
N 4-Fields: Neural Network Nearest Neighbor Fields
for Image Transforms

Yaroslav Ganin, Victor Lempitsky
Skolkovo Institute of Science and Technology (Skoltech)

{ganin, lempitsky}@skoltech.ru

Abstract

We propose a new architecture for difficult image processing operations, such as
natural edge detection or thin object segmentation. The architecture is based on
a simple combination of convolutional neural networks with the nearest neighbor
search.
We focus our attention on the situations when the desired image transformation is
too hard for a neural network to learn explicitly. We show that in such situations,
the use of the nearest neighbor search on top of the network output allows to im-
prove the results considerably and to account for the underfitting effect during the
neural network training. The approach is validated on three challenging bench-
marks, where the performance of the proposed architecture matches or exceeds
the state-of-the-art.

1 Introduction

Deep convolutional neural networks (CNNs) [1] have recently achieved a breakthrough in a variety
of computer vision benchmarks and are attracting a very strong interest within the computer vision
community. The most impressive results have been attained for image [2] or pixel [3] classification
results. The key to these results was the sheer size of the trained CNNs and the power of modern
GPU used to train those architectures.

Here, we demonstrate that convolutional neural networks can achieve state-of-the-art results for
sophisticated image processing tasks. The complexity of these tasks defies the straightforward ap-
plication of CNNs, which perform reasonably well, but clearly below state-of-the-art.

Here, we demonstrate that by pairing convolutional networks with a simple non-parametric trans-
form based on nearest-neighbor search state-of-the-art performance is achievable. This is demon-
strated on three challenging and competitive benchmarks (edge detection on Berkeley Segmentation
dataset [4], edge detection on the NYU RGBD dataset[5], retina vessel segmentation on the DRIVE
dataset [6]). All the results are obtained with the same meta-parameters, such as the configuration
of a CNN, thus demonstrating the universality of the proposed approach.

The two approaches, namely convolutional Neural Networks and Nearest Neighbor search are ap-
plied sequentially and in a patch-by-patch manner, hence we call the architecture N4-fields. At test
time, an N4-field first passes each patch through a CNN. For a given patch, the output of the first
stage is a low-dimensional vector corresponding to the activations of the top layer in the CNN. At
the second stage we use the nearest neighbor search within the CNN activations corresponding to
patches sampled from the training data. Thus, we retrieve a patch with a known pixel-level anno-
tation that has a similar CNN activation, and transfer its annotation to the output. By averaging the
outputs of the overlapping patches, the transformation of the input image is obtained.

Below, we first review the related works (Section 2), describe the proposed architecture and the
associated training procedures in detail (Section 3), and discuss the results of applying it on sample

1

ar
X

iv
:1

40
6.

65
58

v2
 [

cs
.C

V
]

 3
 J

ul
 2

01
4

Figure 1: N4-Fields can be applied to a range of complex image processing tasks, such as nat-
ural edge detection (left) or vessel segmentation (right). The proposed architecture combines the
convolutional neural networks with the nearest neighbor search and is generic. E.g. it achieves state-
of-the-art performance on standard benchmarks for these two rather different applications with very
little customization or parameter tuning.

problems (Section 4). We conclude with a short discussion of the merits and the potential of the
proposed approach (Section 5).

2 Related work

There is a very large body of related approaches, as both neural networks and nearest neighbor
methods have been used heavily as components within image processing systems. Here, we only
review several works that are arguably most related to ours.

Neural networks for image processing. The use of neural networks for image processing goes
back for decades [7]. Several recent works have investigated large-scale training of deep architec-
tures for complex edge detection and segmentation tasks. Thus, Mnih and Hinton [8] have used a
cascade of two deep networks to segment roads in aerial images, while Shulz et al. [9] use CNNs
to perform semantic segmentation on standard datasets. Kivinen et al. [10] proposed using unsu-
pervised features extraction via deep belief net extension of mcRBM [11] followed by supervised
NN training for boundary prediction in natural images. State-of-the-art results on several seman-
tic segmentation datasets were obtained by Farabet et al. [12] by using a combination of a CNN
classifier and superpixelization-based smoothing. Finally, a large body of work, e.g. [13, 3] simply
frame the segmentation problem as patch classification, making generic CNN-based classification
easily applicable and successful. Below, we compare N4-fields against such baseline and find them
to achieve better results for our applications.

Another series of works [14, 15] investigate the use of convolutional neural networks for image
denoising. In this specific application, CNNs wildly benefit from virtually unlimited training data
that can be synthesized and have a high realism.

Finally, neural networks have been applied for descriptor learning, which resembles the way they are
used within N4-fields. Thus, Chopra et al. [16] introduced a general scheme for learning CNNs that
map input images to multi-dimensional descriptors, suitable among other things for nearest neighbor
retrieval or similarity verification. The learning in that case is performed on a large set of pairs of
matching images. N4-fields is thus different from this group of the approaches in terms of their
purpose (image processing) and the type of the training data (annotated images).

Non-parametric approaches to image processing. Nearest neighbor methods have been applied to
image processing with a considerable success. Most methods use nearest neighbor relations within
the same image, e.g. Dabov et al. [17] for denoising or Criminisi et al. [18] for inpainting. More
related to our work, Freeman et al. [19] match patches in a given image to a large dataset of patches
from different images, to infer the missing high-frequencies and to achieve super-resolution. All
these works use the patches themselves or their band-passed versions to perform the matching.

Another popular non-parametric framework to perform operations with patches are random forests.
Our work was in many ways inspired by the recent impressive results in Dollár et al. [20], where
random forests are trained on patches with structured annotations. Their emphasis is on natural

2

ConvNet

Features Dictionary

Figure 2: The N4 architecture for natural edge detection. The input image is processed patch-by-
patch. An input patch is first passed through a pretrained convolutional neural network (CNN). Then,
the output of the CNN is matched against the dictionary of sample CNN outputs that correspond to
training patches with known annotations. The annotation corresponding to the nearest neighbor is
transferred to the output. Overall, the output is obtained by averaging the overlapping transferred
annotations.

edge detection, and their system represent the state-of-the-art for this task. N4-fields match the
accuracy of [20] for natural edge detection, and perform considerably better for the task of vessel
segmentation in micrographs, thus demonstrating the ability to adapt to new domains.

3 N4-Fields

3.1 Architecture

We start by introducing the notation, and discussing the way our architecture is applied to images.
The N4-Fields transform images patch-by-patch. Given an image transform application, we wish
to map a single or multi-channel (e.g. RGB) image patch P of size M ×M to a segmentation, an
edge map, or some other semantically-meaningful annotation A(P), which in itself is a single or
multi-channel image patch of sizeN×N . We takeN to be smaller thanM , so that A(P) represents
a desired annotation for the central part of P .

Given the annotated data, we learn a mapping F that maps patches to the desired annotations. At
test time, the mapping is applied to all image patches and their outputs are combined by averaging,
thus resulting in an output image. The output of processing for a pixel p = (x, y) is the average of
the outputs of N2 patches that contain this pixel. More formally, the output of the mapping on the
input image I is defined as:

F(I)[x, y] =
1

N2

∑
i,j:|i−x|≤N/2
|j−y|≤N/2

F (I(i, j|M)) [x− i, y − i] , (1)

where F(I)[x, y] denotes the value of image transform at pixel (x, y), I(i, j|M) denotes the image
patch of size M ×M centered at (i, j), and F (I(i, j|M)) [x− i, y− i] is a pixel in the output patch
at the position (x− i, y − j) assuming the origin in the center of the patch.

Obviously, the accuracy of the transform depends on the way the transform F is defined and learned.
Convolutional neural networks (CNNs) provide a generic architecture for learning functions of the
multi-channel images and patches exploiting the translational invariance properties of natural im-
ages. The direct approach is then to learn a mapping P → A(P) in the form of a CNN. In practice,
we found the flexibility of CNNs to be insufficient to learn the corresponding mapping even when
a large number of layers with large number of parameters are considered. For complex transforms,
e.g. natural edge detection, we observe a strong underfitting during the training, which results in a
suboptimal performance at test time.

Convolutional neural network can be regarded as a parametric model, albeit with a very large number
of parameters. A straightforward way to increase the fitting capacity of the mapping is to consider a
non-parametric model. We thus combine a simple non-parametric mapping (nearest neighbor) and
a complex parametric mapping (convolutional neural network). The input patch P is first mapped
to an intermediate representation CNN(P; Θ), where Θ denotes the parameters of the CNN. The
output CNN(P ; Θ) of the CNN mapping is then compared to a dictionary dataset of CNN outputs,

3

computed for T patches P1,P2, . . . ,PT taken from the training images, and thus having known
annotations A(P1),A(P2), . . . ,A(PT). The input patch is then assigned the annotation from the
dictionary patch with the closest CNN output, i.e. A(Pk), where k = arg minT

i=1 ||CNN(Pi) −
CNN(P)|| (Figure 2). If we denote such nearest neighbor mapping as NNB, then the full two-stage
mapping is defined as:

F(P) = NNB (CNN(P; Θ) | {(CNN(Pi; Θ);A(Pi))|i = 1..T}) , (2)

where NNB(x | {(ai|bi}) denotes the nearest-neighbor transform that maps x to bi corresponding
to ai that is closest to x. In our experiments, the dimensionality of the intermediate representation
(i.e. the space of CNN outputs) is rather low (16 dimensions), which makes nearest neighbor search
reasonably easy.

In the experiments, we observe that such a two-stage architecture can successfully rectify the under-
fitting effect of the CNN and result in better generalization and overall transform quality compared to
single stage architectures that include either CNN alone or nearest neighbor search on hand-crafted
features alone.

3.2 Training

The training procedure for an N4-field requires learning the parameters Θ of the convolutional
neural network. Note, that the second stage (nearest neighbor mapping) does not require any training
apart from sampling T patches from the training images.

The CNN training is performed in a standard supervised way on the patches drawn from the training
images I1, I2, . . . IR. For that, we define the surrogate target output for each input patch. Since for
each training patch P , the desired annotation A(P) is known, it is natural to take this annotation
itself as such a target (although other other variants are possible as described in Section 3.3), i.e.
to train the network on the input-output pairs of the form (P,A(P)). However, such output can
be rather high-dimensional (when the output patch size is large) and can vary discontinuously even
when the input patch is disturbed or jittered a little, in particular when our model applications of
edge detection or thin object segmentations are considered. To address both problems, we perform
dimensionality reduction of the output annotations using PCA. Experimentally, we found that the
target dimensionality can be taken rather small, e.g. 16 dimensions for 16× 16 patches.

Thus, the overall training process includes the following steps:

1. Learn the PCA projection on a subset of N ×N patches extracted from the training image
annotations.

2. Train the convolutional neural network on the input-output pairs
{(P,PCA(A(P))} sampled from the training images.

3. Construct a dictionary {(CNN(Pi; Θ);A(Pi))|i = 1..T} by drawing T random patches
from the training images and passing them through the trained network.

After the training, the N4-field can be applied to new images as discussed above.

3.3 Implementation details

Training the CNN. We use the heavily modified CNN framework1 written by Alex Krizhevsky. It
features an efficient GPU implementation of forward and backward propagation and is designed to
be easily customizable and extendable thus fits our purposes nicely. The base architecture that was
used in our experiments is loosely inspired by [2]. It is comprised of the layers shown in Figure 3. We
also tried a dozen of other CNN designs (deeper ones and wider ones) but the performance always
stayed roughly the same which suggests that our system is somewhat insensitive to the choice of the
architecture given the sufficient number of free parameters.

The model was trained on 34 × 34 patches extracted at randomly sampled locations of the training
images. Each patch is preprocessed by subtracting the per-channel mean (across all images). Those
patches are packed into mini-batches of size 128 and presented to the network. The initial weights

1https://code.google.com/p/cuda-convnet/

4

https://code.google.com/p/cuda-convnet/

conv 7x7
96 maps
ReLU

max-pool 2x2
conv 5x5
128 maps

ReLU
max-pool 2x2

conv 3x3
256 maps

ReLU

fully-conn
768 units

ReLU

fully-conn
768 units

ReLU

fully-conn
16 units

Figure 3: The CNN architecture used in our experiments. See Section 3.3 for details.

in the CNN are drawn from Gaussian distribution with zero mean and σ = 10−2. They are then
updated using stochastic gradient descent in conjunction with a momentum term set to 0.9. The
starting learning rate η is set to 10−1 (below in Section 4 we introduce an alternative target function
which demands smaller initial η = 10−3). As commonly done, we anneal η throughout training
when the validation error reaches its plateau.

As the amount of the training data was limited, we observed overfitting (validation error increas-
ing, while training error decreasing) alongside underfitting (training error staying high). To reduce
overfitting, we enrich the training set with various artificial transformations of input patches such as
random rotations and horizontal reflections. Those transformations are computed on-the-fly during
the training procedure. Although batch generation is not free in terms of execution time, it is run in
the background hence it does not stall the training pipeline.

Along with data augmentation we apply two regularization techniques which have become quite
common for CNNs, namely dropout [21] (we randomly discard half of activations in the first two
fully-connected layers) and `2-norm restriction of the filters in the first layer [21, 22].

Testing procedure. At test time we want to calculate activations for patches centered at all possible
locations within input images. A naive approach would be to apply a CNN in the sliding win-
dow fashion (separate invocation for each location). However this solution may be computationally
expensive especially in case of deep architectures. Luckily it is rather easy to avoid redundant cal-
culations and to make dense applications efficient by feeding the network with a sequence of shifted
test images [23].

After neural codes for all patches are computed, nearest-neighbors search is done by means of k-
d trees provided as a part of VLFeat package [24]. We use default settings except for maximum
number of comparisons which we set to 30.

Our proof-of-concept implementation runs reasonably fast taking about 6 seconds to process an
image of size 480×320, although we were not focusing on speed. Computational performance may
be brought closer to the real-time by, for example, applying the system in a strided fashion [20] and
finding a simpler design for the CNN.

Multi-scale operation. Following the works [20, 25] we apply our scheme at different scales. For
each input image we combine detections produced for original, half and double resolutions to get the
final output. While various blending strategies may be employed, in our case even simple averaging
gave remarkably good results.

Committee of N4-fields. CNNs are shown [2, 23, 3] to perform better if outputs of multiple models
are averaged. We found that this technique works quite well for our system too. One rationale
would be that different instances of the neural network produce slightly different neural codes hence
nearest-neighbor search may return different annotation patches for the same input patch. In practice
we observe that averaging amplifies relevant edges and smooths the noisy regions. The latter is
especially important for the natural edge detection benchmarks, as the output of N4-fields is passed
through the non-maximum suppression.

4 Experiments

We evaluate our approach on three datasets. Within two of them (BSDS500 and NYU RGBD),
the processing task is to detect natural edges, and in the remaining case (DRIVE) the task is to
segment thin vessels in retinal micrographs. Across the datasets, we provide comparison with base-
line methods, with the state-of-the-art on those datasets, illustrate the operation of the method, and
demonstrate characteristic results.

5

Target/Target

Neural/Neural

Neural/Target

Query

Target/Target

Neural/Neural

Neural/Target

Query

Figure 4: Examples of nearest neighbors. On the left an image patch and its ground truth annotation
are shown. Right panels contain the results of the nearest neighbor searches for different combi-
nations of query/dictionary encoding. ”Neural” encoding corresponds to the top-layer activations
CNN(P) of the CNN trained to produce ”Target” codes PCA(A(P)). It can be seen that matches
obtained using neural codes on both sides are more adequate than the ones retrieved in the Neu-
ral/Target setting, which provide a poor fit in terms of retrieving patches with similar annotations.
Thus, there is a gap between the learned neural codes and the target PCA codes (underfitting during
CNN training). However, the use of nearest neighbor search allows to overcome this gap and to
match patches with appropriate annotations (e.g. derived from the 1st nearest neighbor as in all our
experiments). See Section 3.2 and Section 4 for more details.

CNN baselines. All three tasks correspond to binary labeling of pixels in the input photographs
(boundary/not boundary, vessel/no vessel). It is therefore natural to compare our approach to CNNs
that directly predict pixels’ labels. Given the input patch a CNN can produce a decision either for the
single central pixel or for multiple pixels (e.g. central patch of size 16×16) hence we have two CNN
baselines. We call them CNN, central and CNN, patch respectively. Each of the CNNs has the same
architecture as the CNN we use within N4-fields, except that the size of the last layer is no longer
16 but equals the number of pixels we wish to produce predictions for (i.e. 1 for CNN central and
256 for CNN patch). At test time, we run the baseline on every patch and annotate chosen subsets
of pixels with the output of the CNN classifier applying averaging in the overlapping regions. As
with our main system, to assess the performance of the baseline, we use a committee of three CNN
classifiers at three scales.

Nearest neighbor baseline. We have also evaluated a baseline that replaces the learned neural codes
with “hand-crafted” features. For this, we used SIFT vectors computed over the input M × M
patches as descriptors and use these vectors to perform the nearest-neighbor search in the training
dataset. Since SIFT was designed mainly for natural RGB photographs, we evaluate this baseline
for the BSDS500 edge detection only.

Alternative encoding. Given the impressive results of [20] on edge detection, we experimented with
a variation of our method inspired by their method. We annotate each patch with a long binary vector
that looks at the pairs of pixels in the output N ×N patch and assigns it 1 or 0 depending whether
it belongs to the object segment. We then apply PCA dimensionality reduction to 16 components.
More formally, we define the target annotation vector during the CNN training to be:

B(P) = PCA((v1, v2, . . . , vL)) , (3)

where L =
(
N2

2

)
and vi is defined for i-th pair (pl, pm) of pixels in the ground truth segmentation

S(P) and is equal to 1 {S(P)[pl] = S(P)[pm]}. In the experiments, we observe a small improve-
ment for such alternative encoding.

6

0.25 0.5 0.75 1 1.25

·10−2

0.6

0.7

0.8

Tolerance

F-
m

ea
su

re
N4-fields ODS

N4-fields OIS
SE ODS
SE OIS

(a) BSDS500 [4]

0.25 0.5 0.75 1 1.25

·10−2

0.4

0.5

0.6

0.7

Tolerance

F-
m

ea
su

re

N4-fields ODS

N4-fields OIS
SE ODS
SE OIS

(b) NYU RGBD [5]

Figure 5: Performance scores for different tolerance thresholds (default value is 0.75 · 10−2) used
in the BSDS500 benchmark [4]. Algorithms’ performance (ODS and OIS measures plotted as
dashed and solid lines respectively) is going down as the tolerance threshold is decreased. N4-
fields (blue lines) handles more stringent thresholds better, which suggests that cleaner edges are
produced, as is also evidenced by the qualitative results. See Section 4 for details.

ODS OIS AP

A
ny

SIFT + NNB .59 .60 .60

CNN, central .72 .74 .75

CNN, patch .73 .75 .74

gPb-owt-ucm [4] .73 .76 .73

SCG [25] .74 .76 .77

SE-MS, T = 4 [20] .74 .76 .78

DeepNet [10] .74 .76 .76

PMI + sPb, MS [26] .74 .77 .78

N4-fields .75 .76 .77

N4-fields, AE .75 .77 .78

C
on

se
ns

us

SE-MS, T = 4 [20] .59 .62 .59

DeepNet [10] .61 .64 .61

PMI + sPb, MS [26] .61 .68 .56

N4-fields, AE .64 .67 .64

(a) BSDS500 [4]

ODS OIS AP

CNN, central .60 .62 .55

CNN, patch .58 .59 .49

gPb [4] .53 .54 .40

SCG [25] .62 .63 .54

SE-MS, T = 4 [20] .64 .65 .59

N4-fields .61 .62 .56

N4-fields, AE .63 .64 .58

(b) NYU RGBD [5]

Table 1: Edge detection results on BSDS500 [4] (both for the original ground-truth annotation and
“consensus” labels) and NYU RGBD [5]. Our approach (N4-fields) achieves performance which
is better or comparable to the state-of-the-art. We also observe that the relative performance of the
methods in terms of perceptual quality are not adequately reflected by the standard performance
measures.

BSDS500 experiments. The first dataset is Berkley Segmentation Dataset and Benchmark
(BSDS500) [4]. It contains 500 color images divided into three subsets: 200 for training, 100
for validation and 200 for testing. Edge detection accuracy is measured using three scores: fixed
contour threshold (ODS), per-image threshold (OIS), and average precision (AP) [4, 20]. In order to
be evaluated properly, test edges must be thinned to one pixel width before running the benchmark
code. We use the non-maximum suppression algorithm from [20] for that.

In general, N4-fields perform similarly to the best previously published methods [20, 10, 26]. In
particular, the full version of the system (the committee of three N4-fields applied at three scales)

7

0 0.2 0.4 0.6 0.8 1

·105

2,000

3,000

4,000

5,000

Epoch

0.55

0.6

0.65

0.7

0.75

Training error
Validation error
Validation ODS
Validation OIS

Figure 6: The validation score (average precision) of the full N4-fields and error rates (loss) of
the underlying CNN measured throughout the training process. The strong correlation between the
values suggests the importance of large-scale learning for the good performance of N4-fields. This
experiment was performed for the BSDS500 edge detection (hold out validation set included 20
images).

N4-fields Input Structured Edge [20]

Figure 7: Representative results on the BSDS500 dataset. For comparison, we give the results of the
best previously published method [20]. The red numbers correspond to Recall/Precision/F-measure.
We give two examples where N4-fields perform better than [20], and one example (bottom row)
where [20] performs markedly better according to the quantitative measure.

matches the performance of the mentioned algorithms, with the alternative encoding performing
marginally better. Following [27] in order to account for the inherent problems of the dataset we
also test our approach against the so-called “consensus” subset of the ground-truth labels. Within
this setting our method significantly outperforms other algorithms in terms of ODS and AP (Table 1 -
left).

The benchmark evaluation procedure does not perform strict comparison of binary edge masks but
rather tries to find the matching between pixels within certain tolerance level and then analyzes

8

Input N4-fields CNN, patch CNN, central SE [20]

Figure 8: Results on the NYU RGBD dataset. For comparison, we give the results of the best
previously published method [20] and the CNN baseline. We show a representative result where the
N4-fields perform better (top), similarly (middle), or worse (bottom) than the baseline, according
to the numberic measures shown in red (recall/precision/F-measure format). We argue that the
numerical measures do not adequately reflect the relative perceptual performance of the methods
(see also [28] for more examples).

unmatched pixels [4]. We observed that the default distance matching tolerance threshold, while
accounting for natural uncertainty in the exact position of the boundary, often ignores noticeable
and unnatural segmentation mistakes such as spurious boundary pixels. Therefore, in addition to the
accuracy evaluated for the default matching threshold, we report results for more stringent thresholds
(Figure 5a-left).

It is also useful to investigate how successful is the deep learning, and what is its role within theN4-
fields. It is insightful to see whether the outputs of the CNN within the N4-fields, i.e. CNN(P) are
reasonably close to the codes PCA(A(P)) that were used as target during the learning. To show this,
in Figure 4 we give several representative results of the nearest neighbor searches where different
types of codes are used on the query and on the dictionary dataset sides (alongside the corresponding
patches). It can be seen, that there are very accurate matches (in terms of similarity between true
annotations) between PCA codes on both sides, and reasonably good matches between CNN codes
on both sides. However, when matching the CNN code of an input patch to PCA codes on the
dataset side the results are poor. This is especially noticeable for patches without natural boundaries
in them as we force our neural network to map all such patches into one point (empty annotation
is always encoded with the same vector). This qualitative performance results in a notoriously bad
quantitative performance of the system that uses such matching (from the CNN codes in the test
image to the PCA codes in the training dataset).

While CNN is clearly unable to learn to reproduce the target codes closely, there is still a strong
correlation between the training error (the value of the loss function within the CNN) and the per-
formance of the N4-fields (Figure 6). The efficiency of the learned codes and its importance for
the good performance of N4-fields is also highlighted by the fact that the nearest neighbor baseline
using SIFT codes performs very poorly. Thus, optimizing the loss functions introduced above really
makes edge maps produced by our algorithm agree with ground truth annotations.

NYU RGBD experiments. We now present results for the NYU Depth dataset (v2) [5]. It contains
1,449 RGBD images with corresponding semantic segmentations. Ren and Bo [25] developed an
utility script which translates the data into BSDS500 format thus eliminating any need for the adap-
tation of our pipeline for the new dataset. To make the comparison with the previous approaches
easier we use the training/testing split proposed by [25]. The CNN architecture stays the same except
for the number of input channels which is now equal to 4 instead of 3.

Once again we use the BSDS500 benchmark code to assess the performance of different algorithms.
The results are summarized in Table 1-right. Our approach almost ties the state-of-the-art method
by [20]. However, just like in the case of the BSDS500 dataset this difference in scores may be due

9

Input Expert annotation N4-fields SE [20]

Figure 9: Representative results on the DRIVE dataset. A close match to the human expert annota-
tion is observed.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

N4-fields (AUC = 0.89)
Becker et al. [29] (AUC = 0.89)
CNN, patch (AUC = 0.87)
CNN, central (AUC = 0.86)
SE [20] (AUC = 0.69)

Figure 10: Results for the DRIVE dataset [6] in the form of the recall/precision curves. Our approach
matches the performance of the current state-of-the-art method by Becker et al [29] and performs
much better than baselines and [20].

to the peculiarity of the benchmark described in the previous section. Indeed, Figure 5b-right shows
that for smaller values of matching thresholds, N4-fields match or even outperform the accuracy of
Structured Edge detector [20].

Note on the quantitative performance. During the experiments, we observed a clear disconnect
between the relative performance of the methods according to the quantitative measures, and ac-
cording to the actual perceptual quality, in particular on the NYU RGBD dataset (Figure 8). We
provide extended uniformly-sampled qualitative results in the supplementary materials [28].

DRIVE dataset. In order to demonstrate wide applicability of our method we test it on the DRIVE
dataset [6] of the micrographs obtained within the diabetic retinopathy screening program. There are
40 images of size 768 × 584 divided evenly into a training and a test set. Ground truth annotations
include manually segmented vasculature as well as ROI masks.

We use exactly the same CNN architecture as in the BSDS500 experiment. Without any further
tuning our system achieves state-of-the-art performance comparable to the algorithm proposed by
Becker et al. [29]. Precision/recall curves for both approaches as well as for the baseline neural
networks and [20] are shown in Figure 10. Notably, there is once again a clear advantage over
the CNN classifier baselines. Poor performance of [20] is likely to be due to the use of default
features that are not suitable for this particular imaging modality. This provides extra evidence for
the benefits of fully data-driven approach.

10

5 Conclusion

We have presented a new approach to machine-learning based image processing. We have demon-
strated how convolutional neural networks can be efficiently combined with the nearest neighbor
search, and how such combination can improve over the performance of standalone CNNs in the
situation when CNN training underfits due to the problem complexity. State-of-the-art results are
demonstrated for natural edge detection in RGB and RGBD images, as well as for thin object (ves-
sel) segmentation. To the best of our knowledge, these are the first state-of-the-art results for natural
edge detection obtained with deep learning. Compared to the structured forests method [20], the
proposed approach is slower, but can be adapted to new domains (e.g. micrographs) without any
retuning.

The future work may concern the fact that we use a PCA compression to define the target output
during the CNN training. A natural idea is then to learn some non-linear transformation in the label
space in parallel to the CNN training on the image patch input, so that to minimize the gap between
the neural codes of the input patches and the target annotations, which remains considerable in our
experiments. It remains to be seen whether minimizing this gap further will bring the improvement
to the overall performance of the system.

11

References

[1] LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel,
L.D.: Handwritten digit recognition with a back-propagation network. In: NIPS. (1989) 396–
404

[2] Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional
neural networks. Advances in Neural Information . . . (2012) 1–9

[3] Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment
neuronal membranes in electron microscopy images. In: NIPS. (2012) 2852–2860

[4] Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image
segmentation. IEEE transactions on pattern analysis and machine intelligence 33(5) (May
2011) 898–916

[5] Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In:
ICCV Workshops, IEEE (2011) 601–608

[6] Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based
vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4) (2004)
501–509

[7] Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural networks - a
review. Pattern recognition 35(10) (2002) 2279–2301

[8] Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: Com-
puter Vision–ECCV 2010. Springer (2010) 210–223

[9] Schulz, H., Behnke, S.: Learning object-class segmentation with convolutional neural net-
works. In: 11th European Symposium on Artificial Neural Networks (ESANN). Volume 3.
(2012)

[10] Kivinen, J.J., Williams, C.K.I., Heess, N.: Visual boundary prediction: A deep neural predic-
tion network and quality dissection. In: AISTATS. (2014) 512–521

[11] Ranzato, M., Hinton, G.E.: Modeling pixel means and covariances using factorized third-order
boltzmann machines. In: CVPR. (2010) 2551–2558

[12] Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene
labeling. Pattern Analysis and Machine Intelligence, IEEE Transactions on 35(8) (2013) 1915–
1929

[13] Jain, V., Murray, J.F., Roth, F., Turaga, S.C., Zhigulin, V.P., Briggman, K.L., Helmstaedter, M.,
Denk, W., Seung, H.S.: Supervised learning of image restoration with convolutional networks.
In: ICCV. (2007) 1–8

[14] Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: NIPS. (2008)
769–776

[15] Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural networks
compete with bm3d? In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, IEEE (2012) 2392–2399

[16] Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with appli-
cation to face verification. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on. Volume 1., IEEE (2005) 539–546

[17] Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3d transform-
domain collaborative filtering. In: Electronic Imaging 2008, International Society for Optics
and Photonics (2008) 681207–681207

[18] Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based
image inpainting. Image Processing, IEEE Transactions on 13(9) (2004) 1200–1212

[19] Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International
Journal of Computer Vision 40(1) (2000) 25–47

[20] Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV. (2013)
[21] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving

neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580 (2012)

12

[22] Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. (2012)
[23] Sermanet, P., Eigen, D.: OverFeat : Integrated Recognition , Localization and Detection using

Convolutional Networks arXiv : 1312 . 6229v3 [cs . CV] 14 Jan 2014. 1–16
[24] Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algo-

rithms. http://www.vlfeat.org/ (2008)
[25] Xiaofeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection.

In Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K., eds.: Advances in Neural
Information Processing Systems 25. (2012) 593–601

[26] Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Crisp boundary detection using pointwise
mutual information. In: ECCV. (2014)

[27] Hou, X., Yuille, A., Koch, C.: Boundary detection benchmarking: Beyond f-measures. In:
Computer Vision and Pattern Recognition, 2013. CVPR’13. Volume 2013., IEEE (2013) 1–8

[28] Ganin, Y., Lempitsky, V.: Online supplementary material for the article “N4-Fields: Neural
Network Nearest Neighbor fields for image transforms”. http://sites.skoltech.ru/
compvision/projects/n4/

[29] Becker, C.J., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilin-
ear structure segmentation. In Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N., eds.:
MICCAI (1). Volume 8149 of Lecture Notes in Computer Science., Springer (2013) 526–533

13

http://www.vlfeat.org/
http://sites.skoltech.ru/compvision/projects/n4/
http://sites.skoltech.ru/compvision/projects/n4/

	1 Introduction
	2 Related work
	3 N4-Fields
	3.1 Architecture
	3.2 Training
	3.3 Implementation details

	4 Experiments
	5 Conclusion

