
Software Implementation of Parallelized
ECSM over Binary and Prime Fields

Jean-Marc Robert1,2

1 Team DALI, Université de Perpignan, France
2 LIRMM, UMR 5506, Université Montpellier 2 and CNRS, France

Abstract. Recent developments of multicore architectures over various
platforms (desktop computers and servers as well as embedded systems)
challenge the classical approaches of sequential computation algorithms,
in particular elliptic curve cryptography protocols. In this work, we de-
ploy different parallel software implementations of elliptic curve scalar
multiplication of point, in order to improve the performances in com-
parison with the sequential counter parts, taking into account the multi-
threading synchronization, scalar recoding and memory management is-
sues. Two thread and four thread algorithms are tested on various curves
over prime and binary fields, they provide improvement ratio of around
15% in comparison with their sequential counterparts.

Keywords: Elliptic curve cryptography, parallel algorithm, efficient soft-
ware implementation

1 Introduction

Elliptic curve cryptography (ECC) is widely used in a large number of pro-
tocols: secret key exchanges, asymmetric encryption-decryption, digital signa-
tures... The main operation in these protocols is the scalar multiplication (ECSM)
defined as k · P where P is a point of order r on an elliptic curve E(Fq) and
k ∈ [0, r[is an integer. The scalar multiplication is computed with Double-and-
add approaches which consist of sequences of several hundreds of doublings and
additions of curve points. It is thus a costly operation which might be imple-
mented efficiently.

In this paper we consider parallel approaches for software implementation of
scalar multiplication. There are two versions of the Double-and-add scalar multi-
plication: the left-to-right and the right-to-left depending on the way the bits of
k are scanned. On the one hand, the left-to-right version cannot be parallelized
due to the strong dependence of the consecutive doublings and additions. On the
other hand, the right-to-left version is easier to parallelize: this was noticed by
Moreno and Hasan in [15]. Indeed, in [15], the authors provide an algorithm con-
sisting in one thread producing the points 2iP through consecutive doublings,
which are then consumed by a second thread performing all the necessary ad-
ditions. They did not provide any implementation results of their approach. In

2 Jean-Marc Robert

practice this can be challenging to implement efficiently the synchronizations
between the two threads.

When the elliptic curve is defined over a binary field F2m , a formula exists
(cf. [12,5]) which computes efficiently the halving of a point, i.e., 1

2P . This makes
possible to perform the scalar multiplication through a sequence of halvings and
additions of points. This can be used to parallelize the scalar multiplication into
two totally independent threads: one thread performing a halve-and-add scalar
multiplication and a second thread performing a double-and-add. This approach
has been implemented by Taverne et al. in [20] showing a significant speed-up
compared to non-parallelized versions.

In this paper we first explore the implementation of the two threads par-
allel approach of Moreno and Hasan [15]. Specifically, we analyze three differ-
ent strategies to perform synchronization between both threads: using signals,
mutexes or busy-waiting approaches, we propose a synchronization strategy
based on this analysis. We also study the best approach for the coding of the
integer k: this impacts the number of additions and post-computations, i.e., the
work load of the thread performing the additions.

We then investigate a four thread parallelization of the scalar multiplication
in E(F2m). This approach combines the Double/halve-and-add algorithm of [20]
with the approach of Moreno and Hasan.

We provide experimental results for two curves defined over a prime field
p = 2255 − 19 and for the two binary elliptic curves B409 and B233 recom-
mended by NIST in [18]. Our experimental results show that the parallelized
scalar multiplication is up to 15 % faster than their non-parallelized counter-
parts (depending of the curve type and the field size).

The remaining of the paper is organized as follows: in Section 2 we review
basic definitions of elliptic curve and scalar multiplication algorithms. In Sec-
tion 3, we present our implementation approaches of scalar multiplication. We
then provide in Section 4 the experimental results and comparisons with the
state of the art. We end the paper in Section 5 with some concluding remarks.

2 Background on elliptic curve scalar multiplication

In this section, we briefly review basic results concerning elliptic curve and
their use in cryptography. For further details on this matter we refer the reader
to [9]. An elliptic curve over a finite field E(Fq) is the set of point (x, y) ∈ F2

q

satisfying a smooth curve equation of degree 3 in x and y plus a point at infinity
O. A group law can be defined using the so-called chord-and-tangent approach,
providing formulas in terms of point coordinates which compute doubling 2P and
addition P +Q in the group. The element O is the neutral element of the group.
Cryptographic protocols are based on the intractability of the discrete logarithm
problem: given a generator of the group P and a point Q, compute k such that
Q = kP . The most costly operation involved in most ECC protocols is the
scalar multiplication: given P ∈ E(Fq) and an integer k, the scalar multiplication
consists in computing kP = P + P + · · ·+ P (k times). The elliptic curves used

Title Suppressed Due to Excessive Length 3

in practice are defined either over prime field Fp with p prime or over binary
field F2m . In the remainder of this section, we briefly review explicit formulas
and algorithms for scalar multiplication over these two fields.

2.1 Scalar multiplication over prime field

Weierstrass Elliptic curve. An elliptic curve E over a prime field Fp is gen-
erally defined by a short Weierstrass equation:

E : y2 = x3 + ax+ b, (a, b) ∈ F2
p.

Then, in this case, addition and doubling on E(Fp) works as follows: let P1 =
(x1, y1), P2 = (x2, y2), P3 = (x3, y3), be three points of E such that P3 = P1+P2,
then we have:{

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

where

{
λ = y2−y1

x2−x1
if P1 6= P2,

λ =
3x2

1+a
2y1

+ x1 if P1 = P2.

Jacobi Quartic curves over prime field. This curve was suggested by Billet
et al. in [4]. The curve equation of E is:

y2 = x4 − 3

2
θx2 + 1, θ ∈ Fp.

For such curve, the addition and doubling formulas are unified. Let P1 = (x1, y1), P2 =
(x2, y2), P3 = (x3, y3), be three points of E such that P3 = P1 + P2, then we
have:{

x3 = (x1y2 + y1x2)/(1− (x1x2)2),
y3 = ((1 + (x1x2)2)(y1y2 + 2ax1x2) + 2x1x2(x21 + x22))/(1− (x1x2)2)2.

The Jacobi Quartic curve is isomorphic to the following Weierstrass elliptic
curve:

y2 = x3 + ax+ b where a = (−16− 3θ2)/4 and b = −θ3 − aθ.

Elliptic curve point operations. The most expensive field operation is the
inversion which roughly requires several tens of field multiplications. In order
to avoid such operation, additions and doublings utilize projective coordinate
system. In our implementation, we consider two systems: the Jacobian coordinate
where the point (X : Y : Z) corresponds to the affine point (X/Z2, Y/Z3) and
the XXY ZZ coordinate system where the point (X : XX : Y : Z : ZZ)
corresponds to the affine point (X/Z, Y/ZZ) with XX = X2 and ZZ = Z2.
Explicit formulas for addition and doubling in these systems can be found in [1]

The resulting complexities are shown in Table 1, which shows that the com-
plexities of the Jacobi Quartic curve operations are better than for the Weier-
strass equation case. Moreover, based on the elliptic curve formula database in
[1], the Jacobi Quartic curves provide the most efficient point operation among
all known curves and formulas. This is the reason why we used such curve and
these formulas in our implementations.

4 Jean-Marc Robert

Complexity comparison for: Weierstrass Jacobi Quartic curve
point operations with Jacobian coord. with XXY ZZ coord.

Doubling 4M + 4S + 8R 3M + 4S + 7R

mixed Addition 9M + 3S + 12R 6M + 3S + 9R

full projective Addition 13M + 2S + 15R 7M + 4S + 11R

Table 1. Weierstrass curve and Jacobi Quartic curve point operations, M = multipli-
cations, S = squaring, R = field reduction.

Scalar multiplication algorithm. The basic method to compute a scalar
multiplication consists in scanning the bits ki of k =

∑t−1
i=0 ki ·2i and performing

a sequence of doubling followed by an addition when ki = 1. This approach is
described in Algorithm 1.

In order to reduce the number of additions, the non adjacent form (NAF)
and the window non adjacent form (W-NAF) recoding of the scalar are well-
known methods, which reduce the number of non zero digit representing the
scalar. In the binary scalar representation, half of the digits are either zero or
one on average. In the NAF representation, one uses three digits instead of two:
k =

∑t
i=0 ki · 2i with ki ∈ {−1, 0, 1} and there are only t/3 non zero digits ki on

average.
The W-NAF representation extends this concept by using more digits: k =∑t

i=0 ki · 2i with ki ∈ {−(2w−1 − 1), . . . ,−5,−3 − 1, 0, 1, 3, 5, . . . , (2w−1 − 1)}.
The number of non zero digits is now t/(w+ 1) on average. Algorithm 1 can be
adapted to use k recoded as NAF or W-NAF. The complexities of the resulting
scalar multiplication are given in Table 2.

nb. of doublings nb. of additions

Double-and-add t− 1 t/2

NAF Double-and-add t t/3

W-NAF Double-and-add t t/(w + 1) + 2w−2 − 1

Table 2. Complexity comparison between binary, NAF and W-NAF scalar represen-
tation in terms of t the bit length of the scalar.

The reader may refer to [8] for further details and algorithms to compute
NAF and W-NAF representation.

2.2 Elliptic curve scalar multiplication over binary field

An elliptic curve E over a binary field F2m is the set of points P = (x, y) ∈
F2
2m satisfying the following equation:

E : y2 + xy = x3 + ax2 + b, (a, b) ∈ F2
2m .

Title Suppressed Due to Excessive Length 5

Algorithm 1 Left-to-Right

Double-and-add
Require: k = (kt−1, . . . , k1, k0), P ∈ E(F2m)
Ensure: Q = k · P
1: Q← O
2: for i from t− 1 downto 0
3: Q← 2 ·Q
4: if ki = 1 then
5: Q← Q + P
6: endif
7: endfor
8: return (Q)

Algorithm 2 Right-to-left

Halve-and-add
Require: P ∈ E(F2m) of order r and k an
integer in [0, r[
Ensure: Q = k · P
1: Compute k′ = 2t · k mod r =

∑t
i=0 k′i2

i

with t = blog2(r)c+ 1
2: Q← O
3: for i from t downto 0
4: if ki = 1 then
5: Q← Q + P
6: endif
7: P ← P/2
8: endfor
9: return (Q)

Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3), be three points of E such that
P3 = P1 + P2, then we have:

{
x3 = λ2 + λ+ x1 + x2 + a,
y3 = (x1 + x3)λ+ x3 + y1,

where

λ = y1+y2

x1+x2
if P1 6= P2,

λ = y1

x1
+ x1 if P1 = P2.

(1)

Elliptic Curve Scalar Multiplication with halving. It was noticed by
Knudsen in [12] that over a binary field, halving of points is possible in case of
points of odd order since 2 admits an inverse modulo the order of the point. In
other words, point halving is the reciprocal operation of point doubling: given
Q = (u, v) ∈ E(F2m), one looks for P = (x, y) ∈ E(F2m), P 6= −P such as
Q = 2 · P . Based on equation (1), we know that x, y, u and v satisfy the
following relations:

λ = x+ y/x (2)

u = λ2 + λ+ a (3)

v = x2 + u(λ+ 1) (4)

Consequently, in order to compute P , we first have to solve equation (3) to get
λ (which means solve λ2+λ = u+a), then, equation (4) gives x =

√
v + u(λ+ 1),

and finally, equation (2) gives y = λx+ x2. The reader may refer to Knudsen in
[12] and Fong et al. in [5] for further details. In practice, this can be implemented
efficiently and has roughly the same cost as two field multiplications (see [20]).

The Double-and-add method can be modified into a Halve-and-add scalar
multiplication. Preliminary, we need to change the scalar. Assuming the point
P to be multiplied is of odd order r, we compute k′ = 2t · k mod r =

∑t
i=0 k

′
i2

i

with t = blog2(r)c+ 1. Then, we have k ≡ k′/2t ≡
∑t

i=0 k
′
i2

i−t mod r and the
scalar multiplication can be computed as follows:

k · P = (k′t + k′t−1 · 2−1 + . . .+ k′02−t) · P.

6 Jean-Marc Robert

This can be computed as a sequence of halvings and additions as shown in
Algorithm 2.

Cost of elliptic curve point operations. Over a field of characteristic 2,
and in order to avoid the inversions during the computation, which is the most
expensive field operation again, one may use projective coordinate systems. The
most interesting systems are the Lopez-Dahab (LD, as shown in [8]) and the
Kim-Kim (KK, see [11]) projective coordinate systems. With such point repre-
sentation, the addition and doubling operations do not include any inversion as
shown in Table 3, and the whole scalar multiplication is computed with a sig-
nificant speed-up. Table 3 shows that the complexities of KK are slightly better
and then, when possible, we give the preference to the KK coordinate system.

Point operation Coord. System Cost

Doubling LD 4M + 4S + 8R

Mixed Addition LD 9M + 4S + 13R

Projective Addition LD 13M + 4S + 17R

Doubling KK 4M + 5S + 7R

Mixed Addition KK 8M + 4S + 9R

Halving Affine 1M + 1SR+ 1R+ 1QS
Table 3. Elliptic curve point operations, M = multiplications, S = squaring, SR =
square root, QS = quadratic solver, R = reduction.

3 Strategies for parallel implementation of scalar
multiplication

In this section, after a quick review of the implementation strategies used
for the field operations, we expose how we elaborate the parallelized algorithm,
taking into account all the constraints for such concurrent programming.

The platform used for the experimentations is an Optiplex 990 DELLr, with
a Linux 12.04 operating system. The processor is an Intel core i7r-2600 Sandy
Bridge 3.4GHz. This processor owns four physical cores, which corresponds to
the maximum thread number of our implementations. The code is written in C
language and compiled with gcc version 4.6.3.

3.1 Field implementation strategies

Prime field implementation strategies. We considered the prime field Fp,
with p = 2255−19, which was introduced by Bernstein in [2]. To compute the field
operations, we reused the publicly available code of Adam Langley in [13]. Based

Title Suppressed Due to Excessive Length 7

on our experiments, the code of Langley is significantly more efficient compared
to low level functions of the GMP library [6] for the considered field. In the code
of Adam Langley a field element is stored in a table of five 64 bit words, each
word containing only 51 bits. This allows a better management of carries in field
addition and subtraction operations. The field multiplications and squarings are
performed in two steps, which are multiprecision integer multiplication (respec-
tively squaring) and a modular reduction of integer of 510 bit size (less than p2)
into field element of size 255 bits (reduction modulo p). The multiprecision in-
teger multiplications and squarings are computed with the schoolbook method.
The squaring operation is optimized with the usual trick which reduces the num-
ber of word multiplications. The reduction modulo p = 2255 − 19 of 510 bit size
integer consists in multiplying by 19 the 255 most significant bits and adding the
result to the 255 least significant bits. An inversion of a field element is computed
using the Itoh-Tsujii method [10]: a−1 ≡ ap−2 mod p, and the exponentiation
to p− 2 is performed with a sequence of squarings and multiplications.

Binary field implementation strategies. Our implementations deal with
NIST recommended fields F2233 = F[x]/(x233 +x74 +1) and F2409 = F[x]/(x409 +
x87+1). Concerning the binary polynomial multiplication, we apply a small num-
ber of recursions of the Karatsuba algorithm. The Karatsuba algorithm breaks
the m bit polynomial multiplication into several 64 bit polynomial multiplica-
tions. Such 64 bit multiplications are computed with the PCLMUL instruction,
available on Intel Core i7 processors. Due to the special form of the irreducible
polynomials, the reduction is done with a small number of shifts and bit-wise
XORs. We compute the field inversion with the Itoh-Tsujii algorithm, that is a
sequence of field multiplications and multisquarings performed with look-up ta-
ble. For field squaring, square root and quadratic solver (needed in halvings), we
also use a look-up table method, which is the fastest way according to our tests.

Remark 1. The use of Karatsuba for binary fields and schoolbook method for
the prime field is due to the relative cost of word addition compared to word
multiplication and to carry managements on our platform. Indeed, integer word
additions and multiplications have roughly the same cost (1 vs 2 cycles). The use
of Karatsuba algorithm for Fp decreases the number of word multiplications, but,
in counter part, it increases the number of additions and carry managements.
For binary field the relative cost of addition (bit-wise XOR) and multiplications
(PCLMUL instruction) is more important: 1 cycle vs 10 cycles. In this case
Karatsuba is efficient to decrease the timing of a field multiplication.

3.2 Parallelization

The left-to-right Double-and-add algorithm (see Algorithm 1 page 5) does not
allow any parallelization of the computations, due to the read-after-write depen-
dency inside each loop iteration, between step 5 (addition) and step 3 (doubling).
It is necessary to use the right-to-left variant of this algorithm (see Algorithm

8 Jean-Marc Robert

3) which allows the parallelization. Indeed Algorithm 3 can be parallelized into
two threads as follows:

– A producer-thread performing the sequence of doublings generating the
points 2iP .

– An addition-thread accumulating the points generated by the producer-
thread.

In the sequential case, the left-to-right Double-and-add algorithm (Algorithm
1) is better, because the point addition in step 5 can use a mixed coordinate
addition. This is faster than the projective addition used in the right-to-left
version in step 4 (Algorithm 3). We will see that this penalty is overcome in
most of the cases, thanks to the parallelization.

The Halve-and-add algorithm (Algorithm 2 page 5) can also be parallelized
with two threads. Indeed, since the computation in step 7 of Algorithm 2 only
depends on the same step in the previous loop iteration (read-after-write depen-
dency), the sequence of halvings (step 7) can be performed in a separate thread
(the producer-thread) and the addition in an addition-thread which accumulates
the points generated by the producer-thread.

Algorithm 3 Right-to-left Double-and-add
Require: k = (kt−1, . . . , k1, k0), P ∈ E(Fq)
Ensure: Q = k · P
1: Q← O
2: for i from 0 to t− 1 do
3: if ki = 1 then
4: Q← Q + P
5: end if
6: P ← 2 · P
7: end for
8: return (Q)

Synchronization between threads. Both parallelization (right-to-left Double-
and-add, Algorithm 3 and Halve-and-add, Algorithm 2) are classical producer-
consumer configurations.

The safest way to guarantee absolute correct computation is to use a strong
synchronization device, processing the computation by small batches: the producer-
thread computes and stores a small batch of point doublings/halvings, sends a
signal in order to trigger the addition computation in the addition-thread only
concerning the batch in shared memory. In parallel, the producer-thread goes on
with the next batch and the addition-thread waits the end of each batch before
processing the corresponding additions (in the way described by Mueller in [16]
or by Tannenbaum in [19]). In our case, on the one hand, the batch size has to be
small to compute the maximum of additions in parallel. But on the other hand,
if the batches are too small, the synchronization cost would increase, due to the
bigger number of synchronization signals to manage. This is especially true as

Title Suppressed Due to Excessive Length 9

the granularity of doublings/halvings and additions (several hundreds of pro-
cessor clock cycles) is too small in comparison with the cost of synchronization
barriers and signals.

The three following methods can be used to synchronize the two threads:

– mutex. A mutex is a mutual exclusion lock provided by the pthread library
used to synchronize threads. When a thread holds a mutex, another thread,
trying to take it, is locked, waiting for the releasing of the mutex from the
first thread. Mutexes are generally used to protect critical sections of code.
The cost of a lock or an unlock is about 150-200 processor clock cycles, which
is almost negligible.

– signals: they are used in the inter-thread and inter-process communication.
A thread waiting for a signal is put in a sleeping state until another thread
sends the corresponding signal. Then, the thread wakes up and goes on run-
ning. The sleeping state allows savings of resources which are then available
for another process. In our experience and on our platform, the cost to send
a signal is about 2000 clock cycles.

– busy-waiting: this method consists in using a shared flag (in the global
memory) and use it to keep the addition-thread in a busy-waiting loop while
waiting for the producer-thread to output the next point and modify the
flag. The main drawback of this method is to waste processor resources.

According to our experiments, signals are too costly compared to the two
other techniques. The busy-waiting and mutex techniques almost give the same
results in terms of performance, although the mutex method is slightly better in
some cases. Thus we decided to use exclusively mutexes.

Proposed synchronization method. Our strategy was to avoid the use of
mutex synchronization as much as possible. We chose to use only one single
mutex: at the very beginning of the computation the mutex keeps the addition-
thread in an inactive state while a first batch of doublings or halvings is com-
puted by the producer-thread. At the end of the computation of this batch, the
producer-thread releases the mutex and pursues the whole sequence of doubling
without performing any further locking on the mutex. This approach is depicted
in Figure 1.

The correctness of the final result depends on the size of the first batch of
points before the mutex releasing, which ensures that the writings of the point
stored in shared memory by the doubling thread precedes the reading of the
same point by the addition thread. If this batch is too small and in case of long
sequence of zeros in the binary or NAF scalar representation, one can meet a
violation of the read-after-write dependency, and the computation is not correct.
To avoid this configuration, we carefully tuned this batch size in order to have
the error rate as close as possible to zero. In our test results shown below, this
error rate is limited to less than 1%. This is a compromise chosen in order to
limit the first batch of doublings/halvings size, and to get the best performances.
But at this step, such an error rate remains unacceptable.

10 Jean-Marc Robert

Launches

Thread 2

takes the Mutex

and computes the additions

computes and stores

doublings/halvings
the remaining

stores the final result

and terminates.
in shared memory

Tries to

take the Mutex

Thread 2

starts

computes and stores

doublings/halvings
a batch of

sends the

final result

waits the

end of Thread 2

Thread 2

releases the Mutex

Takes the Mutex

END

START

Thread 1
(producer)

(consumer)

time

Fig. 1. Synchronization and thread processing for our ECSM implementation

In order to eliminate these errors, we added a test on the addition-thread.
In the producer-thread, we used a variable which is stored in global memory
as the loop counter. This allows to check if the addition processed uses a point
which has already been computed by the producer-thread, i.e. the read-after-
write dependency is ensured. The cost of this test is almost negligible, although
the use of a global memory counter is not totally free. When an error is detected
(that is to say a read-after-write dependency violation), we break the addition-
thread loop, and launch a sequential computation of k · P . Due to the small
error rate, the cost of this rescue computation, which frequency is near zero, is
negligible on average.

Algorithm 4 presents an algorithmic formulation in the case of Right-to-left
Double-and-add scalar multiplication of this approach, including the elimination
of the error computations due to a synchronization failure.

Impact of scalar recoding. In the sequential case, it is a useful technique
to recode the scalar using NAF and W-NAF to speed-up the computation (as
previously mentioned in Subsection 2.1 page 4). In the parallel algorithms, the
situation is different. Indeed, the NAF and W-NAF recodings reduce the num-
ber of additions performed by the addition-thread. This fact can be seen when
analyzing the amount of computations performed by the two threads. We can
evaluate this amount using the results given Table 2 and Table 1 in the case of
curves over E(Fp), and using the results given Table 2 and Table 3 in the case of
curves over E(F2m). For simplicity we assumed that S = 0.8M in Fp and that a
squaring and square root are negligible in F2m and that the cost of a quadratic
solver is roughly 1M . The resulting complexities are given in Table 4.

Title Suppressed Due to Excessive Length 11

Double-and-add Double-and-add Halve-and-add
over Fp over F2m over F2m

Recoding producer- addition- post- producer- addition- post- producer- addition- post-
thread thread comp. thread thread comp. thread thread comp.

binary 6.2tM 5.1tM 0 4tM 6.5tM 0 2tM 4tM 0
NAF 6.2tM 3.4tM 0 4tM 4.33tM 0 2tM 2.66tM 0

W-NAF (w = 4) 6.2tM 2.04tM 33M 4tM 2.6tM 39M 2tM 1.6tM 39M

Table 4. Complexity of the two threads for a t-bit scalar coded in binary, NAF and
W-NAF, in multiplication number.

Table 4, we remark that, generally, the amount of computation of the addition-
thread is larger than the producer-thread for the binary coding. When using
the NAF recoding the amount of computation of the two threads are roughly
the same. Finally, the use of W-NAF makes the amount of computation of the
addition-thread significantly smaller than the producer thread. This means that
when using W-NAF recoding, the addition-thread progresses faster and even
would have to wait for the producer-thread to output new points. But in any
case, the addition-thread terminates after the producer-thread. Moreover in the
W-NAF case, the post-computations delay the output of the results after the
end of the producing process, since in the parallel algorithms, this final recon-
struction cannot be done before the end of the parallelized additions.

These remarks are confirmed by the chronogram given in Figure 2 which
shows the different timings required by each thread related to the recoding used
for the execution of the parallelized halve-and-add for scalar multiplication in
E(F2233). This fact leads us to opt for the NAF recoding for our implementations.

In addition to this choice, and in order to improve the performances, we
implement a variable initial batch size of doublings/halvings in the producer-
thread. Indeed, the number of additions performed by the addition-thread de-
pends on the Hamming weight of the NAF representation of the scalar (i.e. the
non-zero digits). As stated previously, a read-after-write dependency violation
can appear if this batch is too small. But if the Hamming weight of the scalar is
higher, the risk of this dependency violation is lower, and the batch size can be
reduced in this case. This improvement applies only when the addition-thread
has roughly the same running time as the producer thread. This concerns the
Double-and-add approach over Fp and F2m but not the Halve-and-add approach
(cf. Table 4).

When possible, we use the variable initial batch size in the producer-thread.

3.3 Four-thread parallel version over binary elliptic curve

Over binary field, the parallelization proposed by Taverne et al. in [20] splits
the scalar multiplication into two independent threads. Specifically, they split
the t-bit scalar k = k1 + k2 where k1 and k2 are as follows

k = (k′t2
t−` + . . .+ k′`)︸ ︷︷ ︸

k1

+ (k′`−12−1 + . . .+ k′02−`)︸ ︷︷ ︸
k2

. (5)

12 Jean-Marc Robert

Fig. 2. Chronogram of the halve-and-add computation with binary, NAF and W-NAF
scalar representation over B233

Algorithm 4 Parallel Double-and-add Elliptic Curve Scalar Multiplication
Require: scalar k, P ∈ F2m .
Ensure: kP .

(Barrier)

Compute Doublings (producer-thread)

1: D[0]← P

2: for glblMmry.i = 1 to initBtchSze do
3: //Doubling LD projective

D[glblMmry.i]← D[glblMmry.i− 1]× 2
4: end for
5: signal to thread addition
6: for glblMmry.i = initBtchSze + 1

to M − 1 do
7: //Doubling LD projective

D[glblMmry.i]← D[glblMmry.i− 1]× 2
8: end for

Compute Additions (addition-thread)

9: Q← O
10: Wait for signal from thread Doubling

11: for i = 0 to M − 1 do
12: if i > glblMmry.i− 1 then
13: launch rescue computation (Q← kP)
14: break
15: end if
16: if ki = 1 then
17: //Full LD projective addition

Q← Q + D[i]
18: end if
19: end for

(Barrier)
20: return Q

Title Suppressed Due to Excessive Length 13

In general ` is close to t/2 and represents the length of the Halve-and-add subkey.
Then the computations can be parallelized into one thread computing k1P with
the Double-and-add algorithm and a second thread computing k2P with the
Halve-and-add algorithm.

We propose to combine the approach of Taverne et al. with the parallelization
approach discussed in Subsection 3.2. This results in a four-thread algorithm:
the partial scalar multiplication k1P is computed with the parallel two-thread
algorithm // Double-and-add and k1P is computed with the parallel two-thread
algorithm // Halve-and-add. This four-thread approach is shown in Figure 3.
This approach increases the level of parallelization, but it also requires additional
thread launching and management. Therefore, this algorithm works better on
large fields, as it will be shown in the next section.

Recode k
k is split in two subkeys (> 0 powers of 2, and ≤ 0 powers of 2).

↙ ↘
// Double-and-add (2 threads) // Halve-and-add (2 threads)

Compute
∑t

i=` k
′
i2

i−` · P . Compute
∑`−1

i=0 k
′
i2

i−` · P .

thread 1 thread 2 thread 3 thread 4
Compute doublings of P Compute additions Compute halvings of P Compute additions

↘ ↙
Final reconstruction

Q = k · P .

Fig. 3. Four-thread algorithm.

Our implementations of the four-thread of Figure 3 use the following strate-
gies for thread launching and synchronization:

– The threads are launched in this order: 1) the Halve-and-add producer-
thread, which launches 2) the Double-and-add producer-thread which launches
3) the Halve-and-add addition-thread which finally launches 4) the Double-
and-add addition-thread.

– The recoding of the scalar is done by 3) the Halve-and-add addition-thread
before launching 4) the Double-and-add addition-thread.

– Due to the delay of thread launching and key recoding computation, it is
not necessary to use mutexes with initial batch size of halvings or doublings
of points for each producer-thread.

– In order to eliminate computation errors due to synchronization failure, we
use the same method as the one described Subsection 3.2 for. Thus, we
have two global memory counters, one for the doubling producer-thread and
one for the halving producer-thread. Each addition-thread compare its own
counter with the global counter of its corresponding, and launches a partial
rescue computation if a synchronization dependency violation is detected.

14 Jean-Marc Robert

4 Timings

The platform used for the experimentations is an Optiplex 990 DELLr,
with a Linux 12.04 operating system. The processor is an Intel Core i7r-2600
Sandy Bridge 3.4GHz, which owns four physical cores. The code is written in C
language, compiled with gcc version 4.6.3. The Hyperthreadingr BIOS and
also the Turbo-boostr options have been deactivated on our platform in order
to measure the performances as accurately as possible.

Since the operating system has the possibility to preempt the resources in
order to launch another task, we avoid such difficulties by choosing to run our
codes in a recovery mode shell. But we noticed that the codes generally run
well in normal operating system conditions too, although perturbations may be
observed in a few cases.

Binary Field Prime Field Fp

B233 B409 Weierstrass Jacobi
Quartic

References
Double-and-add 159000 706000 256631 222558

Sequential (W-NAF, w = 4) (NAF)
1 thread Halve-and-add 135000 534000 - -

(W-NAF, w = 4)
2 threads Dbl/Hlv-and-add 98000 347000 - -

(W-NAF, w = 4)
NAF // Double-and-add

mean 154621 598491 218606 184048
2 threads Doublings 114713 505662 168958 134398

Additions-D 120748 522869 125990 87415
NAF // Halve-and-add

mean 126639 430222
2 threads Halvings 81630 300113

Additions-D 85107 373534
NAF // Halve-Double-and-add
mean 133273 (` = 151) 324395 (` = 246)

Doublings 44672 202393
4 threads Additions-D 39333 200660

Halvings 67076 199625
Additions-H 55615 217534

Table 5. Timings (in clock cycles)

We give the parameters of the curves used in the experimentation in Ap-
pendix:

– Appendix A.1 for the B233 and B409 binary field curves;
– Appendix A.2 for the Weierstrass prime field curve;
– Appendix A.3 for the Jacobi-Quartic prime field curve.

Table 5 shows the results of the proposed parallel strategies for scalar mul-
tiplication implementations. The above timings include the error detection and
correction due to erroneous thread synchronization.

Title Suppressed Due to Excessive Length 15

The performances are measured using one hundred batches of 2000 com-
putations, each batch with a different random scalar. The minimum value of
each batch is considered and the average value gives the performance. With this
measurement process, we take into account the variations due to the different
Hamming weights of the scalars.

For each case we provide the detailed duration of each thread. We notice
that, generally, the overall computation finishes around several tens of thousands
cycles after the producer-thread. These timings might correspond to the delayed
start of the addition-thread (due to the initial batch size of points computed
by the producer thread) and the synchronization and thread management time.
For the four-thread versions, the given value ` corresponds to the scalar bit size
of the Halve-and-add computation (cf. equation (5)). We have evaluated the
overhead due to error management due to wrong error synchronization and it
represents, in average, roughly 2-6% of the overall computation time.

Concerning the results over F2233 , we remark that the four-thread version is
not competitive. This might be due to the synchronization and thread creation
and management cost. Furthermore, the speed-ups with the two thread versions
are not very important.

Over F2409 , the situation is different since the four-thread version is now
better: it requires 324395 clock cycles whereas the two-thread parallel W-NAF
Double/halve-and-add necessitates 347000 clock cycles (6.6% improvement). The
speed-ups provided by the two-thread versions is also more important: between
15% (Double-and-add case) and 19.5% (Halve-and-add case).

Concerning the results over Fp, we first notice that a scalar multiplication
over a Jacobi Quartic is faster than over a Weierstrass curve. This corroborates
the complexities of the curve operations shown in Table 1. We also notice that the
tested two-thread parallelization provides performance improvements of around
15% to 17% compared to the NAF sequential Double-and-add approach.

Comparison. We give in Table 6 some published results in the literature.
Over, Fp, the work of Longa is on Intel Core 2 with p = 2256−189 and Hamburg
is over a Sandy Bridge with p = 2252 − 2232 − 1 and has smaller key. The other
works deal with the same processor and on the same fields as the one considered
in this paper. We can see that, in the case of E(F2233) our two-thread approach
is not competitive with best know results. In the cases of E(F2409), the proposed
approach improves by 9.4% the previous best known timings reported in [20].
Finally, the timing provided in [7] is better than the timing obtain by our method,
but Hamburg uses a slightly smaller field and key size. On the other hand, we
improve the best known results for curve defined for a 128 bit security level.

5 Conclusion

In this work, we have considered parallelized software implementations of
scalar multiplication kP over E(F2m) and E(Fp). We first have considered the
parallelization suggested by Moreno et Hasan in [15] which splits the right-to-left
scalar multiplication into two threads: one producer-thread computing 2iP or

16 Jean-Marc Robert

Scalar Curve Security processor Method Cycles
multiplication

E(Fp)

Hamburg [7] Montgomery 126 Intel core i7 SB Montgomery ladder 153000
Langley [13] Curve25519 128 Intel core i7 SB Montgomery ladder 2290001

Bernstein [3,2] Curve25519 128 Intel core i7 SB Montgomery ladder 194000
Longa et al. [14] jac256189 128 Intel core 2 Duo WNAF D&A 337000
Longa et al. [14] ted256189 128 Intel core 2 Duo WNAF D&A 281000

This work jac25519 128 Intel core i7 SB //NAF D&A 184048

E(F2m)

Nègre et al. [17] B233 112 Intel core i7 SB WNAF D-H&A 98000
Taverne et al. [20] B233 112 Intel core i7 SB WNAF D-H&A 102000

This work B233 112 Intel core i7 SB //NAF H&A 2 th. 126639
Nègre et al. [17] B409 192 Intel core i7 SB WNAF D-H&A 347000

Taverne et al. [20] B409 192 Intel core i7 SB WNAF D-H&A 358000
This work B409 192 Intel core i7 SB //NAF D-H&A 4 th. 324395

1 compiled and run on our platform.

Table 6. Performance comparison with the state of the art

2−iP for i = 1, . . . , t and one addition-thread which accumulates these points
to compute kP . We have proposed a lightweight approach for thread synchro-
nization. In addition, in order to avoid remaining computation error due to
dependency violation, we proposed a low cost checking method of the synchro-
nization between threads with a rescue computation. We have also evaluated
the best approach for the scalar recoding in this context. In the special case of
E(F2m) we have combined this approach to the parallelized Double/halve-and-
add approach of [20]. The experimental results show that these parallelization
techniques provide some speed-up on elliptic curve scalar multiplication compu-
tations compared to previously best known implementations. Indeed, over prime
field and binary fields, in most cases the parallelization provides an improvement
of roughly 15% on the computation time.

Acknowledgement: We would like to thank Christophe Nègre for his valuable
and helpful comments.

This work has been suported by a PHD grant from PAVOIS project (ANR
12 BS02 002 01).

References

1. Explicit formula database, 2014. http://www.hyperelliptic.org/EFD/index.

html.

2. D.J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Public Key
Cryptography, pages 207–228, 2006.

3. D.J. Bernstein and Lange T. (eds). eBACS: ECRYPT Benchmarking of Cryp-
tograhic Systems. http://bench.cr.yp.to/, 2012. accessed May 25th, 14.

http://www.hyperelliptic.org/EFD/index.html
http://www.hyperelliptic.org/EFD/index.html
http://bench.cr.yp.to/

Title Suppressed Due to Excessive Length 17

4. O. Billet and M. Joye. The Jacobi Model of an Elliptic Curve and Side-Channel
Analysis. In AAECC, pages 34–42, 2003.

5. K. Fong, D. Hankerson, J. López, and A. Menezes. Field Inversion and Point
Halving Revisited. IEEE Trans. Computers, 53(8):1047–1059, 2004.

6. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

7. Mike Hamburg. Fast and compact elliptic-curve cryptography. Technical report,
Cryptology ePrint Archive, Report 2012/309, 2012. http://eprint.iacr.org/.

8. D. Hankerson, J. López Hernandez, and A. Menezes. Software Implementation of
Elliptic Curve Cryptography over Binary Fields. In CHES 2000, volume 1965 of
LNCS, pages 1–24. Springer, 2000.

9. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer, 2004.

10. T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in
GF(2m) Using Normal Bases. Inf. Comput., 78(3):171–177, 1988.

11. K.H. Kim and S.I. Kim. A New Method for Speeding Up Arithmetic on Ellip-
tic Curves over Binary Fields. Technical report, National Academy of Science,
Pyongyang, D.P.R. of Korea, 2007.

12. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In ASI-
ACRYPT, pages 135–149, 1999.

13. A. Langley. C25519 code, 2008. http://code.google.com/p/curve25519-donna/.

14. P. Longa and C. H. Gebotys. Efficient Techniques for High-Speed Elliptic Curve
Cryptography. In CHES, pages 80–94, 2010.

15. C. Moreno and M. A. Hasan. SPA-Resistant Binary Exponentiation with Optimal
Execution Time. J. Cryptographic Engineering, 1(2):87–99, 2011.

16. F. Mueller. A Library Implementation of POSIX Threads under UNIX. In USENIX
Winter, pages 29–42, 1993.

17. C. Nègre and J.-M. Robert. Impact of Optimized Field Operations AB, AC and
AB + CD in Scalar Multiplication over Binary Elliptic Curve. Technical Report
hal-00724785, HAL, July 2014.

18. Deputy Director P. Gallagher and C. Furlani. Digital Signature Standard (DSS).
In FIPS Publications, volume FIPS 186-3, page 93. NIST, 2009.

19. A.S. Tannenbaum. Modern Operating Systems, 2009. http://www.freewebs.com/
ictft/sisop/Tanenbaum_Chapter2.pdf.

20. J. Taverne, A. Faz-Hernández, D. F. Aranha, F. Rodŕıguez-Henŕıquez, D. Han-
kerson, and J. López. Speeding Scalar Multiplication over Binary Elliptic Curves
using the New Carry-Less Multiplication Instruction. J. Cryptographic Engineer-
ing, 1(3):187–199, 2011.

A Appendix: Curve Parameters

A.1 Elliptic curves over binary field

The curve equation is:

y2 + xy = x3 + x2 + b where b ∈ F2m .

http://gmplib.org/
http://eprint.iacr.org/
http://code.google.com/p/curve25519-donna/
http://www.freewebs.com/ictft/sisop/Tanenbaum_Chapter2.pdf
http://www.freewebs.com/ictft/sisop/Tanenbaum_Chapter2.pdf

18 Jean-Marc Robert

The parameters are for B233:

a = 1,
h = 2,

f(x) = x233 + x74 + 1,
b = 0x00000066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad,
r = 0x00000100 00000000 00000000 00000000 0013e974 e72f8a69 22031d26 03cfe0d7.

where the order of the curve is n× h. For B409 we have:

a = 1,
h = 2,

f(x) = x409 + x87 + 1,
b = 0x0021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 4761fa99 d6ac27c8

a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f,
r = 0x01000000 00000000 00000000 00000000 00000000 00000000 000001e2 aad6a612

f33307be 5fa47c3c 9e052f83 8164cd37 d9a21173.

A.2 Weierstrass curve over prime field

The curve equation is:

y2 = x3 − 3x+ b where b ∈ Fp.

The parameters are:

p = 2255 − 19
b = 0x1d09bac9ffe9e7f8284aed0442552779bcdef2e62b9cb1d568513fa798b94003

r = 0x800000000000000000000000000000012c18945a05ad7f2edf026258ea5288ef

r is the prime order of P .

A.3 Jacobi Quartic curve over prime field

The curve equation is:

y2 = x4 − 3

2
θx2 + 1, θ ∈ Fp.

The parameters are:

θ = 0x1731beeea2156180446f9e5ab64af78d4ed3e0eb68d5070c10ef2468b910d5f7

number of points:
h× r = 0x800000000000000000000000000000002672bdbb41f31390c5527cab6e282744

= 4 · 0x20000000000000000000000000000000099caf6ed07cc4e431549f2adb8a09d1

The Jacobi Quartic curve is isomorphic to the following Weierstrass elliptic
curve:

y2 = x3 + ax+ b

where: a = (−16− 3θ2)/4 and b = −θ3 − aθ. Hence, in our case:

a = 0xc500be2450246d16c114830a5d1aef9c2b80c567b4fd87562c69db659713ad2,

b = 0xa38f53e5d27462dcdada9a78b9eac482ef06e855af92ca704060c551a9a5854.

	Software Implementation of Parallelized ECSM over Binary and Prime Fields
	Bibliography

