Skip to main content

Context Based Re-ranking for Object Retrieval

  • Conference paper
  • First Online:
Computer Vision – ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Included in the following conference series:

  • 2041 Accesses

Abstract

We propose a simple but effective re-ranking method for improving the results of object retrieval. Our method considers the contextual information embedded in a dataset. This is based on the observation that if there are multiple images containing the same object in a dataset, then these images can often be grouped into clusters. We make the following two contributions. Firstly, we gain this contextual information by a random dimension partition of the dataset. This enables online query model expansion if needed. Secondly, we use the collected contextual information to refine the initial retrieval results by taking into account the context in which each retrieved image occurs. Experimental results on several datasets demonstrate the effectiveness of our method in both accuracy and computation cost: our method refines retrieval results without relying on low-level feature matching or re-issuing the query.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  2. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of International Conference on Computer Vision, pp. 1470–1477 (2003)

    Google Scholar 

  3. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2161–2168 (2006)

    Google Scholar 

  4. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comp. Vis. 87, 316–336 (2010)

    Article  Google Scholar 

  6. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comp. Vis. 65, 43–72 (2005)

    Article  Google Scholar 

  7. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  8. Mikulík, A., Perdoch, M., Chum, O., Matas, J.: Learning a fine vocabulary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  10. Turcot, P., Lowe, D.: Better matching with fewer features: The selection of useful features in large database recognition problems. In: ICCV Workshop on Emergent Issues in Large Amounts of Visual Data, pp. 2109–2116 (2009)

    Google Scholar 

  11. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  12. Qin, D., Wengert, C., Van Gool, L.: Query adaptive similarity for large scale object retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2013)

    Google Scholar 

  13. Qin, D., Gammeter, S., Bossard, L., Quack, T., van Gool, L.: Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  14. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: A cluster ensemble approach. In: Proceedings of International Conference on Machine Learning, vol. 3, pp. 186–193 (2003)

    Google Scholar 

  15. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  16. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall ii: Query expansion revisited. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  17. Guimarães Pedronette, D.C., da S. Torres, R.: Image re-ranking and rank aggregation based on similarity of ranked lists. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 369–376. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Chen, Y., Li, X., Dick, A., Hill, R.: Ranking consistency for image matching and object retrieval. Pattern Recogn. 47, 1349–1360 (2014)

    Article  Google Scholar 

  19. Philbin, J., Sivic, J., Zisserman, A.: Geometric latent dirichlet allocation on a matching graph for large-scale image datasets. Int. J. Comp. Vis. 95, 138–153 (2011)

    Article  MathSciNet  Google Scholar 

  20. Chen, Y., Dick, A., van den Hengel, A.: Image retrieval with a visual thesaurus. In: 2010 International Conference on Digital Image Computing: Techniques and Applications, pp. 8–14 (2010)

    Google Scholar 

  21. Chum, O., Philbin, J., Zisserman, A.: Near duplicate image detection: min-hash and tf-idf weighting. In: Proceedings of the British Machine Vision Conference, vol. 3, p. 4 (2008)

    Google Scholar 

  22. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  23. http://www.robots.ox.ac.uk/~vgg/data/

  24. http://press.liacs.nl/mirflickr/dlform.php

  25. http://www.robots.ox.ac.uk/~vgg/software/fastcluster/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, Y., Dick, A., Li, X., Hill, R. (2015). Context Based Re-ranking for Object Retrieval. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics