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Abstract. This work deals with the reconstruction of hand-torn docu-
ments from pairs of aligned fragments. In the first step we use a recent
approach to estimate hypotheses for aligning pieces from a set of maga-
zine pages. We then train a structural support vector machine to determine
the compatibility of previously aligned pieces along their adjacent contour
regions. Based on the output of this discriminative model we induce a rank-
ing among all pairs of pieces, as high compatibility scores often correlate
with spatial configurations found in the original document. To evaluate
our system’s performance we provide a new baseline on a publicly avail-
able benchmark dataset in terms of mean average precision (mAP). With
the (mean) average precision being widely recognized as de facto stan-
dard for evaluation of object detection and retrieval methods, our work is
devoted to establish this performance measure for document reconstruc-
tion to enable a rigorous comparison of different methods.

1 Introduction

Efficient and robust matching of hand-torn document pieces is of great interest in
many scientific disciplines, for instance in the fields of forensics, archaeology, and
criminal investigation. Successfully aligned pieces can be used in many different
scenarios, be it for guiding human users by suggesting partial solutions or for
fully automatic reconstruction. For example, according to [1], the winning tcam
of the 2011 DARPA Shredder Challenge partly relied on automatically generated
piece-pair recommendations that had to be reviewed by team members for final
decision making. While this challenge was focused around extracting information
from shredded documents, there is also a famous example for investigators being
faced with hand-torn documents: The majority of documents abandoned by the
East German secret police in 1989 were simply destroyed by hand, and large
efforts have been made to recover their valuable confidential content.

This paper specifically deals with the problem of reconstructing hand-torn
documents as a two-stage procedure: In the first part (Sect.4) we align pairs of
pieces based on their outer contours. To do so we extend a recent approach [2]
that builds on MSAC [3] (M-estimator SAmple Consensus). We explain how
to determine orientation estimates for pieces from the Fourier transform and
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show how to make use of this prior knowledge in computing alignments. In
the second part (Sect.5) we then focus on the verification of contour regions
that become adjacent through alignments. To validate the compatibility of these
regions, we compare their local visual characteristics in terms of shape, color, and
texture. Our system therefore uses structured output prediction and dynamic
programming to infer optimal sequences of matched contour points.

Our main contributions can be summarized as follows:

e Since our approach employs supervised learning, it provides a well-founded
way to enrich geometric contour representations by content-based features.
Unlike in unsupervised approaches, we can for example integrate color- and
texture information without having to adjust thresholds manually.

e We provide two new baselines on a public dataset [4] in terms of overlap-recall
curves for the a priori alignment step, and mean average precision (mAP)
for the ranking of piece-pairs induced by our structural model. Using these
standard performance measures enables an easily comprehensible evaluation
and may facilitate comparison of different methods.

2 Related Work

A large number of recent work deals with the reconstruction of two-dimensional
objects, for a wide range of applications, e.g., reassembling of jigsaw puzzles [5, 6],
hand-torn documents and photos [4,7-12], or archaeological findings [13,14].

At the core of most approaches is the feature extraction from polygonal
curves that approximate the pieces’ outer contours. One popular approach used
in many works, e.g., [8,10,11], is the turning function [15] proposed by Wolfson. It
allows to represent curves by shape signature strings, which are invariant against
rotation and translation. Because of that, this signature is well suited for sub-
string matching techniques. For partial contour matching in particular, many
approaches [6,10,13,16] use variants of the Smith-Waterman algorithm [17] or
similar dynamic programming methods. However, effectively matching contours
often requires a priori corner detection [10], as this limits the procedure to sub-
segments between two consecutive points with high curvature. Since corners can
be difficult to identify [13] in some settings, our approach relies on a different
partial contour matching approach [2] based on MSAC [3].

To reassemble the intact document layout, pairs of aligned pieces are commo-
nly ranked before being merged. In the approach of da Gama Leitao et al. [13], the
authors compare curvature-encoded fragment outlines by dynamic programming.
Since their approach uses progressively increasing scales of resolution, the overall
computational complexity can be reduced. For each discrete pairing between two
matched outline segments, the authors compute a discriminant value to discard
likely incorrect candidates. A quite different route is taken by Zhu et al. [11],
who aim to find a globally consistent solution to the reconstruction task. After
identifying initial candidate matches based on the turning function, the authors



Evaluation of Discriminative Models for the Reconstruction 673

disambiguate these candidates by considering the spatial compatibility of neigh-
boring matches. To obtain a consistent solution, they use an iterative procedure
that alternates between gradient projection and merging steps. Another app-
roach closely related to our work is that of Stieber et al. [10]. The authors also
apply the Smith-Waterman algorithm to align contour points. However, their
reliance on fixed costs for sequence operations seems to be a weak point. In con-
trast, our system employs supervised learning to obtain the cost model, which
also allows to incorporate shape- and content-based local features seamlessly.

3 Dataset of Hand-Torn Documents

Preprocessing. In this work we use the bdw082010 dataset [4], which consists
of 96 hand-torn document pages that show either pictures, text, or both. Our
preprocessing closely follows [4] to obtain an approximation of each fragment’s
contour: From a binary segmentation mask that identifies the foreground region
of each piece we determine the set of outer contour points P using the algorithm
of Suzuki et al. [18]. Afterwards we apply the Douglas-Peucker algorithm [19]
to find a small subset of support points P = {Py....,p,} C P that constitutes
a less complex description of the piece’s contour. By connecting consecutive
pairs of support points through line segments one finally obtains a polygon that
approximates the exact contour up to a predefined precision.

Ground Truth. As explained in [4] the dataset is partitioned into three disjoint
sets: {train}, {val}, and {test}. After the data preprocessing step, each page
has been put together manually. Hence the layout of each page as well as the
upright orientation of each piece is known. Based on this manual reconstruction,
we call two fragments s and ¢t connected iff four or more support points have
an adjacent counterpart on the other piece. Each such pair of support points
is called an inlier. We found that examples with less than four inliers are only
loosely connected and tend to be negligible for document reconstruction — hence
these examples were left out in our experiments.

Throughout the rest of this work, adjacent contour regions are represented
by intervals of support points, which are denoted by R(s) and R(t). Each of
these intervals contains its inliers as well as all intermediate support points from
its respective polygon. Thus each interval defines a polyline that approximates
a subsegment of the piece’s exact outer contour P. For example, Fig.5 gives a
schematic illustration how inliers and intermediate points between ground truth
intervals R(s) = {i,...,i+b} and R(t) = {j,...,j+4} are used for the extraction
of a training example.

4 Partial Contour Matching for Document Pieces

We define partial contour matching between pieces s and t as the task of identi-
fying contour regions R(s) and R(t) along which those pieces were once adjacent
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Fig. 1. Left: Patches of different sizes are positioned greedily to cover foreground
region I. Right: Below a few highlighted patches we show their power spectral density
(psd). Estimate 0 for the piece’s orientation always stems from a single patch 7, which
is chosen according to Eq. (2).

in the original document. Our method builds on recent work [2] that intro-
duces a variant of MSAC for aligning pairs of fragments. To determine bound-
ary segments where pieces complement each other, the authors create an initial
set of hypotheses (Euclidean transformations) from pairs of candidate inliers.
All hypotheses are then verified in a two-step procedure, to identify the one
alignment that best recovers the pieces’ spatial relationship. The authors show
experimentally that incorporating prior knowledge about the pieces’ orientations
helps to improve alignment results. Besides, discarding inconsistent hypotheses
effectively reduces the search space and hence speeds up alignment.

Since the studies in [2] are limited to a simulated text detector for orienta-
tion assignment, our first contribution is to introduce a method for estimating
orientations in practice. For this purpose we implement the recent approach
of Hollitt and Deeb [20], who estimate an image’s orientation from its Fourier
transform. In Sect. 4.1 we first adapt their method for arbitrarily shaped docu-
ment pieces. Although this approach gives robust estimates in many cases, it is
likely to fail when document pieces convey little or no information about their
dominant orientation. As discussed in Sect. 4.2 we overcome this issue by using
a discriminative model that identifies incorrect estimates. Finally, we explain in
Sect. 4.3 how this classifier is integrated into the alignment procedure.

4.1 Orientation Estimate from Fourier Transform

We briefly recap the technique of Hollitt and Deeb [20] to estimate the dominant
orientation of an image. The idea is to find the direction along which the image
shows the greatest variation in intensity values, because usually, its upright direc-
tion is either equivalent or perpendicular to that direction. Instead of working in
the spatial domain, the authors apply a Fourier transform on the image to find
its dominant orientation in the frequency domain. Therefore let I(xz,y) € N>
denote an image, and let (FI)(&5,&,) € C" ™ be its Fourier transform. Instead
of &, &y, which are conjugate to axes x and y, one can equivalently consider the
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Fourier transform to be a function of polar coordinates £, {. To find the direction
of strongest spatial variation we sum over the power spectral density (psd) along 0:

9(0;: 1) = Y |(FDm (& 0) (1)
€

The subscript in (F1),, refers to a masked output after applying a bandpass
filter. By filtering high frequencies we avoid a bias for diagonal orientations. On
the other hand, ignoring very low frequencies eliminates the impact of illumina-
tion changes.

Aside from bandpass filtering we also need to account for the fact that we are
dealing with arbitarily shaped pieces. First of all, we need to ignore strong gra-
dients at the piece’s outer contour, which are uninformative for its true upright
orientation. On the other hand, some foreground regions may be detrimental for
orientation estimation, e.g., if the foreground region partially covers a natural
image. To choose an optimal foreground subregion we hence use a sliding win-
dow approach to position patches of varying size. As shown in Fig. 1, each patch
covers a square region of interest on foreground I. We greedily position patches
[r;(I)]i=1...n one by one, from large to small. Before a new patch is placed, we ver-
ify that its mutual overlap with any of the previously positioned patches is not
too high. Finally we compute the Fourier transform, separately for each patch,
and choose the orientation that shows the strongest spatial variation among all
orientations and patches:

(0,7) = argmax { g(0: (1) / B } 2)
9,7“7; (I)
In the above equation, bandwidth B; of the bandpass filter for the i-th patch
is used for normalization to avoid a systematic bias for larger patches.

4.2 A Discriminative Model for Orientation Estimates

Since the method discussed so far always yields an orientation estimate, we now
turn to learn a discriminative model (SVM) to decide whether an estimate should
be trusted or needs to be invalidated.

We found that a strong peak g(é; 7) is indicative for a robust estimate and
hence should not be discarded. In contrast, we need to reject ambiguous orien-
tation estimates in cases where multiple peaks occur (e.g., for textured image
regions). We formalize this idea by sampling sums of spectral densities along
different directions 6 € [0 — 45°,0 + 45°] in steps of w = 0.5°, using Eq. (1). This
yields a 181-dimensional descriptor:

90,:[90 £ 0] = g(0 £ iw;7) / g(0;7), Vi € {0,...,90} (3)

By centering the descriptor around # we make it comparable with descrip-
tors of other patches, because they all have their peak at the same position.
Furthermore, we normalize it by g(0_; T) to obtain a characterization of the rel-
ative strength of the peak. To gain partial invariance against shifts we further
aggregate descriptor values into blocks of 5°, 15°, and 45°, respectively. For each
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(a)

Fig. 2. Left: The minimal relative error €; (see Eq. (4)) is computed from orientation
estimate § (modulo 90°) and true orientation §*. Right: Orientation estimates for two
fragments s and t. If both estimates 0, and 6; were approximately correct, one could
restrict the orientation domain to only four intervals during alignment.

of these 2 x (9 + 3 + 1) blocks we compute its mean and standard deviation
and append these values to 19,,;. Note that all the information needed is readily
available from the spectral densities computed in Eq.(2). Finally, to comple-
ment this representation from the frequency domain, we extract four Haralick
texture features [21] (angular second moment, contrast, correlation, and entropy)
on patch 7 and add them to our final descriptor of (181 + 26 + 4) values.

To distinguish correct from incorrect orientation estimates, we then train a
linear support vector machine using SVMLight [22]. For this purpose we catego-
rize patches into positive and negative training examples. Therefore we compute
orientations 6 of randomly oriented pieces, according to Eq. (2), and keep track
of the error regarding their ideal upright directions 8* that are known from the
ground truth. Since our approach works in the frequency domain, 8 often fails
to give a piece’s upright direction; however, it may still identify its correct ori-
entation. We note that in some cases, straight lines in vertical direction can
also cause the estimate to be correct modulo 90°. For this reason we categorize
training examples based on their minimal relative error, which we define by:

eg = min {9* — 0+ k-90°)} € [0°, 45°] (4)

It becomes clear from Fig. 2a that this relative error is zero only if orientation
estimate 6 is correct modulo 90°. We found that our orientation estimates are
very precise for the majority of examples. Hence if ¢ is less than 2° we consider
the descriptor of patch 7 to be a positive example — otherwise it yields a negative
example. Next we discuss different strategies how to incorporate our orientation
estimates during alignment, and explain how to adjust the decision threshold of
our SVM by performing cross-validation on pairwise examples.

4.3 Experiments

Given two pieces s and t that were digitized with unknown orientation, we first
estimate their orientations (0s,6;) to bring them in presumably upright direc-
tion. We denote these rotated fragments by 5 and ¢. To actually align the rectified
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Fig. 3. Left: Evaluation in terms of min-overlap vs. recall. Reducing the search space
selectively (dft w/ svm) gives the overall best performance. Right: Recall evaluated for
different levels of connectivity, at a fixed min-overlap of 0.5. The white bar represents
all examples within each connectivity group and hence upper bounds the recall to 1.0.

fragments according to [2], we hold 5 fixed, while computing an Euclidean trans-
formation h that aligns the second piece onto the first. This aligned version of ¢
is in the following referred to by h(t). We now want to discuss different strategies
for computing hypothesis h:

Baseline (Fixed Orientations). As baseline for our experiments we compute
the best possible hypothesis by treating the upright orientation of both pieces as
known and fixed. Since we use the true orientations from ground truth we only
have to determine an optimal translation for A.

Unconstrained. As illustrated by the broken circle in Fig. 2b, not using any
orientation estimate comes down to considering all relative orientations between
pieces. While this approach ensures that the correct hypothesis can not be falsely
discarded, it is also computationally very expensive.

Use Estimates from DFT. To accelerate the computation of h, the key idea
put forward in [2] is to discard transformations for which the relative orienta-
tion between 5 and h(t) is inconsistent with their estimate. Applying this simple
rule speeds up the alignment process significantly due to the limited number
of hypotheses that need to be evaluated. As illustrated in Fig. 2b, trusting the
estimates (mod. 90°) narrows the search range to only four small intervals. Obvi-
ously, this inevitably yields an incorrect result if either estimate is incorrect.

Conditionally Use Estimates from DFT. To get the best of both worlds, we
reduce the search space selectively, e.g., when clear lines or text are present on
both pieces. Whenever the estimates for both pieces are predicted to be correct
by our SVM model, we can safely shrink the hypothesis space as explained above.
Otherwise, if either of the two estimates is presumably incorrect (e.g., for pieces
showing natural images), we perform an unconstrained search instead.

To optimize prediction performance, we perform cross-validation on all pair-
wise examples from {train}+{val}. If we encounter pieces with correct estimates,
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(a) correct (b) correct (c) correct (d) incorrect

Fig. 4. Left: In (a)—(c) we show aligned pieces with increasing connectivity from left to
right. Adjacent contour regions (green) have strong mutual overlap with their ground
truth segments (min-overlap close to 1). Right: The pieces in (d) were not connected
in the document and thus have 0% connectivity (Color figure online).

we want the SVM to give a positive prediction for both. We call this a joint true
positive example. A joint false positive on the other hand is if any of the two
examples is assigned an incorrect estimate, but the SVM still classifies both as
positive. Based on these outcomes we tune the model threshold to optimize the
F5 score, which is a weighted average of precision and recall. While 8=1 is the
harmonic mean of the two, we use 3=0.5 to attach a higher importance to pre-
cision than recall. We feel that precision is more important, because joint false
positives likely yield incorrect alignments. After adjusting the threshold, we re-
train the model on the full {train}+{val} datasplit and report performances on
{test}: There we achieve a I} 5 score of 0.9155, which corresponds to a precision
of 92.0 % and recall of 89.7 %. Using the so chosen threshold effectively narrows
the search from examining all relative orientations (unconstrained) to only four
intervals (dft) for 66.9 % of all pairwise examples.

Conclusions and Results. To assess the quality of alignments we follow the
methodology in [2] and report performances in terms of min-overlap vs. recall.
The min-overlap for two aligned pieces takes on values from [0, 1] that reflect
how accurately two regions R(5) and R(h(t)) match with their ground truth
segments. Formally, the min-overlap is defined as

I, N, l}mltJ )

min-overlap(ls, ;) \js 0L o
where [, and [; are the pieces’ adjacent line segments stemming from ground
truth intervals R(s) and R(t), and I, and [, are the polylines associated with
predictions R(S) and R(h(t)), respectively. As illustrated in Fig.4(a)—(c), cor-
rectly aligned pieces yield adjacent contour regions (green) having high mutual
overlap with the annotated segments. On the other hand, Fig. 4(d) shows that
originally disconnected pieces always score min-overlap 0, because Iy = I; = ().
In Fig. 3a we finally plot overlap-recall curves for our different search strate-
gies. We note that an unconstrained search gives better results than blindly rely-
ing on estimates from the Fourier transform (dft). However, using conditional
estimates (dft w/ svm) improves the area under curve from 72.9% to 77.7 %, at
a maximum recall of 82.9%. We achieve comparable results to those reported
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in [2], despite not relying on a simulated text detector. Since the dataset contains
a substantial number of pieces that lack text and straight lines, assuming reliable
orientation estimates for those pieces would be an overly idealized assumption.
In these situations our SVM proves to be very reliable in deciding whether or
not to shrink the search space, depending on the pieces at hand.

In our second experiment we evaluate recall for different levels of connectivity.
In [2] the connectivity of two pieces is defined as the length of their adjacent
boundary segments relative to their overall contour lengths. As common sense
suggests, correctly aligning pieces with low connectivity (Fig.4a) is inherently
more difficult than others sharing large parts of their boundaries (Fig. 4c). This
claim is substantiated by the plot in Fig.3b, which shows that our alignment
mostly fails when facing low-connectivity examples (0 %—18 %). In this scenario,
using the SVM clearly improves the recall over an unconstrained search. For
high-connectivity examples (18 %—45 %), the SVM still performs on a par, despite
being much faster due to the inherently smaller hypothesis space.

5 Ranking Sequences by Structured Output Prediction

To quantify the compatibility of adjacent contour regions we learn a stuctured
prediction model that incorporates contour information as well as content-based
local features. In Sects.5.1 and 5.2 we formulate our prediction problem and
give details about the model. Afterwards in Sect.5.3 we briefly introduce the
dynamic programming algorithm used for solving the inference task at training-
and test time. Finally in Sect. 5.4 we discuss how to train the structural support
vector machine, before concluding the paper with an evaluation in Sect. 5.5.

5.1 Structured Output Prediction

As introduced before, we denote by 3, h(f) two aligned fragments that become
adjacent along intervals R(3) and R(h(t)). Motivated by the protein alignment
model of Yu et al. [23], let us first define a sequence y € ) between two contour
regions as list of subsequent operations y = (y!,. .., yl¥). Each of these elements
corresponds to exactly one operation between the two pieces. In the ideal case,
a sequence is only composed of matches between support points, i.e., a point
from the first polygon becomes associated with one from the second polygon. To
score any sequence defined over output space ) we next define a linear function

2w (y; R(5), R(h(1))) = w - ¥(y; R(5), R(A(1))) , (6)

in which [-] denotes the dot product, w is the cost model that is to be learned,
and ¥ (y; R(5), R(h(t))) is a joint feature vector of fixed size that describes the
structured output y on intervals R(5), R(h(t)). To rank hypothesis h that aligns
piece t onto s, we aim to find the most promising sequence y* among all possible
sequences along the contour regions:

y" = argmax { 2 (§: B(3), R(h(D)) } (7)
gey



680 F. Richter et al.

R(s) R(t) P(y') Y(y?) vy v°) YY)
i |OH----1O|J o ] @
Lo <
i+1|O-----FO |j+1 + +1 0+ + = £
o g
7 Q| -
i O A Lo .
o | = 5
- Fo SEERIRERE
i+5|Or----O|i+4 Y(y°) g
T T yt=(i"5,2,1)

Fig. 5. Left: Schematic illustration of a ground truth sequence of length five, with four
match operations (green). In between, gap Y3 (red) spans over two support points on
R(s) and one point on R(t), respectively. According to Eq. (8), descriptors for individual
operations sum up to the sequence’s descriptor, as illustrated on the righthand side
(Color figure online).

As we will see shortly in Sect. 5.3, we are able to find this optimal sequence
regarding model w by dynamic programming.

5.2 Decomposition of Sequences into Operations

We begin by motivating the match operation, which associates one support point
from piece s with another on piece t. For instance, we write y* = (i’,5,0,0) to
associate support point i’ € R(s) with j° € R(t). The latter two 0’s indicate that
a match operation does not affect any points other than i’ and j’. Intuitively, we
only want to create a match if ' has been adjacent to 7' in the original document
(i.c., an inlier). When dealing with real-world documents however, picces do not
always have well aligned support points.

To account for this we complement matches with gap operations, which allow
to skip (possibly multiple) support points on either of the two fragments. A gap is
denoted by y* = (i, 5/, 5, ;) to indicate that immediately before i’ and j', §, and
d; many points are omitted, respectively. Following [23] we define a joint feature
descriptor that is linear in its operations. The descriptor for the entire sequence
is decomposed into the sum over descriptors 1 (y*) for individual operations:

|yl

W(y) = Z"/’(yk)? 1 (8)
k=1

A constant 1 is appended for learning a global bias in our model. For nota-
tional simplicity we omit contour ranges, e.g., by writing ¥ (y) = ¥(y; R(s), R(t))
in short. An example for a sequence that is decomposed into its individual oper-
ations is given in Fig.5. Since one operation can either be a match or a gap,
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it is possible to split the descriptor from Eq. (8) into blocks. Using our simpli-
fied notation we write ¥ (y*) = [¢,,(¥"), ¥ (y*)], where subscripts in %, and
Y refer to match and gap, respectively. Note that depending on the operation,
only one descriptor is set, while the other one is initialized to 0. Each descriptor
reflects the compatibility of only those parts of R(s) and R(t) that are affected
by the respective operation. Analogous to the descriptor, our model decomposes
into w = [wy, we, wp|. Due to space limitations we keep the discussion about
implementation details short:

Match Operation. The descriptor for a match operation y* = (i',5’,0,0)
describes the compatibility of support point i’ on R(s) to j' on R(t). In Eq. (9)
the first two elements introduce an absolute- and a relative offset. The latter
is set to the reciprocal of the minimum over contour lengths R, = |R(s)| and
R; = |R(t)|. This effectively rewards matches between short contour intervals
stronger than for long ones.

The remaining component dy;(y*) introduces a set of dissimilarities com-
puted from a multimodal feature representation. These values can be interpreted
as the inherent cost imposed on matching support points. From a geometric per-
spective, we determine the points’ dissimilarity in terms of their local polygonal
approximation (line length and enclosed angle), as well as their spatial proxim-
ity after alignment through hypothesis hA. In addition we use three content-based
features, introduced in [4], to represent shape, color and texture within the vicin-
ity around each point. For each feature channel we compute a dissimilarity value
from the feature descriptors. All dissimilarities' are stacked into vector d M(yk'),
which is finally appended to the offsets to give our match descriptor:

P (y") = [1,1/|Rs, Re). —dni (y")] (9)

Gap Operation. Gaps allow us to deal with noise in the contour approximation.
The principle idea is that each gap operation y* = (i, 5',d,,9;) is delimited by
two matches. For example, the gap y® in Fig.5 is immediately followed by a
match y*+! = (' + 1,5’ +1,0,0), and it is preceded by a second match y*~! =
(' — 0s,7" — 9;,0,0). Analogous to a match, the first two values in Eq. (10)
introduce offsets to learn a flat penalty. Since gaps should always have a negative
contribution to the sequence score, those offsets have a negative sign.

In the second component we want to penalize long gaps and those that are
uneven in size (in terms of d; and &;). Therefore we introduce two dissimilarity
values 05 +3d; and [0, 04 | — | Js, 0¢ | . Furthermore, we add dissimilarities to encode
the divergence of the pieces’ polygon approximations along the gap regions. Once
again, all dissimilarities ! are combined into a vector dg(y*). Our gap descriptor
is obtained by stacking the dissimilarity vector onto the gap penalty offsets:

Yo (y*) = [-1,—1/|Rs, Re), —da (y")] (10)

! Dissimilarities are computed from feature-dependent kernel functions that yield pos-
itive real numbers within comparable value ranges.
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5.3 Inference via Dynamic Programming

Assuming two adjacent contour regions R(s) and R(t) we now introduce a
modified variant of the Smith-Waterman algorithm [17] to determine the best
sequence along these intervals. We found those regions R(s) = {i,...,i+ Rs—1}
and R(t) = {j,...,j + R: — 1} to provide very reliable estimates for delimiting
sequences — hence we restrict each sequence to start with a match in (4, 7) and
end with a match in (i + Ry — 1,7 + Ry — 1).

Since each sequence is decomposable into individual operations, one can
incrementally extend sequence prefixes into longer sequences. Therefore we
append only one operation at a time to an existing prefix. By p[i’, j'] we refer to
the score of the prefix that starts in (¢,j) and ends in (¢’,5’). To compute this
score one has to choose the operation that yields the overall highest score for
pli’, 7']. That is, we either append a match operation with score

p[i/,j/] = p[’i/ - 17j/ - 1] T wn - ’(bM((i/,j/,O,O)) ) (11)
or else introduce a gap if
pli's ') = max {pli' = 8.5’ = &) + w - Y0500 (12)

is a higher score. By performing a traceback from the last to the first match we
get a sequence that fully extends over intervals R(s) and R(t¢). Note that the
global bias wp has to be added only once for the first match in (4, 7) as each
prefix builds upon this initial operation.

5.4 Learning Problem

Learning cost model w is treated as regularized empirical risk minimization
problem. Our training set {(x1,21),..., (N, 2N )} consists of pairs of fragments
x; = (si,t;) and annotations z; = (l;,y;). Labels [; € {—1,+1} are needed to
distinguish positive from negative examples. For positive (connected) examples,
their correct sequences y, are part of ground truth data. Pieces from negative
examples on the other hand do not share a common border in the original doc-
ument — thus we align them once in advance to also infer non-empty sequences.
Using the hinge loss we obtain the following optimization problem:

argmin {% w]|® + C’;EZ} (13)

w,£; >0
s.t. Va,; € Ppos Tw - !p(yz’ R(Si), R(tz)) > +1 - &
V&, € Ppeg, Vg, w-¥(4,;; R(5:), R(h(t;))) < —1+¢&
Wp, WG > 0
This formulation establishes one margin constraint on each example, whose
violation yields a positive slack value §; that is penalized in the objective func-

tion. Parameter C balances these training errors versus the model’s capability
of generalizing beyond training examples.
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Table 1. Left: Performance evaluation for different feature combinations. Right: Eval-
uation of the ranking capabilities of our structural SVM in terms of (i) mean average
precision (mAP), and (ii) mean accumulated cost (mAC) from [4]. See text for details.

Feature evaluation Ranking performance
16 pieces 16 pieces | 24 pieces?® | 32 pieces®

mAP (all features) 0.7906 mAP 0.7906 0.6626 0.5835
mAP (base) 0.7252 mAP (w/ pruning) 0.9903 0.8962 0.8740
mAP (base w/ shape) 0.7258 mAP (w/ pruning + overlap) | 0.9917 0.9601 0.9462
mAP (base w/ color) 0.7754 mAC (w/ pruning) 0.0113 0.1193 0.1092
mAP (base w/ texture) | 0.7895 mAC (w/ pruning + overlap) | 0.0113 0.0493 0.0350

mAP [4] 0.7341 | 0.5932 0.5374

mAC [4] 0.0109 0.0380 0.0378

2For 24 and 32 pieces the bdw082010 test set contains only 12 pages.

To train our model we use the stochastic gradient descent solver from [24].
After obtaining an initial model from a moderate number of examples, we itera-
tively infer new hard negative examples using the dynamic programming method
introduced in Sect. 5.3. We continue to re-train the model from a cache of hard
examples until either (i) a fixed number of iterations is reached, or (ii) no new
hard negative examples can be found.

5.5 Experiments

Despite the interest of researchers on this topic, related work reporting quantita-
tive results on a standardized dataset is sparse. Thus we provide a reproducible
baseline on the publically available bdw082010 dataset (see Sect. 3). The test set
of this dataset consists of M = 48 magazine pages, which have been torn into
N pieces each. Since each page contributes (N2 — N)/2 unique piece pairs, the
test set consists of M - (N2 —N)/2 examples in total. We first align each pair
of pieces and then assign a compatibility score (see Eq.(6)) according to the
predicted optimal sequence. An example is positive if its pieces were connected
in the original document, and only aligned pieces with min-overlap 0.5 or higher
are considered to be true positives. For our experiments we treat each individual
page as “query”, and examples from that very page are ranked according to their
scores. From the resulting ranked lists we compute the average precision (AP)
for each page, and finally the mean average precision (mAP) over the entire test
set with 48 queries in total. We argue that the mAP is indicative for the per-
formance of many approaches [4,10-12], as they all rely on successively merging
the most compatible pieces.

In our first set of experiments we evaluate the importance of content-based
features. Using only information from the pieces’ polygons in our match descrip-
tor (Eq. (9)) yields 72.5 % mAP. Next we augment this basic representation with
either shape-, color-, or texture information. As can be seen in Table 1 (left), we
do not gain much by adding shape information. This is because alignments are
very accurate and hence shape dissimilarities add only little discriminativeness.
However, using color or texture information results in substantial performance
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Fig. 6. Examples for pages that are reconstructed only from pairwise alignments.

improvements to 77.5% and 78.9%, respectively. A combination of all local
features gives the overall best performance with 79.1 % mAP. As can also be
seen from the table, the mAP declines with an increasing number of pieces per
page. This comes at no surprise, as the number of negative (disconnected) exam-
ples grows quadratically, while the number of positive examples only increases
approximately linearly with IN. As summarized in Table 1, we outperform pre-
vious work [4] on this dataset in terms of mAP, for all degrees of fragmentation.
In the second set of experiments we analyze how mAP relates to the quality of
individually reconstructed pages. As explained in [4], the layout of each page can
be recovered by constructing a spanning tree from alignments (edges) between
pairs of pieces (nodes). Using our compatibility score for the edge weights we
create a maximum spanning tree using Kruskal’s algorithm [25]. To reconstruct
the document we retain only those alignments that correspond to spanning tree
edges. This effectively prunes all but N—1 alignments, hence why the results are
named mAP (w /pruning) in Table 1. Again we compute the AP, separately for
each page, and report the mAP over all 48 pages. Using all features combined
we achieve 99.0 % for N =16, which means that only very few alignments were
false positives. In Fig.6 we give examples for pages that were reconstructed
very accurately just from local alignments between pairs of pieces. To further
improve our reconstruction results (mAP w/ pruning + overlap), we augment our
spanning tree algorithm with a geometric verification that invalidates alignments
resulting in overlapping pieces. While its effect is less pronounced for 16 pieces
per page, we note that for V=32 the mAP increases from 87.4 % to 94.6 %.
Finally, we report results regarding a complementary performance measure
that was put forward with the release of the dataset [4]. The mAC in Table 1
corresponds to the median over the mean accumulated costs per page. Intu-
itively, this value is an indicator for the effort of repositioning pieces within
an existing solution, according to the ground truth page layout. Despite that
our preliminary postprocessing does not yet account for evidence from previous
alignments, our approach gives competitive results compared to those obtained
with a revised implementation of [4]. Although differences in terms of mAC are
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seemingly insignificant, a comparison by mAP clearly proves the superiority of
our method.

We conclude that mAP makes for a rigorous and transparent comparison of
results, because prediction outcomes (true positives and false positives) have an
immediate interpretation, just as for object detection and retrieval methods.
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