
Stegomalware: Playing Hide and Seek with
Malicious Components in Smartphone Apps

Guillermo Suarez-Tangil, Juan E. Tapiador, and Pedro Peris-Lopez

Department of Computer Science, Universidad Carlos III de Madrid
Avda. Universidad 30, 28911, Leganes, Madrid, Spain

guillermo.suarez.tangil@uc3m.es, jestevez@inf.uc3m.es, pperis@inf.uc3m.es

Abstract. We discuss a class of smartphone malware that uses stegano-
graphic techniques to hide malicious executable components within their
assets, such as documents, databases, or multimedia files. In contrast
with existing obfuscation techniques, many existing information hiding
algorithms are demonstrably secure, which would make such stegomal-
ware virtually undetectable by static analysis techniques. We introduce
various types of stegomalware attending to the location of the hidden
payload and the components required to extract it. We demonstrate its
feasibility with a prototype implementation of a stegomalware app that
has remained undetected in Google Play so far. We also address the
question of whether steganographic capabilities are already being used
for malicious purposes. To do this, we introduce a detection system for
stegomalware and use it to analyze around 55K apps retrieved from both
malware sources and alternative app markets. Our preliminary results are
not conclusive, but reveal that many apps do incorporate steganographic
code and that there is a substantial amount of hidden content embedded
in app assets.

Keywords: smartphone security, malware, steganography, obfuscation

1 Introduction

Malware for smartphones has rocketed over the last few years. Such a phe-
nomenon is intimately related to the popularity of smartphone platforms and
the substantial rise in the number of apps available for download in online mar-
kets. While these two facts have contributed to create new business models and
reshape the way we communicate, malware writers have taken advantage of the
possibilities offered by smartphones for spying on the user’s activities, stealing
his identity, or committing fraud, among other malicious activities [30].

Thwarting malware attacks in smartphones is still a formidable challenge. On
the one hand, battery-powered smartphones do not possess enough computing
capabilities to constantly check for attempts of executing malicious operations.
Furthermore, distinguishing what is malware from what is not is far from be-
ing easy. In any case, the most common distribution strategy for smartphone
malware is still the use of both official and unofficial markets [25]. Attackers

simply upload malicious apps to the market, sometimes using a stolen identity,
and users get infected by just downloading and installing the app.

In the case of official markets, operators are generally concerned about the se-
curity of the software they distribute. To address malware attacks, most markets
implement a revision process that presumably includes various security check-
ings [15]. Malware writers are constantly seeking ways of evading detection. For
instance, in the so-called update attacks, the app just contains a “hook” that,
once installed in the user’s device, downloads and executes a malicious payload
from a external server pretending to be a required update of the app.

Smartphone malware is becoming increasingly stealthy and recent specimens
are relying on advanced code obfuscation techniques to evade detection by secu-
rity analysts [24]. For example, DroidKungFu has been one of the major Android
malware outbreaks. It started on June 2011 and has already spanned over at least
six variants. DroidKungFu has been mostly distributed through official or alter-
native markets by piggybacking the malicious payload into a variety of legitimate
applications. The malicious payload with DroidKungFu’s actual capabilities is
encrypted into the app’s assets folder and decrypted at runtime using a key
placed within a local variable belonging to a specific class module. GingerMas-
ter is another representative example of smartphone malware that deliberately
tries to hide itself. In this case, the main payload is stored as PNG and JPEG
pictures in the asset folder. Such files are loaded as regular pictures by a special
hook within the app and then interpreted as code.

Examples such as the two described above do not abound yet but are be-
coming increasingly common. In the case of traditional platforms such as PCs,
malware writers have made use of obfuscation techniques for decades, ranging
from simple packing algorithms to using more sophisticated polymorphic and
metamorphic engines (see [16] for an excellent overview). Such techniques trans-
form malicious code to make it difficult to understand, analyze, and detect by
static analysis.

1.1 Contributions

Motivated by the increasingly creative ways used by smartphone malware to
hide malicious components and evade detection, we pose the question of how
information hiding techniques could be used by malware writers to achieve the
same purpose. Contrarily to the ad hoc—and, in many cases, sloppy—measures
seen today to obfuscate malicious components, modern information hiding tech-
niques could provide a simple yet theoretically robust way of hiding executable
pieces in assets such as pictures, databases, multimedia files, etc. To the best of
our knowledge, this is the first paper that looks into this issue.

In summary, in this paper we make the following contributions:

1. We describe a class of smartphone malware that uses steganographic tech-
niques to hide malicious executable components within an app’s assets. We
call this “stegomalware” and argue that steganographic algorithms provide

malware writers with a mechanism for hiding malicious payloads more secure
than obfuscation techniques currently in use.

2. We discuss various architectures for stegomalware depending on the location
of the asset with hidden capabilities and the algorithm required to extract
it.

3. We show that current app markets may be vulnerable to stegomalware. In
particular, we describe a prototype implementation of a stegomalware sample
for Android platforms that is available for download in Google Play and has
remained undetected so far.

4. We introduce a detection system for stegomalware that combines steganal-
ysis techniques with the detection of steganographic algorithms in the app
code.

5. Using an implementation of our stegomalware detection system, we address
the question of whether steganographic capabilities are being already used
for malicious purposes. We analyze around 55K apps retrieved from both
malware sources and alternative app markets. Even though our preliminary
results are not conclusive, we found that many apps do incorporate stegano-
graphic code and that there is a substantial amount of hidden content em-
bedded in app assets.

2 Information Hiding Techniques and Related Work

In this section, we provide a brief background on information hiding techniques,
including some formal definitions, common stegosystems, and techniques to de-
tect the presence of hidden information. Because of their popularity, we will
focus our discussion on stegosystems that hide information in pictures. We will
revisit this point later and discuss alternative stegosystems for the type of mal-
ware discussed in this paper. Interested readers can find good introductions to
this discipline in [13, 17, 19]. Finally, we briefly review the literature related to
malware in smartphones.

2.1 Stegosystems

Modern steganography studies techniques to hide the presence of information
by embedding secret messages within other, seemingly harmless digital objects.
According to the standard terminology of information hiding [18], the original
object used to hide information is called the covertext, whereas the same ob-
ject after embedding the secret message is called the stegotext. The embedding
process depends on a key and the adversary (known as the warden) is generally
assumed to know everything but the key.

Formally, a symmetric1 stegosystem is a triple of probabilistic polynomial-
time algorithms (SK,SE,SD) with the following properties [3]:

– The key generation algorithm SK takes a security parameter n as input and
returns a stegokey sk.

1 This definition can be naturally extended to public-key stegosystems [3].

– The steganographic encoding algorithm SE takes as input the security pa-
rameter n, the stegokey sk, and a message m ∈ {0, 1}l and outputs a ste-
gotext c belonging to the covertext space C. The algorithm may access the
distribution of C if needed.

– The steganographic decoding algorithm SD takes as input the security pa-
rameter n, the stegokey sk, and an element c ∈ C, and outputs either a
message m ∈ {0, 1}l or a special symbol ⊥ denoting that no message is
embedded in c.

A stegosystem must be reliable, i.e., the probability that

SD(1n, sk, SE(1n, sk,m)) 6= m (1)

must be negligible in n for all messages m and all stegokeys sk. Informally speak-
ing, the security of a stegosystem is related to the probability that an adversary
detects the presence of an embedded message. Thus, a secure stegosystem is one
in which covertexts and stegotexts are indistinguishable. This notion can be for-
mally established as a distinguishability experiment similar to those common in
the field of provable security. In turn, this gives rise to various notions for secure
stegosystems, including perfect security, statistical security, and computational
security (see [3] for further details).

Apart from their security, there are other aspects of practical relevance for
stegosystems. One is their capacity, defined as the maximum number of secret
bits that can be securely embedded. In most practical stegosystems there is a
trade-off between security and capacity, so the longer the embedded message,
the more distinguishable the stegotext becomes. Another relevant property is
the robustness of the stegosystem. Informally speaking, robustness measures the
amount of distortions that a stegotext can endure until recovering the embedded
message becomes impossible. This is a key property for applications such as
watermarking and fingerprinting, where the focus may not be on hiding the
presence of some embedded mark, but on preventing an adversary from removing
it without degrading the quality of the data object.

2.2 Common Steganographic Algorithms

A variety of stegosystems have been proposed for embedding data in all sorts
of digital sources, including text file formats, compiled code, images, audio,
and video. There are, in fact, few digital formats where some opportunity for
steganography has not been identified. Stegosystems for multimedia objects—
and, in particular, for images—are among the most popular schemes because of
the high embedding capacity offered by digital pictures and the proliferation of
images in Internet. Thus, most papers in this field have concentrated on JPEG
images, although the underlying ideas and algorithms are generally applicable
to other formats as well.

The JPEG image format is based on taking the discrete cosine transform
(DCT) of 8x8-pixel blocks of the image, producing 64 DCT coefficients. Once

quantized, the least-significant bits (LSB) of each coefficient are modified to em-
bed hidden messages. Note that the modification of a single DCT coefficient
affects all 64 pixels in the block. We next describe four popular JPEG stegosys-
tems that use some form of LSB embedding in the frequency domain (see [4] for
a recent survey).

Jsteg Proposed by Derek Upham, this is one of the earliest stegosystems for
JPEG images [27]. Jsteg replaces the LSB of the DCT coefficients by the
secret message bits, skipping those coefficients with the values 0 or 1. The
image is scanned sequentially and the algorithm does not support random bit
selection. The key, if any, is used to encrypt the message before embedding.
Jsteg-shell is a popular Windows front-end for Jsteg that encrypts the
message with RC4.

JPHide This is a stegosystem proposed by Allan Latham that supports com-
pression of the secret message and encryption with Blowfish. The algorithm
is also based on replacing the LSB of the DCT coefficients but does not do it
sequentially. Instead, it uses a fixed table to determine which coefficient will
be changed next. Furthermore, a pseudorandom number generator (PRNG)
is used to skip some of them, where the probability of skipping changes de-
pending on how many bits have been embedded already and how many are
left. JPHide can also use the second LSB in some cases.

OutGuess This is yet another JPEG stegosystem using LSB encoding in the
DCT coefficients. Contrarily to the two previous algorithms, OutGuess chooses
the coefficients randomly using a PRNG initialized with a user-provided
password. The content is also encrypted using RC4 with the same password
used for the PRNG.

F5 Developed by Andreas Westfeld, F5 can be seen as an evolution of the
stegosystems described above. It introduces a number of novel ideas, includ-
ing the use of a matrix encoding to reduce the number of necessary changes
and a permutative straddling to uniformly spread out the modifications over
the whole covertext. F5 reduces the propagation of steganographic informa-
tion over the carrier medium. This feature makes F5 robust against certain
distortions such as resizes or rotations. Full details are available in [29].

2.3 Steganalysis

Steganographic encoding algorithms leave traces on the stegotexts as a conse-
quence of the alterations required to embed the message. Such traces are in-
strumental in facilitating detection, i.e., distinguishing whether an object has or
has not embedded information. This is the main goal of a passive warden, i.e.,
an adversary who can read objects and must determine if a secret communica-
tion is taking place. Note that a correct detection defeats the main purpose of
steganography, which is hiding the very presence of a communication. In general,
exposing the content of such a secret communication is another problem entirely.

Contrarily to passive wardens, an active warden is not concerned with detect-
ing secret communications, but with destroying them. Active warden techniques

introduce deliberate modifications in all digital objects in the hope that any
potential hidden content would be rendered unusable. In some domains, this is
just too costly and some form of sampling must be performed.

In what follows, by steganalysis we will refer to the process of distinguishing
whether an object has or has not hidden information. A steganalytic technique is
often presented in the form of distinguisher, this being a test that returns some
measure of the likelihood of the input sample having embedded information.
Steganalytic techniques can be classified according to various criteria. A tar-
geted distinguisher focuses on the artifacts produced by one specific algorithm
and, therefore, can only detect if that algorithm has been used. Contrarily, a
blind (or universal) distinguisher identifies statistical alterations caused by any
steganographic encoding algorithm [7]. An example of a blind steganalysis is the
χ2-attack, based on applying a χ2 test to compare the distributions of adjacent
DCT coefficients, which is similar in images with hidden data embedded [20].
Fridrich et al. provide in [9, 10] an overview of feature-based steganalysis for
JPEG images and its implications for future designs of stegosystems.

There are a number of freely available implementations of the main stegan-
alytic techniques proposed so far, including:

Stegdetect [20] is a popular and free steganalytic tool. It includes a number
of distinguishers to detect the presence of hidden data in images and is able
to identify the method used during embedding process. Stegdetect is the
de facto tool used by security and forensic practitioners due to its excellent
capabilities and its free and open nature. A recent study by Khalind et al.
[14] has revisited its features and warned about the implications of its false
positive ratio.

VSL (Virtual Steganographic Laboratory) [8] is a suite of steganalytic tech-
niques that includes some of the most popular techniques, including RS-
Analysis (a distinguishing algorithm for LSB methods) and a blind steganal-
ysis technique based on Support Vector Machines.

SSS (Simple Steganalysis Suite) [2] is another publicly available implemen-
tation of various image steganalytic techniques, including χ2-attack and var-
ious histogram-based tests.

2.4 Thwarting Malware in Smartphones

A substantial amount of recent work has addressed the problem of analyzing
malware in smartphones using a variety of techniques [6, 25]. Static analysis
techniques are well known in traditional malware detection and have recently
gained popularity as efficient mechanisms for market protection [26, 1]. However,
current static techniques fail to identify malicious components when they are ob-
fuscated or embedded separately from the code (e.g., hidden into an image) [22,
12]. Approaches based on dynamic code analysis [11] are promising, but current
works [6, 21, 23] only provide an holistic understanding of the behavior of an app.
This feature challenges the identification of malware using steganography.

More recent approaches focus on detecting hidden functionality [24] within
components of an app. Although this technique has shown to be promising, it
requires a non-negligible overhead derived from the dynamic execution of every
app analyzed. As regards the various ways to hide or locate hidden code in apps
using steganography and steganalysis, to the best of our knowledge this is the
first work addressing this issue in smartphones.

3 Stegomalware

This section introduces the idea of an app that uses a stegosystem to hide a mali-
cious component within its assets and then extracts and executes it dynamically.
We then discuss various architectures for such a stegomalware and describe a
prototype implementation for Android platforms that is available for download
in Google Play and has remained undetected so far.

3.1 Hiding Malicious Code in App Assets

Malware developers can use steganographic capabilities to hide malicious com-
ponents within an app resources. Such resources depend on the particular app
and may include images, audio, video, databases, and text files in a variety of
formats (e.g., plain text, XML, and HTML). Practical stegosystems for all these
digital objects have been proposed, some of them with a reasonable security
level. Moreover, there is a variety of freely available implementations of such
stegosystems that are exceedingly simple to use within an app.

The main goal pursued by an attacker who uses a stegosystem to securely
embed a piece of malicious code into an app resource is to evade detection, partic-
ularly static analysis based approaches implemented by market operators. Hiding
malicious components may also difficult malware analysis, as the payload will
be located in places that security analysts could overlook. More importantly, the
piece of malicious code is not accessible to analysis. This is a key difference—and
a substantial advantage for malware writers—with respect to traditional mal-
ware obfuscation techniques: after obfuscation, malicious code may be difficult
to recognize, but it is still somewhere in the app. In contrast, in a stegomalware
specimen the malicious component is revealed at execution time only. Thus, it
will not match any signature even if the search includes the asset where it is
hidden.

A stegomalware contains the following three basic components:

– A stegotext R, this being one of the app assets. R is the result of embedding
a malicious payload p with a steganographic encoding algorithm SE using
some stegokey.

– A stegokey sk required to extract p from R. In case of using a symmetric
stegosystem, sk is the stegokey that was used to embed p in R.

– A steganographic decoding algorithm SD needed to recover p from R using
sk.

Table 1: Three variants of stegomalware and their activation procedures.

Type Locally Remotely Activation
Available Available

1. Get sk and R from the app resources
Type 0 R, sk, and SD nothing 2. Recover the payload: p = SD(sk,R).

3. Execute p.

1. Get URL l from the app resources.
Type I l and SD R and sk 2. Connect to l and retrieve (R, sk).

3. Recover the payload: p = SD(sk,R).
4. Execute p.

1. Get URL l from the app resources.
Type II l and SD R and sk 2. Connect to l and retrieve (R, sk,SD).

3. Recover the payload: p = SD(sk,R).
4. Execute p.

These three elements (R, sk,SD) can be packaged together and distributed
with the app, or dynamically retrieved at runtime from an external server. Based
on this, we next describe three architectural choices for stegomalware. This list
does not intend to be exhaustive and more complex variants are possible.

3.2 Type 0: Autonomous Stegomalware

One simple choice is to have all the stego material (R, sk,SD) distributed with
the app. The asset R is the less problematic of the three, as it can just be put in
the asset folder with the remaining resources. The algorithm SD must be part of
the code assets so the app can invoke it to retrieve p. The stegokey sk must be
part of the app too, either hardcoded as a variable somewhere in the code, or else
distributed in some other asset (e.g., a text file, a database, etc). Note that sk
is not necessarily a random string, as many stegosystems accept alphanumeric
passwords from which subsequent keying material is derived.

This type of stegomalware is fully autonomous and does not depend on a
remote infrastructure to achieve its goals (see Table 1). This, however, comes at
a price: the presence of R, sk, and SD may facilitate detection. We will discuss
this issue in more detail later in Section 4.

3.3 Type I: Stegoupdate Attacks

A more flexible alternative to Type 0 stegomalware consists of retrieving the
stegotext R remotely during activation. This allows for using different malicious
payloads depending on the attacker’s goals, the particular target, etc. The app
must necessarily contain the decoding algorithm SD and possibly sk, although
it is generally more convenient to have sk associated with the particular R and,
therefore, also dynamically downloaded. This variant introduces the need for
incorporating into the app the location (e.g., an URL) of the external server

from where (R, sk) will be fetched. The activation procedure is quite simple (see
Table 1) and involves fetching R and sk, extracting p locally, and then executing
it.

This type of stegomalware can be seen as a variant of the classical update
attacks [30] in which the malicious payload is downloaded embedded into an
innocuous-looking object. This would evade detection schemes based on moni-
toring update traffic and preventing the execution of downloaded code.

3.4 Type II: Agnostic Stegomalware

In a more radical setting, the app could be totally agnostic of the stegosystem
used to embed the payload. Thus, after activation the app would connect to a
remote site and download R, sk, and SD. The decoding algorithm would be then
used to extract the malicious payload from R.

The key idea here is not to distribute SD within the app, so even a detailed
code analysis would not raise any suspicion. This idea admits some minor vari-
ations. For example, R and sk might actually be part of the app, so the update
engine just downloads SD and uses it to extract the malicious payload. Simi-
larly, in a collusion scenario, the app could pass R and sk on to another app in
the same device that implements SD. This second app would first extract the
payload and pass it back to the original app (e.g., by putting it in shared space)
or just execute it.

3.5 A Proof-of-Concept Implementation

We implemented a prototype of a simple autonomous stegomalware (Type 0)
for Android platforms. The app is named LikeImage and contains a malicious
payload embedded into an image that is part of the app resources (see Fig.
1). In execution time, the payload is extracted from the image and executed
dynamically. We used an open source Java implementation2 of F5 for JPEG
images as the underlying stegosystem. Fig. 2 shows the original image and the
one that is actually distributed with the app after embedding the payload. As
expected, both images look exactly the same.

The malicious payload is a Java JAR library compiled in Dalvik Executable
(DEX) Format. Fig. 3 shows a fragment of the main class. The payload contains
an update engine that requests instructions from a remote Command & Control
(C&C) server in the form of a second payload that might change depending
on the interests of the attacker and the target device. This second payload is
then retrieved, dynamically loaded, and executed in the user device. Initially, the
update component used in our first demonstration was programmed to exfiltrate
the IMEI of the device. The app was submitted to Google Play in early June 2014
and passed all security controls. At the time of this writing, it is still available in
the market3, although our C&C server has been instructed to always return an
innocuous payload and the app was modified to leak nothing from the device.

2 https://code.google.com/p/f5-steganography
3 https://play.google.com/store/apps/details?id=es.uc3m.cosec.likeimage

Fig. 1: Our stegomalware app (LikeImage).

4 Searching for Stegomalware in the Wild

After the ideas introduced in previous sections, we next describe our efforts so
far to find out if malware with steganographic capabilities is already in the wild.
Our focus has been on types 0 and I, and we have only searched for apps using
image or audio (mp3) stegosystems. With this in mind, we built a detector whose
operating principle revolves around three main ideas:

1. Detect the presence of capabilities to execute dynamically loaded code. This
is essential to transfer control to any downloaded or extracted payload.

2. Identify assets that are suspect of containing embedded messages (steganal-
ysis).

3. Identify steganographic decoding algorithms in the app code.

In the remaining of this section we describe the experimental setting used in
our study and discuss the main results obtained so far.

(a) Original image. (b) Image with embedded payload.

Fig. 2: Asset used by our stegomalware proof-of-concept.

package es . uc3m . cosec ;
public class Malware{

St r ing getPayload (){
St r ing payload ;
. . .
return payload ;

}
}

(a) Java code.

DEX v e r s i o n ’035 ’
Class #0 −

Class : ’ LMalware ; ’
Methods −

#0 : in LMalware ;
name : ’ getPayload ’
type : ’ S t r ing ; ’

s o u r c e f i l e : Malware . java

(b) DEX dump.

Fig. 3: Code snippet of the malicous payload.

4.1 Experimental Setting

Our study is based on a dataset composed of around 54K apps retrieved from
two different sources (see Table 2). On the one hand, we downloaded around
31K apps from Aptoide4 (AP), a distributed marketplace for Android apps.
Contrarily to popular markets such as Google Play, in Aptoide there is not a
centralized repository for apps, but each user manages their own “store.” On the
other hand, we retrieved around 22K Android malware samples from a popular
virus repository: VirusShare5 (VS).

We implemented a detection framework for Android apps in Java and Python.
The detector makes use of several open source tools that allows us to extract
static information from Android apps and unpackage their resources [5]. It also
relies on existing open-source implementations of various steganalytics tools,
such as those described in Section 2.3. Finally, we also integrated some parts of
the implementation of Anagram [28], an anomaly-based intrusion detection sys-
tem for application-layer traffic based on n-gram analysis and Bloom filters. As

4 http://www.aptoide.com/
5 http://www.virusshare.com/

Table 2: App sources used in our experimentation.

Source #Apps Type

Aptoide (AP) 31,935 Presumably goodware
VirusShare (VS) 22,707 Known malware

Total 54,642

explained in detail later, this is used as the basis for a detector of steganographic
code.

4.2 Step 1: Selecting Apps with Payload Execution Capability

The first component in our detection framework identifies apps containing the
capability to execute payloads. For instance, Android provides a runtime environ-
ment that allows apps to dynamically load libraries. Detecting such capabilities
may help to discard those apps that make use of a stegosystem for purposes
other than hiding a malicious payload (e.g., to check a watermark).

In our current implementation, we pay special attention to apps with one or
more of the following features:

– Native code, i.e., apps that contain components using native-code languages
such as C and C++.

– Dynamic code, i.e. apps that contain functions to dynamically load exe-
cutable code or libraries.

– Reflection code, i.e., apps that attempt to dynamically inspect other frag-
ments of code at runtime.

We assign a “code execution score” SC to each app A based on this. Specifically:

SC(A) = snative + sdynamic + sreflection (2)

where sx is a factor measuring the risk of having code of type x. We exper-
imentally determined such factors to be snative = 0.1, sdynamic = 0.2, and
sreflection = 0.5.

We computed the score defined in Eq. (2) for all apps in our dataset. The
results are shown in the Venn diagrams provided in Fig. 4. We discovered that
3,605 apps in the AP dataset (around 11%) contain some form of advanced
code. Similarly, our analysis over the VS dataset reported 1,855 samples (around
8%) with advanced code. It can also be observed that reflection code is the
most common operation, as it appears in 4,239 and 1,834 apps in AP and VS,
respectively.

4.3 Step 2: Flagging Suspicious Assets

Our second contributing factor to the overall detection score is related to the
presence of hidden information embedded in the app assets. When analyzing the

1166
apps

0
apps

634
apps

Native Code

Dynamic CodeReflection Code

748
apps

608
apps

449
apps

0
apps

(a) Code execution capabilities in
Aptoide.

783
apps

1
apps

20
apps

Native Code

Dynamic CodeReflection Code

360
apps

255
apps

436
apps

0
apps

(b) Code execution capabilities in
VirusShare.

Fig. 4: Number of apps containing native, dynamic, and reflection code in our dataset.

distribution of potential stegotexts in our dataset, we observed that many apps
contain a large number of images. For instance, several apps contained over 5K
images each. Additionally, we also found that audio files are less common. In our
subsequent analysis, we limited the search for stegotexts to JPEG images and
MP3 audio files.

We use Stegdetect to determine if a given candidate is likely to contain
a hidden payload within any of its image or audio files. Stegdetect admits
as input a sensitivity threshold ranging between 0.1 and 10 that is used by
the underlying distinguishers. The higher this threshold is, the more sensitive
the test. Furthermore, the output provides a confidence level in the detection
of hidden messages that takes 3 possible values: low confidence (*), medium
confidence (**), and high confidence (***).

As in the first step above, we computed a numerical score with each app
summarizing the likelihood of having embedded information in its contents. This
“steganalysis score” SH is computed as:

SH(A) = max

{
1,

∑
c∈R(A)

conf(c)

3

}
(3)

where R(A) is the set of potential stegotexts in the app (i.e., its resources/assets)
and conf(c) ∈ {1, 2, 3} is the confidence level returned by Stegdetect, or 0 in
the case that no distinguisher returns true.

Table 3 summarizes the experimental results obtained and shows the num-
ber of images matching each steganographic method for a relatively low sensi-
tivity value (1.0). There is an extremely high number of matches. Specifically,
Stegdetect reports matches for more than 20K images distributed in approx-
imately 3K apps in the case of AP, and almost 10K images over 2K apps for

Table 3: Number of matches per steganographic tool/method (JPHide, OutGuess,
JSteg, F5, appended, camouflage, and alpha-channel) and confidence (*, **, and
***) for all samples retrieved from Aptoide (AP) and VirusShare (VS).

JPHide OutGuess JSteg F5 Other
(*) (**) (***) (*) (**)(***) (*) (**)(***) (*) (**)(***) appended camouflage alpha-channel

AP
9,774 2,219 8,421 517 441 2,203 10 5 0 0 0 3 257 1 5

20,414 3,161 15 3 263
23,804 matches in 3,364 apps

VS
3,924 3,924 2,570 137 143 1,260 6 0 0 0 0 0 213 0 0

10,418 1,540 6 0 213
12,177 matches in 2,009 apps

VS. In terms of embedding algorithms, JPHide seems to be the most popular
steganographic tool used with about 85% the matches for both AP and VS apps.
These results will be further discussed later when analyzing individual apps.

4.4 Step 3: Identifying Steganographic Code

A common factor between Type 0 and Type I stegomalware is the presence of a
steganographic decoding algorithm SD in the app code required to extract the
malicious payload from the stegotext (asset). Determining if a piece of compiled
code includes some unknown function SD is not straightforward. We approached
this problem statistically using N -gram analysis as follows:

1. For each candidate steganographic decoding algorithm SD that we wish to
detect, we create a simple app with just one class that uses SD.

2. We extract from the compiled app all N -grams. To do this, the app is treated
as a stream of bytes and a sliding window of length N is passed through it.
To efficiently store all N -grams, we relied on the Bloom filter implementation
used in Anagram [28] for a content-based anomaly detector.

3. In detection mode, we extract all N -grams from a candidate app and check
how many of them are found in the content filter associated with SD. The
more the number of hits, the more likely the app contains an implementation
of SD identical to that used to generate the content filter.

We generated content filters for various Java open-source steganographic
tools, including all stegosystems enumerated in Section 2. We experimented with
different values of N and noticed that for N < 10 it generates too many false
positives, while too high values (i.e., N > 50) results in a very ineffective detec-
tor. Thus, for each candidate algorithm SD we created 5 different models, one
for each N = {10, 20, 30, 40, 50}.

As with the two previous factors, we associate with each app a score quan-
tifying the likelihood of the app containing one of the steganographic decoding
algorithms SD modeled in our content filters. The score is computed in two steps.
First, for each algorithm SD and each value of N we compute a normality score
by counting the fraction of N -grams of the app A that are found in the content

filter:

SS(A,SD, N) =
#Hits

|A| −N + 1
(4)

The score SA(A,SD) for algorithm SD is then computed as the average score
for the five values of N . Finally, the overall score for the app SS(A) is just
the average score for all algorithms SD. In our experimentation, we determined
that a good practice is filtering out those algorithms whose score SS(A,SD) is
lower than a given threshold (around 0.6 for our datasets). This is the approach
followed in the results reported next.

Fig. 5 shows the score distribution computed for those apps that had one
or more of the code execution features described in Section 4.2. The score is
extremely low for most of them, suggesting that they do not contain traces
of steganographic algorithms—at least, not the ones for which we have a con-
tent filter. There are, however, a reduced number of apps that seem to contain
steganographic-like operations, with scores ranging from 0.2 to almost 0.6. The
majority of these apps come from the AP dataset.

Note that we have not considered the scenario where an attacker uses mul-
tiple SD algorithms at the same time. Although our implementation reports
the average anomaly score per SD, we could easily extend it to evaluate all SD
together.

4.5 Putting It All Together

The three separate scores introduced above can be combined into a single value
to measure the likelihood of an app containing stegomalware. We propose usingHistogram of x

Anomaly Score

Fr
eq
ue
nc
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
10
00

20
00

30
00

Fig. 5: Distribution of SS(A).

Table 4: Top 10 scores for specimens from Aptoide and VirusShare. The score of our
stegomalware PoC app Likeimage is shown as a reference.

Rank Aptoide VirusShare

1 0.767 0.746

2 0.734 0.731

3 0.725 0.584

4 0.724 0.068

5 0.701 0.068

6 0.699 0.068

7 0.699 0.067

8 0.697 0.067

9 0.695 0.067

10 0.695 0.066

Our PoC Likeimage: 0.738

the following score:

S(A) = SS(A)1−SH(A)·SC(A) (5)

For instance, an app containing dynamic and reflection code, for which the SD
detection score is 0.6, and with one picture with hidden content with confidence
100% (***) is assigned a score of 0.61−(1.0·0.7) = 0.858.

The rationale behind expression (5) is to have a power-law score where the
basis is determined by the likelihood of detecting a steganographic decoding
algorithm in the app. If one is reasonably sure of the fact that the app has
steganographic capabilities, then the base score is raised to a factor that considers
the existence of code execution capabilities and the output of steganalysis over
the app’s assets. In doing so, we pursue to reduce the effects of the high false
positive ratio of current steganalysis techniques.

4.6 Main Findings

Table 4 shows the top 10 specimens with the highest score in the AP and
VS datasets. In VS there is only three samples with a score higher than 0.5,
whereas in Aptoide more than 200 samples present such higher scores. For a
reference value, our stegomalware demo app LikeImage has an associated score
of 0.641−(1·0.7) = 0.738.

We carried out some manual inspection of the top scored apps from both
Aptoide and VirusShare. We next summarize our main findings:

– Most of the inspected apps are definitely not stegomalware as de-
fined in this paper, but many of them behave very much like it.
We found various cases of apps manipulating images through operations
very similar to those used by some LSB encoding algorithms. For instance,
several apps use some algorithms contained in the Apache Commons Imaging

VS sample a8869e0ec4fb1acf12ae01d5294c0c2b . apk
91138622720 e0c f3b119c1c50846 f21 fb f09aae7 . jpg − jph ide (∗)
6391 e903918fa0ecc9951f32249759ee3d6ddb04 . jpg − jph ide (∗)
f76575600c3387444c079942530fd9f9d62aa08b . jpg − jph ide (∗)
e8112b2ac65c10384e23dff0b0119313b07e8967 . jpg − jph ide (∗∗)
ae8267310a55b3192befac4041a98226cf fc17b5 . jpg − jph ide (∗∗)
5 d212aa85edf8db1664c98520b23dd54564e7463 . jpg − jph ide (∗∗∗)
9304 c888d43f87943d766a12d01b0ef41ad53ac5 . jpg − jph ide (∗∗∗)
5 af4d7ea15ce36d3a21d75f f3bf33a87e850b1a1 . jpg − jph ide (∗∗∗)
f35ea0096b63f624f13782ce8644ebf81b4ca352 . jpg − jph ide (∗∗∗)
90 cebeec08fa513d9a1b0ce03f6d55fbb2fbd918 . jpg − jph ide (∗∗∗)
dc854fda81cb39db12584466d2160924ab183022 . jpg − jph ide (∗∗∗)
834344 a fa40 f4b fb7391e165014 f78 f0 f736187a . jpg − jph ide (∗∗∗)
78701455 b319ebc4a4 f f 8aa18026c f f c1 f1716c7 . jpg − jph ide (∗∗∗)
. . .

Fig. 6: Fragment of the Stegdetect report on various images extracted from a VS
sample. The app produced over 70 hits.

library6, including Huffman coding for constructing minimum-redundancy
codes, which is used by some steganographic tools.

– A huge amount of apps contain images that clearly have embedded
information.

For example, Fig. 6 shows a fragment of the report on a VS sample with more
than 70 (***) hits. However, to the best of our understanding, such hidden
messages are never extracted during the app execution. We did not try to
break the password by brute force and recover the embedded messages, but
the headers used by the encoding algorithms are recognizable. Interestingly,
many of these apps use cryptographic functions either to obfuscate payloads
piggybacked together with the app (in the case of VS apps), or else as part
of the legitimate function of the app (in some AP apps).

Such a large amount of images with hidden content suggest two different
conclusions. Firstly, many apps might contain stegotexts for purposes other
than stegomalware as defined in this paper. Some form of watermarking
or other copyright protection techniques is a natural explanation, but they
might have other uses. Secondly, even though Provos and Honeyman [19]
report a very low percentage of false positives for Stegdetect, a recent study
by Khalind et al. [14] suggests that it depends on the chosen sensitivity and
that it can be quite high in some cases. Thus, it may be the case that a
fraction of those images do not actually have any embedded information.

– We found many cases of apps that use näıve methods to hide their
malicious components.

For instance, the sample with identifier

f0f65bd7287cf 83bfabcd22cbf6a0c8c

6 http://commons.apache.org/proper/commons-imaging/

from VS simply stores the payload in a file called data.png. At runtime it
uses several methods, including one with the suspicious name:

cn.bighead.utils.Encoding.covert2Url(covert)

to extract the required components. Fig. 7 shows additional examples of
suspicious operations used to conceal malicious information.

5 Conclusions and Future Work

In this paper, we have introduced and discussed the notion of stegomalware, a
class of malware attacks using information hiding techniques to evade detection
and hinder the task of security analysts. We have argued that this is a far more
powerful capability than traditional obfuscation techniques currently observed
in most smartphonne malware samples, such as disguising the malicious payload
as an image or audio file by simply faking the file extension, or putting it at
the end of another asset. We have introduced different architectural choices for
smartphone stegomalware and demonstrated its viability with a proof-of-concept
app that has remained undetected in the Google Play market for nearly 4 months
so far.

In an attempt to check whether something similar to our notion of stego-
malware is actually being used, we have proposed a detection framework that
combines evidences gathered from the use of code execution capabilities, the
presence of hidden messages detected by steganalysis, and the identification of
steganographic decoding algorithms in an app’s code. We have applied our de-
tector to a dataset of around 55K apps comprising both known malware and
apps gathered from an alternative market.

Unfortunately, the preliminary results of our search for stegomalware in the
wild are not conclusive. However, our study so far has produced a few interesting
conclusions. For example, we have found that a substantial amount of apps do

public long a (byte [] param){
return
(0xFF & param [3]) +
((0xFF & param [4]) << 16) +
((0xFF & param [2]) << 40) +
((0xFF & param [0]) << 48) +
(param [1] << 5 6) ;

}

(a) Sample 224058dbe82d71248cf93c5

transforms an array of bytes and returns
the hidden value.

private stat ic St r ing a (){
return new St r i ngBu i l d e r ()

. append (i . a (200))

. append (i . a (194))

. append (i . a (216))

. append (i . a (9 2))

. t oS t r i ng () ;
}

(b) Sample a8869e0ec4017d5294c0c2b

plays with the way strings are declared
in order to hide them.

Fig. 7: Examples of methods found in various apps to hide malicious components.

have assets with hidden information. Furthermore, many goodware apps such
as games, productivity, and e-health tools incorporate steganographic decoding
algorithms. We do not claim that such apps are stegomalware as defined in this
paper, since there are many legitimate uses of steganography (e.g., intellectual
property protection). Nevertheless, we believe this issue deserves more attention.
In particular, we recommend market operators to include steganalysis and other
forms of stegomalware detection among their analysis techniques.

Our work can be extended in a number of ways. For instance, the detec-
tion framework implemented so far only includes image and audio steganogra-
phy. There are stegosystems for many other digital objects that are often found
among an app’s resources, such as XML and HTML documents, databases, and
other multimedia files. We will incorporate appropriate distinguishers and con-
tent filters to our prototype to check such assets.

Acknowledgements

We are very grateful to the anonymous reviewers for constructive feedback
and insightful suggestions that helped to improve the quality of the original
manuscript. This work was supported by the MINECO grant TIN2013-46469-R
(SPINY: Security and Privacy in the Internet of You).

References

1. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: Drebin: Effective
and explainable detection of android malware in your pocket. In: Proc. of Network
and Distributed System Security Symposium (NDSS) (February 2014)

2. Bastien, F.: Sss – simple steganalysis suite (Visited 2014), https://code.google.
com/p/simple-steganalysis-suite/

3. Cachin, C.: Digital steganography. In: Encyclopedia of Crypto. and Security.
Springer (2005)

4. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography:
Survey and analysis of current methods. Signal processing 90(3), 727–752 (2010)

5. Desnos, A., et al.: Androguard: Reverse engineering, malware and goodware anal-
ysis of android applications (Visited December 2013), https://code.google.com/
p/androguard

6. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comp. Surv. 44(2), 1–42 (Mar 2012)

7. Farid, H., Siwei, L.: Detecting hidden messages using higher-order statistics and
support vector machines. In: LNCS, vol. 2578. pp. 340–354. Springer-Verlag (2003)

8. Forczmanski, P., Wegrzyn, M.: Open virtual steganographic laboratory. In: In-
ternational Conference on Advanced Computer Systems (ACS-AISBIS) (2009),
http://vsl.sourceforge.net/

9. Fridrich, J.: Feature-based steganalysis for jpeg images and its implications for fu-
ture design of steganographic schemes. In: Info. Hiding. pp. 67–81. Springer (2005)

10. Fridrich, J., Goljan, M., Hogea, D.: New methodology for breaking steganographic
techniques for jpegs. In: Electronic Imaging 2003. pp. 143–155. International Soci-
ety for Optics and Photonics (2003)

11. Gao, J., Bai, X., Tsai, W.T., Uehara, T.: Mobile application testing: A tutorial.
Computer 47(2), 46–55 (Feb 2014)

12. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app
repackaging detection algorithms. In: Trust and Trustworthy Comput., pp. 169–186
(2013)

13. Johnson, N.F., Jajodia, S.: Exploring steganography: Seeing the unseen. Computer
31(2), 26–34 (1998)

14. Khalind, O.S., Hernandez-Castro, J.C., Aziz, B.: A study on the false positive rate
of stegdetect. Digital Investigation 9(3), 235–245 (2013)

15. Oberheide, J., Miller, C.: Dissecting the android bouncer. In: SummerCon (2012)
16. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: The hidden malware. IEEE

Security & Privacy 9(5), 41–47 (2011)
17. Petitcolas, F.A., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Pro-

ceedings of the IEEE 87(7), 1062–1078 (1999)
18. Pfitzmann, B.: Information hiding terminology. In: Information Hiding, First In-

ternational Workshop. LNCS, vol. 1174, pp. 347–350. Springer (1996)
19. Provos, N., Honeyman, P.: Hide and seek: an introduction to steganography. Se-

curity Privacy, IEEE 1(3), 32–44 (May 2003)
20. Provos, N., Honeyman, P.: Detecting steganographic content on the internet. Tech.

rep., Center for Information Technology Integration University of Michigan (2001)
21. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of

smartphone applications. In: Proceedings of the third ACM conference on Data
and application security and privacy. pp. 209–220. CODASPY ’13, ACM, New
York, NY, USA (2013)

22. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware
against transformation attacks. In: Proceedings of the 8th ACM SIGSAC sympo-
sium on Information, computer and communications security. pp. 329–334. ASIA
CCS ’13, ACM, New York, NY, USA (2013)

23. Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., Elovici,
Y.: Mobile malware detection through analysis of deviations in application network
behavior. Computers & Security (2014)

24. Suarez-Tangil, G., Tapiador, J.E., Lombardi, F., Pietro, R.D.: Thwarting obfus-
cated malware via differential fault analysis. IEEE Computer 47(6), 24–31 (2014)

25. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection
and analysis of malware for smart devices. IEEE Communications Surveys & Tu-
torials 16(2), 961–987 (May 2014)

26. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: Dendroid: A text
mining approach to analyzing and classifying code structures in android malware
families. Expert Systems with Applications 41(1), 1104–1117 (2014)

27. Upham, D.: Jsteg (1997), http://www.tiac.net/users/korejwa/jsteg.htm
28. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resis-

tant to mimicry attack. In: Advances in Intrusion Detection. pp. 226–248 (2006)
29. Westfeld, A.: F5–a steganographic algorithm. In: Info. hiding. pp. 289–302 (2001)
30. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.

In: IEEE Symposium on Security and Privacy. pp. 95–109 (2012)

