate these biological processes,

empirical distributions for exonuclease chewback length ( Jackson et al., 2004), as well as composition and

length distributions for nontemplated nucleotide additions (Basu et al., 1983), were used. Using this process

to create a smAb, we are able to generate datasets with labeled V/D/J segments with simulated biological

diversity.

These smAbs can then be sampled using a read simulator to further introduce sequencing errors. The

Grinder (Angly et al., 2012) read simulator can be used to generate Illumina and 454 reads. Additionally, we

also want to generate datasets of smAbs with a fixed number of deviations from the germline sequence, that

is, mutations. To this end, positions along the V gene segment were selected from a distribution of mutations

created from 23,051 annotated IMGT sequences. These positions were selected without replacement to ensure

a fixed divergence from germline references. The V, D, and J gene segments from humans were collected

from the IMGT database (Robinson et al., 2013) as the basis for the simulation of each smAb.

2.4. Canonical antibody graph

The canonical antibody graph is created by constructing a de Bruijn graph of each set of V, D, and J gene

segments, and creating an artificial joining of nodes at the V/D and D/J segments. Figure 2 shows multiple

versions of this graph for different parameters k. The differences when creating the canonical antibody

graph with either all alleles (left) or all consensus gene segments (right) is shown. The arcs in this graph are

colored blue for V gene segments, green for D gene segments, and red for J gene segments. The arcs

artificially joining gene segments are colored black. This canonical antibody graph was created for three

values of k to show the connectivity between the different sets of reference gene segments. The graph

constructed with k = 13 shows sharing of k-mers between V and D gene segments, as well as among

FIG. 1. Edit distances between (a) 213 human V gene segments (alleles) and (b) 55 consensus V gene segments. The

consensus V gene segments illustrate that, even after collapsing highly similar allelic variants into consensus V gene

segments, many of the 55 consensus V gene segments remain similar to each other.
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different V genes. The parameterization of k = 13 results in a very complicated graph; this complexity of the

visual representation is partially exacerbated by the graph visualization layout algorithm. It is the relative

comparison of complexity between the graphs in Figure 2 that is meaningful.

2.5. Antibody graph

Given a set of reads R from mAbs, we construct the de Bruijn graph (termed antibody graph) over the

k-mers of these reads in the following manner. Nodes in this graph represent all (k - 1)-mers over the set of

reads R. Nodes u‚ v are connected by a directed edge (arc) (u‚ v) if u is a prefix, and v is a suffix of some

k-mer in a read from R. More on applications of the de Bruijn graphs for assembly can be found in

Compeau et al. (2011).

We can also incorporate IMGT reference gene segments into the antibody graph. Reference gene

segments C can be added to the antibody graph and considered as ‘‘colored’’ reads. For example, the human

antibody graph has 213 + 30 + 13 = 256 colors (corresponding to 213 V, 30 D, and 13 J gene segments). In

comparison, the mouse antibody graph has 242 V, 27 D, and 8 J gene segments, for a total of 277 colors. A

total of jCj reference gene segments are added to the antibody graph in a similar manner as the (virtual)

a

b

c

d

e

f

FIG. 2. The canonical antibody graph for different values of k (arcs corresponding to the V, D, and J gene segments

are colored blue, green, and red, respectively) constructed for all alleles (left) and all consensus gene-segments (right).

All nonbranching paths are collapsed to a single arc, and at each junction, a dummy node is created to connect V gene

segments to D gene segments, and D gene segments to J gene segments; these arcs are colored black. These graphs are

constructed with k = 13 (a and d), k = 21 (b and e), and k = 51 (c and f). Panel (b) shows V, D, and J gene segments

completely separated, while (a) shows considerably more sharing of arcs in the V segments, and some shared in the D

gene segments. Increasing the value of k (c) greatly simplifies the relationship among V gene segments. This is not a

feasible parameter for our purposes (as no D segments are captured) but does show the complexity of V gene segments.

In the case of k = 51, the graph becomes disconnected (and green edges disappear), since it exceeds the length of the

longest D gene segment.
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reads, with an additional data structure. Each arc along a reference read path i is assigned the color ci 2 C.
A hash of arcs to a set of colors, HC, is maintained as each reference sequence is added to the graph. The

hash can then be queried given an arc e, for example, HC[e] = fc1‚ c3‚ c4g, to retrieve all the colors present

on that arc. Edges from reads are assigned a special ‘‘noncolored’’ symbol representing their lack of color

(shown as black edges in subsequent examples).

The antibody graph incorporating reference gene segments is termed the colored antibody graph. This

graph represents the sequenced mAb repertoire and their similarity to reference gene segments; an idealized

depiction of this graph is shown in Figure 3.

2.6. Color profile

The coloring of the antibody graph relies on common structures in de Bruijn graphs referred to as bulges

and tips (Compeau et al., 2011) that will help us to repaint black edges into colors corresponding

to reference gene segments. Given a set of reference gene segments C, a jCj· n color profile matrix C

can be constructed for a read of length n, representing the associations of each color to each position

of the read. At first glance, it is unclear how to assign new colors to arcs on the black path

TCC! CCG! CGC! GCA! CAG in Figure 4. However, one can note that this path forms a bulge

with the colored path TCC! CCA! CAC! ACA! CAG that we will use for coloring the black path

as described below. A similar approach is applied to tips, such as ATA! TAT. Construction of the color

profile matrix is accomplished by considering each color ci 2 C, and traversing each arc e from read r,

noting when ci 2 HC[e]. This condition determines the value at C[ci][e], the cell in the color profile matrix

for the color and position, which is updated to note the match/mismatch with color ci at the position of arc

e. Figure 4 shows an example graph with C = fred‚ blue‚ greeng, and a single read depicted with black arcs.

In this example, read arcs (in black) TAT! ATC‚ ATC! TCC, and CAG! AGG are shared with

different reference segments; the contents of HC for these arcs are shown in the figure. It is worthy to note

in this example that reference segments share arcs, for example, red and green sharing three arcs, something

that is common for allelic variants of V gene segments. This color profile represents an abstraction for

scoring the reference gene segments to a read r.

2.7. Color propagation

Deviations from reference gene segments create bulges and tips (Pevzner et al., 2004; Zerbino and

Birney, 2008). A bulge is created when a read deviates from a reference gene segment and is not near either

end. A tip is created when this deviation occurs near either end of a reference gene segment or read. The

FIG. 3. Colored antibody graph. An ide-

alized colored antibody graph built over

the reads, with reference gene segments re-

presented as distinct colors. Imperfect over-

lay of reference gene segments at V/D and D/

J segments is common. Also detectable is the

divergence of V-segments from their refer-

ences, helpful in determining differences in

CDR1 and CDR2 regions.
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assignment of each color to the read can be greatly affected by bulges and tips between a read and a colored

reference sequence. This particularly effects V gene segments due to somatic hypermutations, as such, we

must ensure the color propagates through these arcs such that small differences between a read and a gene

segment do not result in a ‘‘loss of color.’’ Bulges arising from mutations in the V gene segments are

traversed, and the color profile is adjusted accordingly. Figure 5a shows color propagation for a de Bruijn

graph constructed with k = 5 when a single reference segment (red arc color), and a single read (black arcs),

have a single nucleotide variation between them. Above each red arc is the arc marginal (last nucleotide of

the corresponding k-mer) for the reference, similarly, below each black arc is the marginal for the read.

The information contained in the arc marginal aids us in creating the color profile of a read. In our

example (Fig. 5a), this matrix is of dimension 1 · 10, since we have only a single color in our set of colors

C = fredg, and a fragment represented by 10 arcs. Two different color profiles are shown in Figure 5a, a

‘‘Raw’’ and a ‘‘Propagated.’’ These color profiles are shown with red/black rectangles denoting matches/

mismatches over each position, that is, each arc marginal. If we merely traverse the arcs of the read, we

would obtain the color profile ‘‘Raw’’ showing five mismatches, colored black, in C. If we instead traverse

the bulge, that is, traverse both the read and reference paths, we obtain the subsequences of the read and

reference over the bulge. These subsequences can then be aligned to fill in the color profile and only report

a single mismatch, shown as ‘‘Propagated’’ in Figure 5a. A similar propagation is performed for tips from

the read/reference that could be caused by mutations in the first and/or last k base pairs. Figure 4 depicts the

traversal of bulges and tips, and their subsequent color propagation. The full color profile, after color

propagation, is shown at the top of the figure, aligned with the arcs of the read.

Using the colored antibody graph, we label each read’s V, D, and J gene segments for repertoire analysis.

Figure 5b depicts a single read, shown in black, with multiple colored reference gene segments sharing

some subsequences. A single read can be traversed to create the color profile for that read. This profile

consists of all the colors that paint the path of the read, that is, all the reference gene segments that share

some k-mer with the read. Figure 5c shows the 9 · n color profile matrix C for the example represented by

FIG. 4. An example antibody graph with three reference segments, colored by red, blue, and green arcs. A single read

is shown here with black arcs. The color hashHC is shown for the three arcs from the read that are shared with reference

gene segments, TAT! ATC‚ ATC! TCC and CAG! AGG. Bulge/tip traversal and color assignment is shown

below the graph, for example, to obtain the matching for the green reference, the green/black bulge is traversed, and

marginals are aligned. Tips are also traversed, shown here with red and blue references. Matching/mismatching

nucleotides are noted for each colored reference to the read at the bottom of the figure. Matches are noted with a � and

mismatches with a -.
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the nine (three V, three D, and three J) reference gene segments, and n positions. From this color profile

matrix, we can select the top m scoring gene segments for each V, D, and J gene segment set. Scoring each

row of this matrix, by a variety of scoring schemes described below, will allow us to select the top gene

segments.

2.8. Scoring the color profile

To utilize the color profile C, a scoring scheme must be defined. A simple scoring scheme with match

and mismatch values can be used for the D and J gene segments, as they exhibit far fewer mutations. In this

simple case, the most popular color can be selected as the reference label. The V gene segments frequently

contain many mutations, some having known associated motifs (Rogozin and Kolchanov, 1992; Dörner

et al., 1998; Clark et al., 2006). Rogozin and Kolchanov (1992) first exposed the RGYW motif, and

Doerner et. al., (1998) showed the inverse motif, WRCY, also promotes mutations. As a result, the simple

scoring does not leverage this additional information and thus does not perform well on V gene segments.

However, this information can be easily incorporated into the model to improve gene segment labeling.

Mutations in the V gene segments are known to be positionally dependent (Clark et al,. 2006), with fewer

occurring in framework regions and more in CDR regions. This is incorporated with discovered 4-mer

motifs into a probabilistic score. At each position in the scoring matrix, i, there is an event of either a

mutation or a match. There is an associated l-mer bi and a read position pi. From these, the probability of an

a

b

c

FIG. 5. Color propagation and colored antibody graph with single read. (a) Color propagation example. Two se-

quences with a single nucleotide difference between them: GATCCACTGGGTTA (read shown by black edges) and

GATCCACCGGGTTA (reference shown by red edges). The de Bruijn graph in this example is created with k = 5.

Edges shared between the two sequences are colored red and black. A single nucleotide difference creates five

mismatches in the color profile of this read, shown as the ‘‘Raw’’ C. IgGraph traverses this bulge and propagates the

color to reduce the number of mismatches to the single nucleotide difference, shown as ‘‘Propagated’’ C. (b) A single

read (shown in black) along with V, D, and J gene segments shown as different colors. Shared k-mers between the read

and different gene segments are shown as merged paths, while divergences are shown as bulges and tips. (c) The 9 · n

color profile matrix for the example is shown. Each row represents one of nine gene segments, and each column is a

different position in the read. From this matrix, we can score each row to select the V, D, and J labels for the read.
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event m 2 fmatch‚ mutationg is P(mjbi‚ pi). We compute the probability of the read r, arising from ref-

erence R 2 V, with each reference being equally likely as P(rjR) =Pall positions i in the referenceP(mjbi‚ pi).
The computation of P(rjR) can be performed over a row R of color profile C, C[R]. Each column i of

C[R][i] provides us with positional information, pi, and its surrounding sequence context. In the uncommon

cases when bulge/tip color propagation is unable to resolve differences in the sequences, we must assume

that all differences arise from mutations without any reference sequence context. This is computed for all

references in the V gene segment set V.

The probabilities for mutation and matching events are computed from 23,051 human IMGT annotated

sequences, resulting in 67,108 mutation events and 1,487,059 matching events. Any events that include an

indel from the alignment of read to reference are discarded. Once probabilities for each reference (i.e.,

color) are computed, a rank score is associated with each color. The top-ranked colors, cumulatively

comprising a certainty cutoff, are all awarded a tie for top rank. Each other color is assigned the rank of its

probability; only the top-ranked colors are returned.

3. RESULTS

3.1. Datasets

In order to test the labeling performance of the IgGraph, two approaches were utilized: simulating

datasets of smAbs with varying levels of divergence, and testing on three Ig-seq datasets. Comparison on

simulated datasets is deemed as supervised since ground truth labels are known. Comparison on Ig-seq

datasets is computed on similarity of predictions by different tools since ground truth cannot be known, that

is, unsupervised evaluation.

Obtaining true labels for real data (like the Stanford S22 dataset) is difficult and error prone. We thus

include Stanford S22 dataset as an example of real Ig-seq data, all of which are shown in Table 1, and

compare predictions on it in an unsupervised manner.

While the datasets of real Ig-seq data are invaluable, they are likely to be biased in favor of certain V/D/J

gene segments selected for by the immune system (Supplementary Fig. S5). This bias is not a desirable

property when benchmarking a tool. Rather, we wish to test performance on all combinations of gene

segments, so an ideal dataset will have a uniform distribution of VDJ usage (Supplementary Fig. S7). The

simulated dataset was generated by using V, D, and J gene segments from human reference gene segments,

using the method described in Supplementary Figure S1. The distributions of exonuclease chewback,

nucleotide additions, and V(D)J combinations are represented across the datasets. Furthermore, each dataset

included a fixed number of mutations per smAb, testing the ability to perform VDJ classification at varying

degrees of divergence from the reference gene segment. Considering a single read, it can be labeled by one, or

more, reference gene segments. Ideally, only a single segment should be returned. However, there are

occasions when exonuclease chewback makes unique identification infeasible. We select the maximum

number of gene segments to return, above which we return no label (Supplementary Figs. S8 and S9).

We attempted to benchmark as many tools as possible, and while many exist (Gaëta et al., 2007; Brochet

et al., 2008; Ye et al., 2013; Wang et al., 2008; Souto-Carneiro et al., 2004; Volpe et al., 2006; Ohm-

Laursen et al., 2006), few are available for download, and only IgBlast is able to be run on the large number

of sequences produced by current Ig-seq experiments. This is likely the cause for why so many analyses of

Ig-seq experiments produce their own approaches to VDJ classification (Weinstein et al., 2009; Jiang et al.,

2011; Arnaout et al., 2011; Wine et al., 2013; Halemano et al., 2014). Even for IgBlast, while scaling well

Table 1. Table of Datasets Used for Benchmarking

Dataset Sequencing No. unique entries Size (MB)

Simulated Ig Simulated 2 000 1.1

Stanford S22 ( Jackson et al., 2010) Roche 454 13 153 3.4

Mouse Ig-seq (Halemano et al., 2014) Illumina MiSeq 204 462 80.0

Human Ig-seq (Safonova et al., 2015) Illumina MiSeq 3 099 967 1 173.0

Simulated datasets are evaluated in a supervised manner, and real datasets are compared in an unsupervised

manner.
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to process millions of Ig-seq reads, its output was not immediately usable and a wrapper parser had to be

written to convert its output to a more concise format. Other tools only provide a web-based interface

(Brochet et al., 2008; Ohm-Laursen et al., 2006; Souto-Carneiro et al., 2004), which have varying limi-

tations on the number of sequences, none of which could handle the mouse or human Ig-seq datasets, as

listed in Table 1. The lack of usable, efficient, and standardized tools suggest the potential usefulness of

IgGraph for this increasingly used analysis of Ig-seq datasets.

3.2 Performance on Ig-seq datasets

In order to compare the predicted classes of various tools, we separate comparisons on labeled data (i.e.,

simulated data) and unlabeled data (i.e., Ig-seq datasets). Comparisons on labeled data are supervised and

reported as accurate. Unlabeled data is compared in an unsupervised manner and reported as the Jaccard

index over two sets A and B, computed as J(A‚ B) = jA\Bj
jA[Bj. Both alleles and genes are compared using the

Jaccard index ( Jaccard, 1908), as are partitions. Clusters based on the junction sequences, as reported by

the tools, are compared using the Fowlkes–Mallows index (Fowlkes and Mallows, 1983). Further expla-

nation of the tool used for this comparison is described in the supplement.

Table 2 shows the runtimes of different tools over the datasets. iHMMune was not run on the Stanford

S22 dataset since predictions were available ( Jackson et al., 2010). IgGraph is able to process the large Ig-

seq datasets now being generated, as evidenced by the CPU time required for the human Ig-seq dataset.

Reducing the CPU time from 102 hours when using IgBlast to 27 hours when using IgGraph. The

unsupervised comparison of all pairs of tools is shown in Table 3. The full pairwise comparisons for the

Stanford S22 dataset are shown in Supplementary Figure S6. Predictions between IgGraph and IgBlast are

very similar for J alleles/genes, while less similar for V alleles/genes. The predictions for D alleles/genes is

an area where the predictions of the two tools diverge the most. Clone partitioning also differs greatly

between the two tools, particularly for the Stanford S22 dataset and human Ig-seq dataset, but are similar

for the mouse Ig-seq dataset. Clone partitions are defined by the reported CDR3 sequences (for IgGraph) or

the reported junction sequences (post-processed from the output of IgBlast).

3.3. Performance on simulated datasets

To evaluate the performance of IgGraph in the case when somatic hypermutations (SHM) are prevalent,

we generated simulated datasets of smAbs with increasing numbers of mutations, ranging from 0 up to 30.

In these datasets, a mutation is a change to a nongermline nucleotide with uniform probability, it is not

meant to simulate true motifs found within antibodies. Mutations were selected only along the V gene

segment, as sampled from our mutation distribution obtained from IMGT data. Figure 6a shows the V gene

segment performances of each mutation dataset with an even number of mutations (datasets with an odd

number are used for parameter selection [Supplementary Fig. S9]) when the divergence from the germline

increases. The difference in performance between these parameterizations with varying k-mer sizes

Table 2. Table of Runtimes for Each Tool on the Datasets Tested

Dataset Tool CPU time (sec) Time per entry (sec)

Simulated Ig IgGraph 54 0.027

IgBlast 151 0.075

iHMMune 3,724 1.862

Stanford S22 IgGraph 191 0.014

IgBlast 641 0.048

iHMMune NA NA

Mouse Ig-seq IgGraph 10,311 0.050

IgBlast 20,114 0.098

Human Ig-seq IgGraph 99,813 0.032

IgBlast 367,545 0.118

iHMMune-align was not run on the Stanford S22 dataset, but was analyzed using the

published predictions. iHMMune-align was not run on the mouse Ig-seq and human Ig-seq

datasets due to its high estimated run time from its time per entry on the simulated Ig dataset.
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correlates with the complexity of the canonical antibody graph shown in Figure 2. With more nodes shared

with using the smaller k, reconstruction is more difficult. The green curve shows the performance of IgBlast

on these same datasets when run with default parameters. While IgGraph with k = 21 and k = 15 outperform

IgBlast, the k = 11 parameterization does underperform when reference divergence is increased.

One option is to provide multiple values of k for the different V, D, and J gene segments; since larger

values for k perform better for V and J, while smaller values of k are required for recovering many D gene

segments. This can be done by creating the graph for each gene segment type and one or more reads, as

described previously. The resulting accuracies, for pairs of values of k for V/J and D on a simulated dataset

are shown in Supplementary Figure S12.

3.4. VDJ partitioning comparison

Partitioning an input read into the germline genesegments is a useful output for VDJ classification. To

adequately compare the similarity in partitioning between the tools, a dataset of 7,532 antibody sequences

Table 3. Table of Ig-seq Datasets Showing Pairwise Comparison

Using Unsupervised Evaluation Criteria

Alleles Genes

Dataset Tools IGHV IGHD IGHJ Total

Clone

cluster IGHV IGHD IGHJ Total

IgBlast - IgGraph 0.944 0.824 0.983 0.774 0.153 0.960 0.824 0.983 0.787

Stanford S22 IgBlast - iHMMune 0.739 0.878 0.921 0.696 — 0.903 0.889 0.923 0.862

iHMMune - IgGraph 0.814 0.771 0.921 0.674 — 0.913 0.781 0.923 0.766

Mouse Ig-seq IgBlast - IgGraph 0.948 0.426 0.947 0.426 0.997 0.948 0.426 0.947 0.426

Human Ig-seq IgBlast - IgGraph 0.936 0.583 0.951 0.526 0.563 0.945 0.594 0.954 0.541

Criteria for allele and gene levels is Jaccard index, while Fowlkes-Mallows is used to compare the clone clusterings.

FIG. 6. Labeling and partitioning comparison. Panel (a) shows the accuracy of IgGraph for V gene segments when a

fixed number of mutations are inserted in each smAb V gene segment. Only datasets with an even number of mutations

are plotted. The blue, orange, and yellow curves represent IgGraph results with parameterizations of k = 21, k = 15, and

k = 11, respectively. The green curve represents the IgBlast tool run with default parameters. (b) Jaccard index over

partitions. The similarity of the partitioning for range sets of V, VJ, and VDJ gene segments are measured by computing

the Jaccard index for predictions from IgGraph and IgBlast for each sequence.
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was downloaded from the IMGT database. This approach of using a collection of unlabeled, experimentally

derived sequences for comparison was employed in previous approaches (Gaëta et al., 2007; Ye et al.,

2013). This set was selected by collecting all fully annotated, human heavy chain antibody sequences in the

IMGT database whose length ranged from 350 to 500 bp.

Figure 6b shows the similarities in partitioning between IgBlast and IgGraph as the Jaccard index

between the partitioning ranges considered. For each tool, each range of positions for V, D, and J is

considered a set, and the Jaccard index over two sets A and B is computed, J(A‚ B) = jA\Bj
jA[Bj. While there are

differences between the two tools where the partitions are drawn, they are largely similar. As the difficulty

in labeling gene segments increases, so too do the differences between the reported partitions.

4. DISCUSSION

We presented a new IgGraph approach to VDJ gene segment labeling for immunoglobulin transcripts.

Our colored antibody graph departs from the alignment-based methods (IMGT, SoDA, IgBlast, and others)

and HMM-based methods (iHMMune-align). Recently, colored de Bruijn graphs have been used to identify

genomic variants (Iqbal et al., 2012); we repurpose and extend this idea to identify immunoglobulin gene

segments. Further, our approach utilizes a scoring model for V gene segments that considers mutation

motifs and position dependence, something that many other tools do not model. iHMMune-align is one of

the few that explicitly model known mutation motifs, however, they do so in a static fashion. Our scoring is

based on probabilities learned from IMGT data, discovering known, and potentially novel, mutation motifs.

We have shown that our approach performs well on simulated datasets and on real Ig-seq datasets. While this

approach performs well, it does have its limitations, namely the reliance on sufficiently large k-mers. This is of

concern particularly for small D gene segments, as there must be some k-mers that match on these segments that

have been shortened by exonuclease chewback. However, selecting too small a value for k to ensure coverage

on D gene segments can create an overly complicated graph, potentially connecting k-mers in V gene segments

to those in J gene segments. While we do not observe any significant reductions in performance in either our

simulated datasets or real ones due to this, this can limit the potential applications, namely to T-cell receptors

(TCR). TCRs share the same V/D/J structure as immunoglobulins, but in humans have only two D gene

segments, 12 and 16 bp long. While some approaches may claim to recover these D gene segments, our colored

antibody graph will likely be unable to as long as exonuclease chewback sufficiently reduces its length.
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