Skip to main content

Can Visual Recognition Benefit from Auxiliary Information in Training?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9003))

Abstract

We examine an under-explored visual recognition problem, where we have a main view along with an auxiliary view of visual information present in the training data, but merely the main view is available in the test data. To effectively leverage the auxiliary view to train a stronger classifier, we propose a collaborative auxiliary learning framework based on a new discriminative canonical correlation analysis. This framework reveals a common semantic space shared across both views through enforcing a series of nonlinear projections. Such projections automatically embed the discriminative cues hidden in both views into the common space, and better visual recognition is thus achieved on the test data that stems from only the main view. The efficacy of our proposed auxiliary learning approach is demonstrated through three challenging visual recognition tasks with different kinds of auxiliary information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that Eq. (5) is a linear version of Eq. (7) and has a very similar solution. For conciseness, the solution to Eq. (5) is omitted.

  2. 2.

    The original form of SVM2K is not directly applicable to the missing view problem.

References

  1. Quanz, B., Huan, J.: Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1327–1336. ACM (2009)

    Google Scholar 

  2. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 209–216. ACM (2007)

    Google Scholar 

  3. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1785–1792. IEEE (2011)

    Google Scholar 

  5. Farquhar, J., Hardoon, D., Meng, H., Shawe-taylor, J.S., Szedmak, S.: Two view learning: Svm-2k, theory and practice. In: Advances in Neural Information Processing Systems, pp. 355–362 (2005)

    Google Scholar 

  6. Zhang, D., He, J., Liu, Y., Si, L., Lawrence, R.D.: Multi-view transfer learning with a large margin approach. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1208–1216 (2011)

    Google Scholar 

  7. Qi, Z., Yang, M., Zhang, Z.M., Zhang, Z.: Mining noisy tagging from multi-label space. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 1925–1929. ACM (2012)

    Google Scholar 

  8. Vapnik, V., Vashist, A., Pavlovitch, N.: Learning using hidden information (learning with teacher). In: International Joint Conference on Neural Networks, IJCNN 2009, pp. 3188–3195. IEEE (2009)

    Google Scholar 

  9. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73, 243–272 (2008)

    Article  Google Scholar 

  10. Tenenhaus, A., Tenenhaus, M.: Regularized generalized canonical correlation analysis. Psychometrika 76, 257–284 (2011)

    Article  MathSciNet  Google Scholar 

  11. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16, 2639–2664 (2004)

    Article  Google Scholar 

  12. Kulis, B., Sustik, M., Dhillon, I.: Learning low-rank kernel matrices. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 505–512. ACM (2006)

    Google Scholar 

  13. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)

    Google Scholar 

  14. Chen, L., Li, W., Xu, D.: Recognizing rgb images by learning from rgb-d data. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2014)

    Google Scholar 

  15. Shrivastava, A., Gupta, A.: Building part-based object detectors via 3d geometry. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1745–1752. IEEE (2013)

    Google Scholar 

  16. Tommasi, T., Quadrianto, N., Caputo, B., Lampert, C.H.: Beyond dataset bias: multi-task unaligned shared knowledge transfer. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Globerson, A., Roweis, S.: Nightmare at test time: robust learning by feature deletion. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 353–360. ACM (2006)

    Google Scholar 

  18. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep boltzmann machines. In: Advances in Neural Information Processing Systems, pp. 2222–2230 (2012)

    Google Scholar 

  19. Chen, J., Liu, X., Lyu, S.: Boosting with side information. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 563–577. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Shams, L., Wozny, D.R., Kim, R., Seitz, A.: Influences of multisensory experience on subsequent unisensory processing. Front. Psychol. 2, 264 (2011)

    Article  Google Scholar 

  21. Kim, T.K., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1005–1018 (2007)

    Article  Google Scholar 

  22. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011)

    Google Scholar 

  23. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Article  Google Scholar 

  24. Witten, D.M., Tibshirani, R., et al.: Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8, 1–27 (2009)

    Article  MathSciNet  Google Scholar 

  25. Rupnik, J., Shawe-Taylor, J.: Multi-view canonical correlation analysis. In: Conference on Data Mining and Data Warehouses (SiKDD 2010), pp. 1–4 (2010)

    Google Scholar 

  26. Loog, M., van Ginneken, B., Duin, R.P.: Dimensionality reduction of image features using the canonical contextual correlation projection. Pattern Recogn. 38, 2409–2418 (2005)

    Article  Google Scholar 

  27. Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 601–608. IEEE (2011)

    Google Scholar 

  28. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)

    Google Scholar 

  29. Brown, M., Susstrunk, S.: Multi-spectral sift for scene category recognition. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 177–184. IEEE (2011)

    Google Scholar 

  30. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)

    Article  Google Scholar 

  31. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  32. Bo, L., Ren, X., Fox, D.: Unsupervised feature learning for rgb-d based object recognition. ISER, June 2012

    Google Scholar 

Download references

Acknowledgement

Research reported in this publication was partly supported by the National Institute Of Nursing Research of the National Institutes of Health under Award Number R01NR015371. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work is also partly supported by US National Science Foundation Grant IIS 1350763, China National Natural Science Foundation Grant 61228303, GH’s start-up funds form Stevens Institute of Technology, a Google Research Faculty Award, a gift grant from Microsoft Research, and a gift grant from NEC Labs America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hua .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 227 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Q., Hua, G., Liu, W., Liu, Z., Zhang, Z. (2015). Can Visual Recognition Benefit from Auxiliary Information in Training?. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision – ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9003. Springer, Cham. https://doi.org/10.1007/978-3-319-16865-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16865-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16864-7

  • Online ISBN: 978-3-319-16865-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics