Skip to main content

Transductive Transfer Machine

  • Conference paper
  • First Online:
Book cover Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

Abstract

We propose a pipeline for transductive transfer learning and demonstrate it in computer vision tasks. In pattern classification, methods for transductive transfer learning (also known as unsupervised domain adaptation) are designed to cope with cases in which one cannot assume that training and test sets are sampled from the same distribution, i.e., they are from different domains. However, some unlabelled samples that belong to the same domain as the test set (i.e. the target domain) are available, enabling the learner to adapt its parameters. We approach this problem by combining three methods that transform the feature space. The first finds a lower dimensional space that is shared between source and target domains. The second uses local transformations applied to each source sample to further increase the similarity between the marginal distributions of the datasets. The third applies one transformation per class label, aiming to increase the similarity between the posterior probability of samples in the source and target sets. We show that this combination leads to an improvement over the state-of-the-art in cross-domain image classification datasets, using raw images or basic features and a simple one-nearest-neighbour classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Fig. 1, the feature space is visualised in 2D using PCA projection and only two classes are shown, but the MMD computation was done on a higher dimensional space on samples from 10 classes. For these reasons it may not be easy to see that the means of source and target samples became closer after MMD.

  2. 2.

    Equations (10) and (11) rectify equations from [16], as we discussed in [17].

References

  1. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  2. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)

    Google Scholar 

  3. FarajiDavar, N., deCampos, T., Kittler, J.: Adaptive transductive transfer machines. In: Proceedings of the British Machine Vision Conference (BMVC), Nottingham (2014)

    Google Scholar 

  4. Cortes, C., Mohri, M., Riley, M.D., Rostamizadeh, A.: Sample selection bias correction theory. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 38–53. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.: Covariate shift by kernel mean matching. Dataset Shift Mach. Learn. 3, 131–160 (2009)

    Google Scholar 

  6. Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings of the International Conference Machine Learning, ICML, San Francisco, CA, USA, pp. 200–209 (1999)

    Google Scholar 

  7. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive. In: Proceedings of the 15th International Conference on Multimedia (2007). doi:10.1145/1291233.1291276

  8. Gopalan, R., Li, R., Chellappa, R.: Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 36(11), 2288–2302 (2014). doi:10.1109/TPAMI.2013.249

    Article  Google Scholar 

  9. Chu, W.S., De la Torre, F., Cohn, J.F.: Selective transfer machine for personalized facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2013)

    Google Scholar 

  10. Dai, W., Chen, Y., Xue, G., Yang, Q., Yu, Y.: Translated learning: transfer learning across different feature spaces. In: Neural Information Processing Systems, pp. 353–360 (2008)

    Google Scholar 

  11. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H., Schalkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. In: Proceedings of the International Conference Intelligent Systems for Molecular Biology (2006)

    Google Scholar 

  12. Long, M., Wang, J., Ding, G., Yu, P.: Transfer learning with joint distribution adaptation. In: Proceedings of the International Conference on Computer Vision, ICCV (2013)

    Google Scholar 

  13. Aytar, Y., Zisserman, A.: Tabula rasa: model transfer for object category detection. In: Proceedings of the International Conference on Computer Vision, ICCV (2011)

    Google Scholar 

  14. Gretton, A., Borgwardt, K., Rasch, M., Scholkopf, B., Smola, A.: A kernel method for the two sample problem. In: Proceedings of the Neural Information Processing Systems, NIPS, pp. 513–520. MIT Press (2007)

    Google Scholar 

  15. Sun, Q., Chattopadhyay, R., Panchanathan, S., Ye, J.: A two-stage weighting framework for multi-source domain adaptation. In: Proceedings of the Neural Information Processing Systems, NIPS, pp. 505–513 (2011)

    Google Scholar 

  16. Arnold, A., Nallapati, R., Cohen, W.W.: A comparative study of methods for transductive transfer learning. In: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW, pp. 77–82. IEEE Computer Society, Washington (2007)

    Google Scholar 

  17. FarajiDavar, N., deCampos, T., Kittler, J., Yan, F.: Transductive transfer learning for action recognition in tennis games. In: VECTaR Workshop, in Conjunction with ICCV (2011)

    Google Scholar 

  18. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 1187–1192. Morgan Kaufmann Publishers Inc., San Francisco (2009)

    Google Scholar 

  19. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mixture models. Digit. Sig. Process. 10, 19–41 (2000)

    Article  Google Scholar 

  20. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In: Proceedings of the Neural Information Processing Systems, NIPS, pp. 2456–2464 (2011)

    Google Scholar 

  21. Quanz, B., Huan, J., Mishra, M.: Knowledge transfer with low-quality data: a feature extraction issue. In: Abiteboul, S., Bolhm, K., Koch, C., Tan, K. (eds.) Proceedings of the 27th International Conference on Data Engineering (ICDE), pp. 769–779. IEEE Computer Society, Hannover, Germany (2011)

    Google Scholar 

  22. Zhong, E., Fan, W., Peng, J., Zhang, K., Ren, J., Turaga, D.S., Verscheure, O.: Cross domain distribution adaptation via kernel mapping. In: International Conference on Knowledge Discovery and Data mining, KDD, pp. 1027–1036. ACM (2009)

    Google Scholar 

  23. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Infer. 90, 227–244 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cun, Y.L., Boser, B., Denker, J.S., Howard, R.E., Habbard, W., Jackel, L.D., Henderson, D.: Handwritten digit recognition with a back-propagation network. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 2, pp. 396–404. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  25. Nene, S.A., Nayar, S.K., Murase, H.: Columbia university image library COIL-20 (1996). http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php (retrieved 30 June 2014)

  26. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2066–2073 (2012)

    Google Scholar 

  27. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the Neural Information Processing Systems, NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  29. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22, 199–210 (2011)

    Article  Google Scholar 

  30. Si, S., Tao, D., Geng, B.: Bregman divergence-based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 22, 929–942 (2010)

    Article  Google Scholar 

  31. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) Proceedings of the International Conference on Computer Vision, ICCV, pp. 999–1006 (2011)

    Google Scholar 

  32. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: A deep convolutional activation feature for generic visual recognition. Technical report CoRR arXiv:1310.1531, Cornell University Library (2013)

  33. Duan, L., Tsang, I.W., Xu, D., Chua, T.: Domain adaptation from multiple sources via auxiliary classifiers. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML, pp. 289–296. ACM, New York (2009)

    Google Scholar 

  34. Chen, L., Li, W., Xu, D.: Recognizing RGB images by learning from RGB-D data. In: IEEE International Conference on Computer Vision and Pattern Recognition, CVPR (2014)

    Google Scholar 

  35. Gao, J., Fan, W., Jiang, J., Han, J.: Knowledge transfer via multiple model local structure mapping. In: Knowledge Discovery and Data Mining, pp. 283–291 (2008)

    Google Scholar 

Download references

Acknowledgements

We are grateful for the support of EPSRC/dstl contract EP/K014307/1 (Signal processing in a network battlespace) and EPSRC project S3A, EP/L000539/1. During part of the development of this work, TdC had been working in Neil Lawrence’s group at the University of Sheffield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazli Farajidavar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 13 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Farajidavar, N., de Campos, T., Kittler, J. (2015). Transductive Transfer Machine. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics