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Abstract. Region proposal methods provide richer object hypotheses
than sliding windows with dramatically fewer proposals, yet they still
number in the thousands. This large quantity of proposals typically re-
sults from a diversification step that propagates bottom-up ambiguity in
the form of proposals to the next processing stage. In this paper, we take
a complementary approach in which mid-level knowledge is used to re-
solve bottom-up ambiguity at an earlier stage to allow a further reduction
in the number of proposals. We present a method for generating regions
using the mid-level grouping cues of closure and symmetry. In doing so,
we combine mid-level cues that are typically used only in isolation, and
leverage them to produce fewer but higher quality proposals. We empha-
size that our model is mid-level by learning it on a limited number of
objects while applying it to different objects, thus demonstrating that
it is transferable to other objects. In our quantitative evaluation, we 1)
establish the usefulness of each grouping cue by demonstrating incre-
mental improvement, and 2) demonstrate improvement on two leading
region proposal methods with a limited budget of proposals.

1 Introduction

Casting object recognition as object detection diminishes the need for bottom-
up grouping: a high-level model does not need the help of weaker mid-level and
low-level cues to locate the object. However, as the level of ambiguity rises with
the number of possible objects, the more prohibitive it becomes to exhaustively
search over object detectors in a cluttered scene. This motivates the role of
bottom-up cues for achieving a reduction in search complexity.

Bottom-up grouping has re-emerged in the form of class-independent region
proposals [1, 2] which are increasingly combined with object detectors and have
been shown to improve performance on competitive challenges [3]. Region pro-
posal methods typically start with a generation stage that uses a bottom-up
grouping algorithm to output a diverse set of proposals, which are then passed
to a ranking stage where they are evaluated by a trained scoring function. The
ranked proposals have richer structure than sliding windows, which are typically
fixed in aspect ratio, and have higher precision than sliding windows, whose
proposals number in the millions. In contrast, region proposal methods achieve
state-of-the-art results with only thousands of proposals.

Region proposal methods forward bottom-up ambiguity from the generation
stage to the ranking stage in the form of proposals, at which point stronger cues
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Fig. 1. Given an input image as shown in (a), our method first oversegments into
superpixels in (b), which are to be grouped into regions based on a combination of
perceptual grouping cues. In this example, both the horse and the fence are relatively
homogeneous in color and exhibit contrasting boundaries, however the horse’s neck is
slightly darker than its torso. As shown in (c), low-level appearance alone oversegments
the horse at the neck where a large gap in contour is attempted. When including contour
closure in (d), the boundary correctly encloses the head, but elsewhere strays along the
fence. Conversely in (e), including symmetry without closure separates the fence from
the horse, but fails to enclose the head. With closure and symmetry together in (f),
the entire horse is correctly segmented.

are available to reduce the ambiguity. Unlike hierarchy-based models [4], pro-
posals are often explicitly isolated from object class labels. Typical methods like
[1, 2], however, rely on only low-level appearance and contour cues to generate
proposals, and as a result must diversify their proposals in large quantities to
preserve recall. In this paper, we present a complementary approach to diversi-
fication that uses mid-level grouping cues to resolve ambiguity at an early stage
to avoid the need to generate proposals in excessive quantities.

By approaching the problem as figure-ground separation, we draw on a large
body of work in perceptual grouping. Mid-level cues capture non-accidental re-
lations between image elements that are exhibited by all objects. They are less
specific than a high-level object model, yet more discriminative than low-level
cues like appearance similarity and contour continuity. Here we highlight two
mid-level cues of interest:

Closure [5, 6] is a regularity that favors regions that are enclosed by strong
contour evidence along the boundary. Bottom-up approaches to finding closure
vary in the types of cues used, and may include continuity and convexity. The
problem is often cast as finding a cycle of graph edges in a very large space, and
is exacerbated when allowing for gaps in the closure (an illustrative example
being the Kanizsa triangle).

Symmetry [7–9] is a ubiquitous and powerful regularity with scope that
spans entire objects or their parts. Since the early days, perceptual grouping
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research has produced such varied representations as the medial axis trans-
form [10], generalized cylinders [11], superquadrics [12], and geons [13]. Later
approaches applied symmetry toward cluttered and occluded image domains,
which present the challenge of searching for symmetrically related elements in
an intractably large space.

Like other bottom-up cues, closure and symmetry govern the perception of
figure and ground. Our method, as illustrated in Figure 1, groups regions by
leveraging mid-level and low-level cues in combination. An input image (a) is
oversegmented into superpixels (b) to be grouped together into regions. The
example shown contains a horse as foreground, for which multiple grouping cues
will help to separate from the background. Relying on a limited number of cues,
as subsequently shown, may result in a segmentation that is overly sensitive to
detailed changes in the image. In (c), low-level appearance alone oversegments
the horse at the slightly darker neck, while jumping a large gap in contour.
Including contour closure in (d) attracts the boundary to pixels with strong
contour evidence and encloses the head, but elsewhere strays along the fence.
Symmetry is a regularity that groups objects, such as the fence, into its coherent
parts, but as shown in (e), does not group the head with the horse. In (f), closure
and symmetry combine their strengths to correctly segment the horse.

Mid-level cues extend beyond any particular object, and symmetry and clo-
sure, in particular, are ubiquitous over all objects. Since our model is aware
of objects only at the mid-level and unaware of their specific appearance, the
model can easily transfer from one object to another. In this paper, as a case
in point, we learn our model on the Weizmann Horse Dataset (WHD) [14], and
then apply it to diverse non-horse objects from the Weizmann Segmentation
Dataset (WSD) [15]. Quantitative experiments are performed on WHD to 1)
establish the usefulness of each cue by demonstrating improvement as they are
incrementally added, and to 2) demonstrate improvement on two leading region
proposal methods with a limited budget of proposals. The contributions of our
paper are summarized as follows:

1. Perceptual search. We focus on the front-end stage where the generation
of region proposals is driven by bottom-up grouping. We argue that stronger
mid-level cues play an important role in reducing the number of proposals.

2. Mid-level cue combination. We improve upon previous approaches that
lack mid-level knowledge or combine only one mid-level cue with low-level
cues, by leveraging the combination of mid-level closure and mid-level sym-
metry to group regions together.

3. Trained cue combination: While perceptual grouping methods often make
ad hoc grouping decisions, we capture all cues in a single energy function
and jointly learn their weighted combination.

2 Related work

Viewing region proposals as object hypotheses for recognition, we begin by
broadening our scope to include methods designed for sliding window detectors.
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Among these, the objectness detector of Alexe et al. [16] computes low-level
features on superpixels [17] to score sampled image boxes. Selective search of
Uijlings et al. [2] outputs boxes that bound regions generated from agglomer-
ative clustering of superpixels [17]. The method accumulates a pool of regions
over each step of region-merging until all regions are merged together, and en-
sures diversity by pooling results over multiple color and texture feature spaces.
The method is very fast, yet is based on low-level appearance alone.

Arbelaez et al. [18] produces regions by merging superpixels of [19] over
multiple scales. The method considers a limited number of all pairs, triples, and
quadruples of adjacent superpixels. Our approach is different in that we operate
on a single layer of compact superpixels, and define a set of low-level and mid-
level cues that quantify the likelihood of grouping.

The shape sharing method of Kim & Grauman [20] matches part-level regions
in a given image to a bank of exemplars, which project object-level information
back into the image to help with segmentation. The category-independent pro-
posals of Endres & Hoiem [21] develops a CRF model to label superpixels based
on segment seeds. The resulting region proposals are ranked using structured
learning on grouping cues. The energy potentials are pairwise and submodular,
and inference is done by graph cuts. While we use a similar procedure to gener-
ate regions, we combine mid-level cues at the front-end without seeding from a
fixed hierarchical segmentation.

The CPMC method of Carreira & Sminchisescu [1] generates regions di-
rectly from the image rather than deriving them from a fixed segmentation. The
method solves multiple parametric min-cut instances over color seeds. Regions
are re-ranked by regressing on overlap with region-scoped features, including
mid-level features such as convexity and eccentricity. The emphasis is on rank-
ing rather than the front-end grouping, which samples color seed models over
millions of pixels. Our approach is qualitatively different from the above methods
as we focus on bottom-up grouping, however our mid-level front-end is comple-
mentary to the ranking stage.

Viewing region proposals as figure-ground labeling calls on a large literature
covering low-level and mid-level Gestalt cues. Rather than covering methods
on individual mid-level cues like symmetry [7–9] and closure [5, 6], we consider
holistic approaches that combine low- and/or mid-level cues. The region com-
petition approach of Zhu & Yuille [22] combines the objectives of snakes and
region growing into a single Bayes criterion, effectively integrating the relative
strengths of contour-based and region-based cues. An algorithm for optimizing
the new criterion was introduced, however only guaranteed convergence to a lo-
cal minimum. Our approach differs in using superpixels which, providing access
to both contours and regions, serves as a convenient basis for combining their
respective cues, independently from the optimization approach.

Cue combination is alternately formulated as a linear combination of terms
that make up a cost or scoring function. Graph-based image partitioning [17, 23]
requires an affinity function to be specified between pairs of pixels and there-
fore falls under this category. For example, the intervening contour method of
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Leung & Malik [24] includes a contour-based term into the appearance-based
affinity and solves the normalized cut problem. Like [24], we combine cues in a
linear combination of terms, but differ in the overall grouping approach and use
different cues on superpixels.

Inspired by random field models, the cue integration method of Ren et al. [25]
develops an energy function that integrates appearance similarity, contour con-
tinuity, contour closure, and object familiarity on triangular tokens. The model
was trained and solved using loopy belief propagation. Like [25], we combine mul-
tiple grouping cues over adjacent regions, but we take the approach of expressing
the energy potentials in a form that allows efficient and exact solutions.

Our approach is most similar to Levinshtein et al. [26], which elegantly formu-
lated contour closure as finding minimum energy labelings, and used parametric
min-cut to find globally optimal solutions. A gap cost was trained on superpixel
boundary features and incorporated into a gap-to-area ratio cost. We differ from
[26] by combining multiple cues, among which contour closure counts as only
one, and furthermore we learn to combine cues in a random field energy model.

3 Approach overview

We develop an energy function over superpixel labelings that captures a combi-
nation of low-level and mid-level grouping cues. In Section 4, we motivate the
cues of low-level appearance, mid-level closure, and mid-level symmetry from
perceptual grouping principles and define their corresponding energy potentials.
We use a mathematical form that is flexible enough to accommodate additional
cues, yet conforms to a structure that can be exploited to obtain efficient and
exact solutions. In Section 5, we introduce a scaling term in the energy that
represents ambiguity in scale, and use it to obtain multiple solutions. Section
6 formulates the loss-based framework with which we train the weights of the
energy function. We present and discuss results in Section 7 and conclude in
Section 8.

4 Grouping cues

Our method operates on superpixels as grouping primitives from which regions
are composed. Superpixels provide a rich topology of regions and boundaries on
which a diverse set of cues can be defined to capture different grouping relations.
Specifically, an input image x is oversegmented into P superpixels, where each
superpixel p is assigned a binary label yp ∈ {1 = figure, 0 = ground}. The
labeling space Y = {1, 0}P contains all possible vectors y = {y1, . . . , yP } of
superpixel labels and thus represents all possible groupings. An energy function
E(y;x) is defined on Y that favors labelings based on a combination of cues
observed on the image x, and captures this combination as a decomposition into
potentials corresponding to different cues:

E(y;x) =
∑
cue

∑
I∈N cue

EcueI (yI ;xI) (1)
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In (1), cue varies over low-level appearance (app), mid-level closure (clo), and
mid-level symmetry (sym). The set N cue of neighborhoods for a particular cue
defines the local subsets of superpixels on which the cue is repeatedly observed.
Potentials in our model are restricted to pairwise order. By finding a labeling that
globally minimizes the energy, we obtain a region that exhibits strong grouping
relations. In this section, we discuss the contributions of the cues of symmetry,
closure, and appearance and define their corresponding energy potentials.

4.1 Appearance similarity

Similarity is a basic perceptual grouping cue that we capture in the form of color
and texture similarity. We note that even objects of heterogeneous appearance
are often composed of homogeneous parts. For each superpixel p, we compute a d-
dimensional normalized histogram descriptor hp that summarizes its appearance.
We then compute the similarity between a pair p, q of adjacent superpixels using
the histogram intersection kernel:

spq =

d∑
i=1

min(hpi , h
q
i ).

Color and texture are captured with different histograms hc,ht which are com-
puted in the manner of Uijlings et al. [2] using multiple color channels and
SIFT-like features. Similarity is computed for both histograms to obtain the
two-dimensional feature:

φapppq (x) = (spqc , s
pq
t ).

The pairwise appearance potential for each adjacent pair p, q combines the cues
and is defined as follows:

Eapppq (ypq;x) =

{
wT
appφ

app
pq (x) yp 6= yq

0 yp = yq
(2)

4.2 Contour closure

Contour closure is a key challenge of perceptual grouping. One of the key ingre-
dients of closure is strong contour evidence along the boundary that separates
figure from ground. Since we prefer boundaries that avoid large gaps of contour
(weak evidence), we define for any given labeling y the gap cost G(y) in terms
of the corresponding region’s boundary ∂(y):

G(y;x) =
∑

x∈∂(y)

g(x).

This cost accumulates a positive gap g(x) over all boundary pixels x ∈ ∂(y). We
compute g(x) ∈ [0, 1] at every boundary pixel using the trained measure of [26],
which accounts for discrepancy between contour map and superpixel boundaries
in location and orientation.
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(a) (b)

Fig. 2. To support the cue of mid-level closure, contour evidence is computed along
superpixel boundaries as shown in (a), where thickness indicates the degree of contour
evidence (lack of gap) [26]. In (b), the gap cost G(y) for a hypothetical labeling y
over the corresponding region’s boundary ∂(y) is shown in dashed red and consists of
superpixels S1-S4. Unary potentials sum gap along the corresponding boundaries G1-
G4, and pairwise potentials sum gap along the shared boundaries G12-G34. The total
gap G(y) along the dashed red is obtained by subtracting twice the pairwise potentials
from the unary potentials. (We thank the authors of [26] for permission to reproduce
figure (b)).

We directly incorporate G(y) into our energy function by expressing it in
terms of unary and pairwise potentials over y. We encode the potentials as in
[26], for which a schematic example is provided in Figure 2. Unary potentials are
defined to sum gap along the corresponding superpixel’s boundary ∂(p) when
yp = 1. Pairwise potentials between p and q sum gap only along the boundary
∂̄(p, q) shared by both superpixels, when yp = yq = 1:

Eclop (yp) =

{∑
x∈∂(p) g(x) yp = 1

0 yp = 0
Eclopq (ypq) =

{∑
x∈∂̄(p,q) g(x) yp = yq = 1

0 otherwise

(3)

As illustrated in Figure 2(b), unary potentials sum gap along their superpixel
boundaries. For a region consisting of a single superpixel, the unary potential
reflects the correct gap cost. However, for a region consisting of multiple super-
pixels, simply summing the corresponding unary potentials will double count the
gaps along the boundaries shared by adjacent superpixels in the region, which
are exactly those counted by the pairwise potentials. The gap G(y) along the
true boundary of the region can thus be easily expressed as the sum of the unary
potentials, minus twice the pairwise potentials:

Eclo(y;x) = wclo ·

(∑
p

Eclop (yp;x)− 2
∑
p,q

Eclopq (ypq;x)

)
(4)
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(a) (b)

Fig. 3. Symmetric parts detected by [27] as sequences of medial points represented as
region masks, as shown in (a). In (b), straight lines indicate strong pairwise affinities
between superpixels that belong to the same symmetric part.

4.3 Symmetry

Symmetry relates together local features that span the entire object or its parts
and, as such, is a powerful mid-level cue. Its large spatial scope, however, makes
the associated grouping problem combinatorially hard. In the context of our
representation in the labeling space Y, the region corresponding to an object
or its part can be composed from any number of superpixels, and thus induces
dependencies of arbitrarily high order.

Our method draws on the approach of Lee et al. [27] for finding symmetrically
related features, which circumvents the above difficulty by leveraging the scope
of large superpixels. By operating on successively coarser superpixels, pairwise
combinations are able to cover successively larger regions, effectively achieving
higher orders of dependency. This allows local sections of symmetry of the same
object part to be composed from a sequence of pairwise superpixels at the correct
scale. Furthermore, [27] finds optimal sequences of superpixels that lie along the
symmetry axes of object parts, as shown in Figure 3.

We incorporate the symmetry cue in the above form into our method by fa-
voring the grouping of superpixels that belong, with high likelihood, to the same
symmetric part. In practice, we run the sequence optimization of [27] indepen-
dently on multiscale superpixels to obtain a set S of symmetric parts, as shown
in Figure 3(a), and define pairwise potentials that favor grouping of superpixels
that belong to the same symmetric part, as shown in 3(b).

For each pair of adjacent superpixels p, q, we define the feature:

φsympq (x) = max
s∈S(p,q)

score(s),

which takes on the score of the best scoring symmetric part s ∈ S(p, q), where
S(p, q) ⊆ S is the subset of symmetric parts for which the overlap with p and
q both exceed τ = 0.75. When S(p, q) is empty, the feature takes on a value of
zero. The value score(s) ∈ [0, 1] is the part’s detection score, which we interpret
as positive grouping evidence. We perform non-maximum suppression over all
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superpixels pairs so that each pairwise relation is influenced by at most one
symmetric part. The symmetry potential is defined for each pair (p, q) of adjacent
superpixels as:

Esympq (ypq;x) =

{
wT
symφ

sym
pq (x) yp 6= yq

0 yp = yq.
(5)

5 Figure-ground labeling

We incorporate the potentials corresponding to the grouping cues into our final
energy function as follows:

E(y) =
∑
p,q

Eapppq (y) +
∑
p

Eclop (y)− 2
∑
p,q

Eclopq (y) +
∑
p,q

Esympq (y) + λ
∑
p

φp(y).

(6)

In (6), the grouping cues are rescaled by a scaling potential φp(y) by a factor of
λ > 0 that is defined as follows:

φp(y) =

{
−area(p) yp = 1

0 yp = 0.
(7)

The scaling potential removes trivial solutions associated with the empty group-
ing with zero energy. Furthermore, as λ increases, the scaling potential favors
labelings of larger area, and thus λ adjusts the energy’s preference for regions of
smaller or larger scale.

To minimize (6), we rewrite it as a sum of unary and pairwise potentials:

E(y;x) =
∑
p

wT
1 φ

λ
p(y,x) +

∑
p,q

wT
2 φpq(y,x), (8)

noting that the pairwise potentials are submodular when weights are non-negative
(features are non-negative). When λ is fixed, (8) can be minimized efficiently with
a maxflow algorithm. In our model, λ is an unknown variable that represents the
scale of an object, and so we minimize (8) for all values λ ∈ Λ, for Λ ⊂ R. This
is known as the parametric maxflow problem [28], which can be shown to yield
a finite number of solutions as λ varies over Λ. The set of globally optimal solu-
tions can be found with a linear number of calls to the maxflow algorithm. We
use Λ = [0, 1] to yield a dozen solutions on average per image, thereby obtaining
multiple proposals varying in scale.

6 Learning

We train the weights of the energy function (8) by incorporating it into the
Structured SVM framework. The framework is instantiated with the loss func-
tion:

∆(ŷ,y) =
1

area(x)

∑
p

area(p) · φ∆p (ŷp, yp) φ∆p (ŷ, y) =

{
1− αp ŷ = 1

αp ŷ = 0
(9)
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where αp ∈ [0, 1] is the fraction of pixels inside superpixel p labeled by the
ground truth pixel mask. Weights are optimized using StructSVMCP [29] and
constrained to be non-negative. We note that the learning step assumes that
the loss for a particular example is obtained by minimizing the corresponding
energy with a particular value of λ. For simplicity, we have fixed λ = 0.01 for all
training examples. During testing, however, we vary λ over Λ for each example.

7 Evaluation

A key point of our approach is that our model being mid-level enables it to di-
rectly transfer from one object class to another. To illustrate this point, we use
the Weizmann Horse Dataset (WHD) [14] to build our model, while applying it
on diverse non-horse objects from the Weizmann Segmentation Dataset (WSD)
[15]. Section 7.2 describes the qualitative results obtained on WSD. We addition-
ally perform quantitative experiments to study the individual contributions of
our grouping cues, and to demonstrate an improvement over two leading region
proposal methods. Results are presented in Sections 7.1 and 7.3, respectively.

Contained in WHD are 328 images, each annotated with a ground truth
mask. We train on the first 200 images, and hold out the remainder for test. As
an evaluation metric, we compute the average best overlap [2]:

O(G,R; k) =
1

|G|
∑

(g,i)∈G

max
r∈R(i;k)

o(r; g),

where G and R are the ground truth and region masks, respectively, and the
quantity k is the number of top-ranked proposals. Intersection-over-union overlap
between a region r and the ground truth mask g is denoted by o(r; g). We plot
overlap against k to measure the trade-off between overlap and k.

7.1 Cue combination

We study the effect of incrementally combining the cues of appearance, closure
and symmetry, by including their respective potentials in the energy function
(6). Each cue observes a different type of grouping evidence, and we expect the
best result from combining the strengths of all cues. Figure 4 shows the effect of
incrementally adding closure and symmetry to appearance, as well as using mid-
level cues without appearance. We observe that closure and appearance work
well together, while symmetry helps for all combinations. The results confirm
our hypothesis that each cue individually contributes useful information, with
the best result from combining all cues. Our symmetry cue contributed a smaller
than expected improvement on WHD. We expect symmetry’s contribution to be
better reflected in more challenging datasets of objects whose regions cannot be
as easily computed with the remaining cues alone.
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Fig. 4. Improvement in recall as grouping cues are incrementally added to the energy.

7.2 Qualitative results

We present qualitative results for a diverse set of objects in Figure 6, where each
row shows the top proposed regions produced from a given input image, along
with the corresponding ground truth mask. Our method successfully separates
horses from cluttered and occluded backgrounds. We observe that alternative
regions often arise when there are spurious contours, particularly within the
horse and shadows under the horse. False negative contours, however, can cause
undersegmentation, e.g., in row 4. Symmetry of occluded fences is often suf-
ficient to prevent undersegmentation. We note that while our appearance cue
favors grouping regions of similar color, it does not penalize regions of hetero-
geneous color and correctly segments the horse in row 5. The remaining rows
show results on different objects from WSD and demonstrate that our method
is class-independent, and that our mid-level cues trained on WHD transfers well
to objects of different classes.

7.3 Comparison with region proposals

We demonstrate the advantage of our mid-level method with respect to Selective
Search [2] and CPMC [1] in Figure 5. For comparison with [2], we have measured
overlap with respect to the agglomerated regions (rather than their bounding
boxes), pooled over color types, similarity measures, and the parameter of [17].
The quantitative comparison demonstrates an improvement on [2] with a budget
of a hundred proposals. We note that our method focuses on resolving ambiguity
and generates 20-30 proposals per image. In contrast, [2] relies on diversity of
proposals and requires over 100 proposals to achieve the same recall. Our method
is thus more effective for a limited budget of proposals.

For comparison with [1], we have measured overlap with their regions pro-
duced using color seeds, where a color seed model is fit to sampled locations.
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Fig. 5. Improvements over CPMC [1] and Selective Search [2] with a limited budget
of proposals, and improvement over Superpixel Closure [26]. Our method is evaluated
with and without color seeds. See text for details.

For this comparison, we have also added color seeds to our energy function (6).
Specifically, for any given test image, we fit a Gaussian mixture model to the
image’s RGB distribution to obtain a compact set of color seed models corre-
sponding to each mixture component (we obtain 4-6 clusters per image). This
differs from [1] which densely samples color seeds over a grid. For each pair of
color seed as a foreground-background hypothesis, we bias our energy function
(6) with a unary potential that scores the corresponding superpixel’s log like-
lihood ratio between the foreground seed and the background seed, as done in
[1]. Parametric min-cut is solved for each pair of color seed, and the resulting
regions are pooled with the original (unbiased) regions, obtaining several hun-
dred proposals per image. Our method with color seeds improves on [1] with a
budget of a hundred proposals.

8 Conclusion

Bottom-up grouping is regaining momentum as a counterpart to object detec-
tion, and is a promising area in which to explore the importance of mid-level
grouping cues. Mid-level cues are ubiquitous and transcend individual object
classes, yet can be leveraged effectively only in combination. We have presented
a method to combine appearance, closure, and symmetry, and demonstrated the
usefulness of each cue. We have also demonstrated the effectiveness of using mid-
level cues to resolve ambiguity with a limited budget of proposals, and shown
that our model complements diversification techniques when a large number of
proposals is affordable.



Multi-cue mid-level grouping 13

References

1. Carreira, J., Sminchisescu, C.: Cpmc: Automatic object segmentation using con-
strained parametric min-cuts. PAMI 34 (2012) 1312–1328

2. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object
recognition. IJCV 104 (2013) 154–171

3. Fidler, S., Mottaghi, R., Yuille, A., Urtasun, R.: Bottom-up segmentation for
top-down detection. CVPR (2013) 3294–3301

4. Fidler, S., Boben, M., Leonardis, A.: Learning a hierarchical compositional shape
vocabulary for multi-class object representation. ArXiv:1408.5516 (2014)

5. Elder, J., Zucker, S.: Computing contour closure. ECCV (1996) 399–412
6. Jacobs, D.: Robust and efficient detection of convex groups. PAMI (1996)
7. Loy, G., Eklundh, J.: Detecting symmetry and symmetric constellations of features.

ECCV (2006) 508–521
8. Mohan, R., Nevatia, R.: Perceptual organization for scene segmentation and de-

scription. PAMI 14 (1992) 616–635
9. Tsogkas, S., Kokkinos, I.: Learning-based symmetry detection in natural images.

ECCV (2012)
10. Blum, H.: A transformation for extracting new descriptors of shape. Models for

the perception of speech and visual form 19 (1967) 362–380
11. Binford, T.: Visual perception by computer. ICSC (1971)
12. Pentland, A.: Perceptual organization and the representation of natural form. AI

(1986)
13. Biederman, I.: Human image understanding: Recent research and a theory. CVGIP

(1985)
14. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. ECCV (2002)
15. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic

bottom-up aggregation and cue integration. CVPR (2007)
16. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? CVPR (2010) 73–80
17. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation.

IJCV 59 (2004) 167–181
18. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale com-

binatorial grouping. CVPR (2014)
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Fig. 6. Top region proposals from our method from different images. Leftmost column
shows corresponding ground truth masks and remaining columns show region propos-
als. Rows 1-5 correspond to images from the Weizmann Horse Database (WHD), and
rows 6-8 correspond to images from the Weizmann Segmentation Database (WSD).
See text for details.


