Skip to main content

Asymmetric Feature Representation for Object Recognition in Client Server System

  • Conference paper
  • First Online:
Computer Vision – ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Included in the following conference series:

  • 2002 Accesses

Abstract

This paper proposes asymmetric feature representation and efficient fitting feature spaces for object recognition in client server system. We focus on the fact that the server-side has more sufficient memory and computation power compared to the client-side. Although local descriptors must be compressed on the client-side due to the narrow bandwidth of the Internet, feature vector compression on the server-side is not always necessary. Therefore, we propose asymmetric feature representation for descriptor matching. Our method is characterized by the following three factors. The first is asymmetric feature representation between client- and server-side. Although the binary hashing function causes quantization errors due to the computation of the sgn function \((\cdot )\), which binarizes a real value into \(\{1,-1\}\), such errors only occur on the client-side. As a result, performance degradation is suppressed while the volume of data traffic is reduced. The second is scale optimization to fit two different feature spaces. The third is fast implementation of distance computation based on real-vector decomposition. We can compute efficiently the squared Euclidean distance between the binary code and the real vector. Experimental results revealed that the proposed method helps reduce data traffic while maintaining the object retrieval performance of a client server system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, as with [6], a binary code is expressed by \( \{-1, 1\}\) instead of \(\{0, 1\}\) in order to simplify the mathematical expressions.

  2. 2.

    In many cases [6, 1113, 15, 19], \(f(\cdot )\) is an identity function.

  3. 3.

    Before the local features are converted, they are mean-centered by using an average descriptor which is computed from training samples.

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  2. Takacs, G., Chandrasekhar, V., Tsai, S., Chen, D., Grzeszczuk, R., Girod, B.: Unified real-time tracking and recognition with rotation-invariant fast features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  3. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  5. Chandrasekhar, V., Takacs, G., Reznik, Y., Grzeszczuk, R., Girod, B.: Compressed histogram of gradients: A low-bitrate descriptor. Int. J. Comput. Vis. 96(3), 384–399 (2011)

    Article  Google Scholar 

  6. Gong, Y., Lazebnik, S.: Iterative quantization : A procrustean approach to learning binary codes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  7. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: Computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1281–1298 (2012)

    Article  Google Scholar 

  8. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  9. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  10. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast retina keypoint. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  11. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  12. Li, P., Hastie, T.J., Church, K.W.: Very Sparse Random Projections. In: International Conference on Knowledge Discovery and Data Mining (2006)

    Google Scholar 

  13. Ambai, M., Yoshida, Y.: CARD: Compact and real-time descriptors. In: IEEE International Conference on Computer Vision, pp. 97–104 (2011)

    Google Scholar 

  14. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Neural Information Processing Systems, pp. 1753–1760 (2008)

    Google Scholar 

  15. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  16. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, in conjunction European Conference on Computer Vision (2004)

    Google Scholar 

  17. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3304–3311 (2010)

    Google Scholar 

  18. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  19. Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 340–353. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Daume III, H.: Frustratingly easy domain adaptation. In: Annual Meeting of the Association of Computational Linguistics, pp. 256–263 (2007)

    Google Scholar 

  21. Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via auxiliary classifiers. In: Annual International Conference on Machine Learning, pp. 289–296 (2009)

    Google Scholar 

  22. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: International Conference on Multimedia, pp. 188–197 (2007)

    Google Scholar 

  23. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Geng, B., Tao, D., Xu, C.: Daml : Domain adaptation metric learning. IEEE Trans. Image Process. 20, 2980–2989 (2011)

    Article  MathSciNet  Google Scholar 

  25. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1785–1792 (2011)

    Google Scholar 

  26. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: International Conference on Machine Learning, pp. 209–216 (2007)

    Google Scholar 

  27. Hare, S., Saffari, A., Torr, P.H.S.: Efficient online structured output learning for keypoint-based object tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1894–1901 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yamauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yamauchi, Y., Ambai, M., Sato, I., Yoshida, Y., Fujiyoshi, H., Yamashita, T. (2015). Asymmetric Feature Representation for Object Recognition in Client Server System. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics