Skip to main content

Enhanced Laplacian Group Sparse Learning with Lifespan Outlier Rejection for Visual Tracking

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

  • 1617 Accesses

Abstract

Recently, sparse based learning methods have attracted much attention in robust visual tracking due to their effectiveness and promising tracking results. By representing the target object sparsely, utilising only a few adaptive dictionary templates, in this paper, we introduce a new particle filter based tracking method, in which we aim to capture the underlying structure among the particle samples using the proposed similarity graph in a Laplacian group sparse framework, such that the tracking results can be improved. Furthermore, in our tracker, particles contribute with different probabilities in the tracking result with respect to their relative positions in a given frame in regard to the current target object location. In addition, since the new target object can be well modelled by the most recent tracking results, we prefer to utilise the particle samples that are highly associated to the preceding tracking results. We demonstrate that the proposed formulation can be efficiently solved using the Accelerated Proximal method with just a small number of iterations. The proposed approach has been extensively evaluated on 12 challenging video sequences. Experimental results compared to the state-of-the-art methods demonstrate the merits of the proposed tracker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(m=1024-dim\) Gray scale based features.

  2. 2.

    \(\mu _{k}\) is conventionally set to \(\frac{2}{k+1}\).

  3. 3.

    We denote \(\widetilde{c}_{i}\) as a discriminative feature, then we build a similarity graph by considering each point as a vertex and assigning the connection weight between the node \(i\) and \(j\) as \(\left| \widetilde{c}_{ij} \right| \).

  4. 4.

    We consider every \(n=5\) frames.

  5. 5.

    This is the element-wise product of two (\(1 \times N\)) matrices. \(N\) is the number of sampled particles.

  6. 6.

    https://sites.google.com/site/trackerbenchmark/benchmarks/v10 .

References

  1. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2259–2272 (2011)

    Article  Google Scholar 

  2. Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient ? 1 tracker with occlusion detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1257–1264. IEEE (2011)

    Google Scholar 

  3. Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 329–342. Springer, Heidelberg (1996)

    Google Scholar 

  4. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–577 (2003)

    Article  Google Scholar 

  5. Yang, M., Wu, Y., Hua, G.: Context-aware visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1195–1209 (2009)

    Article  Google Scholar 

  6. Adam, A., Rivlin, E.: Robust fragments-based tracking using the integral histogram. In: Computer Vision and Pattern Recognition (CVPR), pp. 798–805 (2006)

    Google Scholar 

  7. Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77, 125–141 (2008)

    Article  Google Scholar 

  8. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1269–1276. IEEE (2010)

    Google Scholar 

  9. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via online boosting. In: British Machine Vision Conference (BMVC), pp. 47–56 (2006)

    Google Scholar 

  10. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29, 261–271 (2007)

    Article  Google Scholar 

  11. Liu, R., Cheng, J., Lu, H.: A robust boosting tracker with minimum error bound in a co-training framework. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1459–1466. IEEE (2009)

    Google Scholar 

  12. Jiang, N., Liu, W., Wu, Y.: Adaptive and discriminative metric differential tracking. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1161–1168. IEEE (2011)

    Google Scholar 

  13. Babenko, B., Yang, M., Belongie, S.: Visual tracking with online multiple instance learning. In: Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  14. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2042–2049. IEEE (2012)

    Google Scholar 

  15. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vis. 101, 367–383 (2013)

    Article  MathSciNet  Google Scholar 

  16. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2765–2781 (2013)

    Article  Google Scholar 

  17. Gao, S., Tsang, I.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 92–104 (2013)

    Article  Google Scholar 

  18. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Low-rank sparse learning for robust visual tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 470–484. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270. IEEE (2011)

    Google Scholar 

  22. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1619–1632 (2011)

    Article  Google Scholar 

  24. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1910–1917. IEEE (2012)

    Google Scholar 

  25. Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: bootstrapping binary classifiers by structural constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2010)

    Google Scholar 

  26. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. IEEE (2012)

    Google Scholar 

  27. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1838–1845. IEEE (2012)

    Google Scholar 

  28. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Bozorgtabar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (mp4 20,153 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bozorgtabar, B., Goecke, R. (2015). Enhanced Laplacian Group Sparse Learning with Lifespan Outlier Rejection for Visual Tracking. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics