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Abstract. Attack trees are a well-known formalism for quantitative
analysis of cyber attacks consisting of multiple steps and alternative
paths. It is possible to derive properties of the overall attacks from prop-
erties of individual steps, such as cost for the attacker and probability
of success. However, in existing formalisms, such properties are consid-
ered independent. For example, investing more in an attack step would
not increase the probability of success. As this seems counterintuitive,
we introduce a framework for reasoning about attack trees based on
the notion of control strength, annotating nodes with a function from
attacker investment to probability of success. Calculation rules on such
trees are defined to enable analysis of optimal attacker investment. Our
second result consists of the translation of optimal attacker investment
into the associated adversarial risk, yielding what we call adversarial risk
trees. The third result is the introduction of probabilistic attacker strate-
gies, based on the fitness (utility) of available scenarios. Together these
contributions improve the possibilities for using attack trees in adversar-
ial risk analysis.

Keywords: Adversarial risk analysis · Attack trees · Attacker models ·
Control strength · Fitness functions · Security metrics · Simulation

1 Introduction

Attack trees [8,9,15] are a well-known formalism for analysing cyber attacks
consisting of multiple steps and alternative paths. It is possible to derive prop-
erties of the overall attacks from properties of individual steps, such as cost
for the attacker, probability of success, and probability of detection. In existing
formalisms, such properties are considered independent. For example, investing
more in an attack step would not increase the probability of success. This even
holds for more complicated schemes in which multiple parameters are considered
simultaneously [4].
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Although such approaches have definitely shown their value in both theoreti-
cal and practical respect, there are several issues. Firstly, assuming that an attack
step always costs the same in any situation seems counterintuitive. An attacker
who wants to be really sure that a particular step succeeds may invest more time
and/or money, thereby increasing the likelihood of success (and maybe reducing
the likelihood of detection). Secondly, analysis tools are available which work
precisely with a relation between investment (time) and likelihood of success [1].
To enable the attack tree paradigm to take full advantage of such methods, they
need to support suitable annotations (i.e. dependent parameters).

To address these issues, this paper proposes a framework for reasoning about
attack trees based on the notion of control strength, which is a function from
attacker investment to probability of success. Calculation rules on such trees are
defined to enable analysis of optimal attacker investment, in the context of a two-
step game where the attacker can choose the optimal attack after the defender
has placed his controls. The key application of this approach is in adversarial
risk assessment. Whereas traditional attack trees were not directly connected
to the notion of risk, our approach enables their use in calculating adversarial
risk in terms of threat, vulnerability, and impact, where vulnerability describes
the relation between attacker investment and probability of success, and threat
describes the optimal attacker strategy based on vulnerability and impact.

In Sect. 2, we provide definitions for parameters of interest and analysis of
attack trees with dependent parameters, based on optimal attacker investment.
Section 3 shows an example including simulations. In Sect. 4, we illustrate how
to factor in time, to calculate risk based on optimal attacker investment. In
Sect. 5, we extend the approach with probabilistic attackers, assuming that lim-
ited knowledge and limited rationality will lead attackers to not always choosing
the optimal scenario, creating a different risk picture for the defender. In Sect. 6,
we discuss related work, and we conclude in Sect. 7.

2 Definitions

2.1 Preliminaries

Factor Analysis of Information Risk (FAIR). To define our concepts (the
same as in [13,14]), we use the risk definitions provided by The Open Group [16].
In this taxonomy, risk-related variables are defined starting from the notions of
assets and threat agents acting against these assets, potentially causing damage.
A threat event occurs when a threat agent acts against an asset, and a loss event
occurs when this causes damage. For example, a storm may occur at the location
of a power line (threat event), and this may or may not damage the power line
(loss event).

Like many other approaches, The Open Group distinguishes between what
they call Loss Event Frequency (LEF) and Probable Loss Magnitude (PLM).
The former represents the expected number of loss events of a particular type
per unit of time (often referred to as likelihood), and the latter represents the
expected damage per loss event of that type (often referred to as impact).
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Risk can be seen as expected damage due to a certain type of loss event within
a given time frame, and it can then be calculated as LEF · PLM.

Within LEF and PLM, The Open Group makes further distinctions. We will
not discuss PLM here, but focus on LEF. First of all, the Loss Event Frequency
can be separated in Threat Event Frequency (TEF) and Vulnerability (V). TEF
denotes the expected frequency of occurrence of a particular threat (seen as a
threat agent acting against an asset; a storm at the location of a power line),
and V specifies the likelihood of the threat inflicting damage upon the asset. The
value for LEF can then be calculated as TEF · V. The Open Group defines the
Vulnerability V based on Threat Capability (TC) and Control Strength (CS). In
this definition, TC denotes some ability measure of the threat agent, and CS a
resistance (or difficulty of passing) estimate of the control. We have discussed this
relation in detail in [14]. Note that the term vulnerability is used as probability
of success here, not as a software bug causing a security weakness. To avoid
ambiguity, we will only use the term probability of success in this paper.

Attack Trees. Attack trees [15] describe attacks by means of a tree structure,
in which attacker goals are refined by means of AND-nodes (all subgoals have
to be achieved) and OR-nodes (only a single subgoal has to be achieved). In the
end, attack trees represent a set of possible attack paths [9]. Figure 1 shows a
simple attack tree for obtaining secret data. The tree consists of four leaves. The
left branch is an AND-node; the other two non-leaf nodes are OR-nodes.

Obtain secret data

Steal laptop

Social engineer key Access room

Remote access

Crack password Exploit vulnerability

Fig. 1. An attack tree for obtaining secret data by laptop theft or remote access in
ADTool [7]. The bottom left non-leaf node is an AND-node, the other non-leaf nodes
are OR-nodes.

Attack trees can be annotated with all kinds of values, such as probability of
success, cost for the attacker, required time, etc. Many calculations are possible
on such trees, from simple bottom-up value aggregation from leaves to root, to
complicated calculations made feasible by genetic algorithms. An extensive liter-
ature review of work to date on attack trees is provided in [8]. Some dependency
between variables is taken into account in [4], in the sense that the probability
of detection depends on whether the attack step succeeded or failed. However,
the cost of an attack step is still fixed.
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2.2 Contributions

Our innovation lies in the explicit use of control strength and threat capability
in the analysis of attack trees. This separates system properties and attacker
properties. In addition, we distinguish between static attacker properties (skill)
and dynamic attacker properties (investment). The former are pre-defined and
constant over the duration of the attack; the latter can be strategically chosen
by the attacker.

In particular, we consider control strength (also called difficulty) as a function
from threat capability to probability of success. By defining difficulty in this way,
we enable the use of separate, explicit attacker profiles, that can contain static
properties (skill) and rules for dynamic properties (investment strategy). In this
paper, we assume only a single investment strategy, namely the (rational) one
that maximises utility for the attacker. However, we do take account probabilistic
deviations from optimal selection of scenarios (Sect. 5). The question on how to
define the difficulty function has been treated elsewhere [14], and we will not
repeat this issue here. The definition of difficulty as a function also implies
that attacker investment (cost) and probability of success cannot be treated
as independent properties, like in existing formalisms. This adaptation seems
intuitive, as the more an attacker invests in trying to get in, the more likely he
will be able to succeed. Thus, the existing assumption of fixed costs and a fixed
probability of success for an attack step is lifted.

To be able to calculate attacker utility, we assume there is a certain value
for the attacker associated with the goal represented in the root node of the
attack tree. For example, achieving the root goal would provide a utility of e
1,000 to the attacker. We will not address the question how to define this value
in the present work. The model presented here is a parallel model [4] in which all
atomic attacks x1, . . . , xn take place simultaneously; e.g. the adversary chooses
a subset of atomic attacks and executes them in parallel independent of success
or failure of some of attack steps.

2.3 New Definitions

Definition 1. The probability of success of an attack step or composite attack
is a value in the range [0,1], indicating how likely the attack (step) is to succeed
when executed. The probability of success can also be interpreted as an expectation
value of the success variable, when failure is 0 and success is 1.

Note that this is different from what is generally referred to as likelihood in risk
assessment, as that likelihood refers to probability (frequency) of occurrence, not
probability of success.

Definition 2. A control strength function is a function c : T → [0, 1], indi-
cating the relation between threat capability and probability of success. T can
be any partially ordered set suitable for representing capability (in its simplest
form {Low, Medium, High}, but could also be money). It is assumed that c is
monotonic: a higher threat capability will lead to a higher or equal probability of
success.
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Definition 3. A threat capability function is a function t : S × I → T , indicat-
ing the relation between attacker skill, attacker investment, and threat capability.
S could again be for example {Low, Medium, High}. I is typically expressed in
terms of money. It is assumed that t is monotonic in both parameters: a higher
skill or a higher investment will lead to a higher or equal threat capability.

Definition 4. An investment function is a function f : I → [0, 1], indicating
the relation between attacker investment and probability of success. It is assumed
that f is monotonic: a higher investment will lead to a higher or equal probability
of success.

An investment function f can be expressed in terms of a control strength function
c, a threat capability function t, and an attacker skill s as f(i) = c(t(s, i)). If both
c and t are monotonic, f will be monotonic as well. Nodes in attack trees can
now be annotated with control strength functions rather than simple values. For
non-leaf nodes, the functions represent the results for the associated subtree.
If no explicit attacker profiles (e.g. skill) are considered, an annotation with
investment functions suffices.

2.4 Analysis

The analysis is based on the formalisation of attack trees by Mauw and Oostdijk
[9], in which the semantics of an attack tree is the corresponding set of attacks C,
which are multisets of attack steps. It determines what constitutes the optimal
investment for the attacker (maximum utility), by finding out how to distribute
resources as investments over attack steps. To this end, we first need to determine
how the investment function of AND- and OR-nodes can be derived from those
of their children. The calculation rule for the investment function f of an AND-
node with children x1 and x2 with investment functions f1 and f2 is:

f(j) = max{f1(i1)f2(i2) | i1 + i2 ≤ j} (1)

Note that, under the assumption that f1 and f2 are monotonic, the maximum
will always occur when i1 + i2 = j. The calculation rule for the investment
function f of an OR-node with children investment functions f1 and f2) is:

f(j) = max{f1(i1) + f2(i2) − f1(i1)f2(i2) | i1 + i2 ≤ j} (2)

In this equation, it is assumed that the attacker can invest in multiple
branches of the OR-split in order to maximise his probability of success. In
practice, the attacker may first try one branch and base his further investment
upon the result. We do not discuss such “sequential OR-nodes” in this paper,
but they would be relevant for future studies.

In addition to combining the investment functions of the children into one,
the analysis would need to keep track of the distribution of investment over the
subtrees associated with the maximum probability of success (the argmax). As
can be seen from the definitions, the functions will get increasingly complicated



206 W. Pieters and M. Davarynejad

when moving towards the root node (at least in the general case). For each
branch of the tree, the function definition could be split in two separate domain
intervals. In practice, one will not do these calculations before a specific question
has been asked on the tree. In particular, the question of the optimal attack from
the attacker perspective is relevant here.

In this paper, we assume that an attacker only gains utility if he achieves the
root goal. The optimal balance between investment and probability of success
depends on how much utility the root node provides. The higher this utility, the
more important the probability of success becomes, compared to the investment.

3 Examples and Simulations

In this section we provide a number of examples to illustrate the theoretical
properties of investment trees. The examples provided here are small; they are
meant for illustrative purposes. This means that we can exhaustively enumerate
the possible attack paths and their utilities, which is useful for explaining the
intuitions. In these examples the cumulative distribution functions (CDFs) of
logistic distributions are adopted to mathematically represent the probability of
success as a function of investment (according to Definition 4). There are two
reasons for choosing logistic distributions: (1) logistic distributions provide a
strong analogy with difficulty metrics in other domains [14], and (2) the logistic
distribution reflects the fact that with little investment, the probability of success
is low, whereas there is a certain critical point around which the probability of
success increases rapidly with higher investment. There are three parameters of
interest: the mean μ of the distribution, the scale s, and the maximum success
probability c. The latter reflects the fact that a probability of success of almost
1 is not always achievable, not even with nearly infinite resources.

Figure 2 shows an example of such a function with μ = 33, and s = 0.15 (blue
dash curve) or s = 0.44 (dot-dash red curve). The units are not specified here,
but investment can be thought of as units of time or money the attacker invests
in an attack step. In all the simulation results provided below the assumption
is that the attacker is rational, so s/he launches multi-stage attacks to achieve
his/her goals. Other distributions like Rayleigh CDF might be also suitable for
particular cases, but the essentials remain the same. In an ideal scenario these
functions can be estimated from empirical evidence like penetration tests [2].

Example 1. Suppose that the attacker goal is to steal a laptop, which will yield
a gain (positive utility) of 1000 for the attacker, and a damage (negative utility)
of 5000 to the defender (e.g. replacement plus data loss). The attacker can invest
in two branches of an AND-split. The first branch x1 has an investment function
f with a logistic CDF form with μ1 = 33 and s1 = 0.15. The second branch x2

has exactly the same investment function as x1 with the exception of s2 = 0.44.
Figure 2 shows the investment function and Fig. 3a the profit landscape. Each
black asterisk represents the optimal investment in each attack step when the
sum of resources j is limited. In this example j is set at 0 and increases to 300
with step size of 2.
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Fig. 2. Investment function f1 with µx = 33, sx = 0.15, and f2 with µy = 33, sy = 0.44
(Color figure online)

Example 2. Suppose that the attacker goal is to steal a laptop, where she can
invest in two branches of an OR-split. The first branch has an investment func-
tion f1 similar to that of the first branch of Example 1 and the second branch
x2 has exactly the same investment function as that of the second branch of
Example 1. Then the profit landscape is shown in Fig. 3b. Here again each black
asterisk represents the optimal investment in each attack step when the sum of
resources j is limited. In this example j is set at 0 and increases to 300 with
step size of 2. The maximum resources the attacker can spend is the same as
in the first example. Because the attacker can choose between two alternatives
with different investment functions, the optimum jumps from one alternative to
the other depending on the amount the attacker can invest.

Fig. 3. Profit landscape for (a) the AND-node example, (b) the OR-node example.
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Example 3. Now consider the attack tree from Fig. 1, with leaf node investments
labelled i1, i2, i3, i4, from left to right. In this example f1 and f2 (left branch)
are the same as what we have described in previous examples. The μ3 and
μ4 (right branch) are both set at 75 and s3 and s4 are set at 0.15 and 0.4
respectively (Fig. 4). The optimal investment on each attack step for a number
of values of j is reported in Table 1. When the attacker’s maximum investment
j is less than 56, then the empty strategy (i.e. not playing at all) is optimal.
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Fig. 4. Investment functions for the complete example attack tree.

These examples show how to use control strength in attack tree calculations,
optimising the relation between investment and probability of success from the
point of view of the attacker. However, this does not directly provide information
about adversarial risk.

4 From Optimal Investment to Risk

Many papers on security risk assessment end with the analysis of optimal invest-
ments, without considering time. We take one step further here, and try to align
security risk assessment with safety risk assessment by considering attack fre-
quencies, based on a profile of the attacker in terms of available resources and
investment strategy. As in the previous sections, we choose the Factor Analysis
of Information Risk taxonomy [16] as the risk assessment framework. We choose
this taxonomy because it explicitly relates threat capability (investment), con-
trol strength, and probability of success, similar to our extended attack trees. In
this framework, vulnerability is synonymous to probability of success, and this
vulnerability is dependent on both threat capability and control strength. From
the point of view of the attacker, the control strength (strength of the defense)
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Table 1. Optimal investment on each attack step when j is incremented from 50 to
100 with step size of 4.

j Optimal investment on each attack step Utility Total investment

i1 i2 i3 i4

50 0 0 0 0 0.013011 0

54 0 0 0 0 0.013011 0

58 21.2594 36.7406 0 0 17.3807 58

62 24.9633 37.0367 0 0 63.8835 62

66 0 0 66 0 139.8704 66

70 0 0 70 0 250.8213 70

74 0 0 74 0 388.5702 74

78 0 0 0 78 690.5278 78

82 0 0 0 82 860.6766 82

86 0 0 0 86 901.8717 86

90 0 0 0 89.9661 907.5276 89.9661

94 0 0 0 89.9661 907.5276 89.9661

98 0 0 0 89.9661 907.5276 89.9661

is fixed, and vulnerability can thus be expressed as a function from investment
(in threat capability) to probability of success (vulnerability).

As risk is expressed as threat event frequency (likelihood) times vulnerability
times impact, we need to address the missing item, which is the frequency. To
this end, we need to extend the analysis from a single point in time decision by
the attacker to longitudinal, by limiting the attacker income (and thereby his
resources) as a function of (continuous) time. In this paper, we choose the discrete
event model from [13] for the analysis of risk, based on attack trees endowed
with control strength annotations for optimal investment analysis. In the discrete
event model, attackers save resources and attack with the accumulated resources
at a single point in time. After the attack, the damage is assumed to be repaired,
the attacker resources are reset to zero, and the same process will be repeated.
Whereas [13] only discusses atomic attacks, we apply the analysis to attack trees
here. In addition, we extend the analysis with non-zero-sum situations, as well as
probabilistic attacker strategies. The mapping from optimal investment to risk,
via time, proceeds as follows [13]. Attackers can, at each point in time, choose to
launch an attack with the resources they have built up until that point (R(t)).
Attackers will also have a skill level s, and the threat magnitude m is a function
of the skill and the available resources:

m(t) = f(s,R(t)) (3)

Attackers will not attack, but rather wait and save resources, if they can gain
higher expected average utility by launching an attack with more resources later.
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If they cannot improve their average utility by waiting, they will execute the
scenario with the highest expected utility given their current resources.

The vulnerability (probability of success) V of an attack step/scenario c
depends on the threat magnitude m. The expected utility Uc(m) for each threat
capability level m and for each attack scenario c is:

UA
c (m) = Vc(m) · GA

c (4)

where GA
c is the utility (gain) for the attacker upon success of scenario c.

The maximum utility for a given threat capability level m is specified by

ÛA(m) = max
c∈C

UA
c (m) (5)

The optimal scenario to execute is then argmax
c∈C

UA
c (m).1

We can therefore calculate the maximum expected utility at each point in
time, ÛA(t) = ÛA(m(t)), and also the maximum average utility over the elapsed
time, which we denote S for success, ŜA(t) = ÛA(m(t))/t. Assuming an attacker
who wants to maximise his average gain per unit of time, the attacker will thus
attack at the time t̂ when ŜA(t) reaches its maximum. The scenario that will be
executed is

ĉ = argmax
c∈C

UA
c (m(t̂)) (6)

Assuming instant repair, the expected threat event frequency can be deter-
mined as hĉ = 1/t̂. For all other scenarios, the threat event frequency is zero. The
loss event frequency for scenario ĉ is λĉ = Vĉ/t̂. From the loss event frequency, we
can calculate the risk (negative success) SD as annual loss expectancy, by filling
in the utility for the defender rather than the attacker of a successful scenario c.
Note that both UD

ĉ and SD are negative.

SD = hĉ · UD
ĉ (7)

Example 4. Consider the attack tree of Example 3. We assume that the skill level
is irrelevant here, and we therefore assume that m(t) = R(t). The attacker has
income density function dR

dt = 1, i.e. the attacker will earn 1 resource unit per
unit of time, or m = t. Up to t = 1, the attacker will thus be able to invest 1
unit. In Fig. 5, the resulting optimal utility function ŜA(t) is shown.

Note that in the discrete model, it is required that V (0) = 0. Otherwise,
the expected risk (damage per unit of time) for very small t would be very high
(up to infinite with t approaching 0), and the attacker would simply launch loads
of “mini-attacks” with almost zero effort. For logistic vulnerability models where
V is not zero as t approaching 0 additional considerations are required. In this
study, this property of logistic vulnerability models is handled by setting the
step size of change in t to a value bigger than 1.
1 Note that picking argmax may involve nondeterministic choice if multiple arguments
produce the maximum. This is one of the issues that the probabilistic attackers in
this paper (Sect. 5) help to solve.
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Fig. 5. A simulation of attacker success (utility per unit of time) as a function of attack
time for the laptop theft scenario (Example 3). Initially, it does not make sense to invest
at all. From t = 58, utility increases rapidly (see also Table 1), but success (utility per
unit of time) starts to decline when marginal utility decreases.

5 Probabilistic Attackers

When evaluating the effect of countermeasures, an optimising attacker model
implies that defenses that are not on the critical (optimal) path will have no
effect. This is not very realistic. In reality, attackers have only limited information
and need not be fully rational. To account for attackers not always choosing the
optimal attack, we introduce probabilistic attacker strategies. In such a strategy,
the probability of selecting a particular scenario is based on the fitness of that
scenario, expressed as the utility it provides to the attacker per unit of time.
For now, we assume that the attacker will always execute a chosen scenario at
the optimal point in time. This is still a worst-case approximation, but it does
not matter that much for defender decisions on effectiveness of countermeasures.
Our probabilistic attacker is not meant to model a strategic attacker that knows
everything, but chooses less optimal scenarios to evade defender actions. It is
only meant to represent uncertainty on the part of the attacker.

Our proposal for assigning selection probability Pc to attack scenario c has its
roots in genetic algorithms. The higher the utility of an attack scenario SA

c , the
higher its probability of being selected. This represents an attacker optimising his
selection while possessing limited information about the fitness of the scenarios.
In order to differentiate between levels of knowledge and understanding of the
system, we use Boltzmann selection [10], which defines selection probabilities
in the form of Boltzmann canonical distributions. It has been shown that the
Boltzmann distribution can be derived from maximizing the Shannon entropy
under proper constraints [11]. The selection probability is assigned as follows:
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Pc =
exp(−T/fc)∑

c∈C

exp(−T/fc)
(8)

where T ∈ IR+ represents the level of knowledge and understanding of attacker
concerning the system. The higher T , the higher the knowledge of the attacker,
which results in better identification of high utility attack scenarios. In contrast,
lower T represents a poor understanding of the system for the attacker, which
results in poor distinction between high- and low-profit attack scenarios. This
poor understanding results in higher uncertainty and insignificant difference in
probability of selection of attack scenarios. In Eq. (8) fc is described as:

fc =
SA
c∑

c∈C

SA
c

· |C| (9)

Example 5. We take the attack tree presented in Example 3 (Fig. 1). This attack
tree has three attack scenarios: {x1, x2}, {x3}, and {x4}. The optimal attack time
t̂ for each of these attack scenarios and their respective success values at optimal
attack time SA

c (t̂) and SD
c (t̂) are reported in Table 2.

Table 2. Attack scenario selection probability.

c t̂ SA
c (t̂) SD

c (t̂) T , attacker knowledge level

T = 0.1 T = 1 T = 10 T = 100

{x4} 84 10.59 −56.94 0.3375 0.3761 0.7512 1.0000

{x3} 92 09.08 −49.41 0.3326 0.3247 0.1728 0.0000

{x1, x2} 96 08.04 −46.03 0.3299 0.2991 0.0760 0.0000

Attacker S̄A 9.3168 9.3944 10.1260 10.5881

Defender S̄D −50.5810 −50.9381 −54.3882 −56.9407

The analysis proceeds as follows:

1. Calculate fitness (attacker success SA
c ) for all attack scenarios, assuming opti-

mal time of attack t̂; also calculate defender success (risk);
2. Assign probabilities Pc to scenarios based on their fitness in accordance with

Eq. (8);
3. Calculate expected attacker success and defender succeess by weighted average.

The calculation of the weighted average is:

S̄A =

∑

c∈C

PcU
A
c

∑

c∈C

Pctc
(10)
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The assumption is that the attacker chooses a scenario first based on the
assigned probabilities, and then spends the associated time executing that sce-
nario. This means that the time spent on a particular scenario is dependent on
both the probability of selecting that scenario, and the time taken to execute the
scenario. The expected utility of the whole strategy (all scenarios, weighted by
probability), can then be divided by the expected time spent to find the average
utility per unit of time. Replacing UA

c with UD
c , the same equation can be used

to calculate the expected (negative) utility for the defender.

6 Related Work

Many of the annotations on attack trees, including time, cost and probability,
are dependent both on properties of the system (e.g. resistance) and properties of
the attacker (e.g. skill). In the TREsPASS project, we are looking for attacker-
independent metrics, such that different attacker profiles can be used on the
same attack tree. The idea of using control strength as a metric stems from the
Factor Analysis of Information Risk framework, included in the Risk Taxonomy
of The Open Group [16]. This idea was further developed in [2,14]. In this paper,
we define control strength as function from attacker investment to probability
of success.

In [1], a time-dependent analysis of attack trees is provided, relating time and
success probability. However, investment (cost) is not considered, and the results
are not linked to risk. The approach is also not focused on attacker decisions (in
which step to invest). Because an exponential distribution is assumed, the best
choice never depends on the available time, as the corresponding time-probability
(cumulative probability) curves never intersect. For an OR-node, simply the
fastest subtree is chosen; for an AND-node, both are started in parallel; for the
additional sequential SEQ-node, the first subtree has to succeed first.

Several authors have considered return on attack as a security metric [3,6].
The lower the return on attack, the more secure the system. The return on attack
complements the return on security investment from the defender’s point of view.
Several game-theoretic approaches have tried to relate the two. In this paper,
we used the minimax approach suggested in [5], which optimises the defender
investments under the assumption that the attacker will optimise his return on
attack in the next step.

7 Conclusions

In this paper, we provided a new type of analysis on attack trees, namely the
analysis of optimal attacker investment, under the assumption that the invest-
ment in an attack step influences the probability of success for that step. The
formalisation in terms of control strength (difficulty) as a function from threat
capability to probability of success was inspired by the Risk Taxonomy of The
Open Group [16]. This constitutes an innovation beyond traditional formalisms,
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which considered attacker cost and probability of success as independent para-
meters. In addition, we showed how the analysis of optimal investment can be
used to define adversarial risk in the context of attack trees, by limiting attacker
resources in time (income). Finally, we showed how probabilistic attacker models,
based on fitness evaluation of different scenarios, can improve the risk analysis,
in particular when it comes to evaluation of countermeasures. The approach can
be used to enhance existing security metrics, such as for example weakest link
[12], adversarial risk, and return on security investment.

In this paper, we assume that the attacker makes his investment decisions
upfront. In future work, we will investigate how the framework changes if the
attacker can adapt his investment decisions on the fly, and how cooperation
between multiple attackers influences the results. Also, we may consider the
situation where other nodes than the root node would provide positive utility
to the attacker upon success, and the situation in which the attacker invests his
gain in new attacks. In addition, the probability of detection and punishment
may be included next to the probability of success. Finally, case studies could
provide further insights into the behaviour of the simulations.

Acknowledgements. The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant
agreement number ICT-318003 (TREsPASS). This publication reflects only the authors’
views and the Union is not liable for any use that may be made of the information con-
tained herein.

References

1. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS 2014). LNCS,
vol. 8414, pp. 285–305. Springer, Heidelberg (2014)

2. Arnold, F., Pieters, W., Stoelinga, M.I.A.: Quantitative penetration testing with
item response theory. In: 2013 Proceedings of Information Assurance and Security
(IAS). IEEE (2013)

3. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of
security investments. In: 2006 The First International Conference on Availability,
Reliability and Security, ARES 2006 (2006)

4. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: López, J. (ed.) CRITIS
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8. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014)



Calculating Adversarial Risk from Attack Trees 215

9. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

10. de la Maza, M., Tidor, B.: An analysis of selection procedures with particular
attention paid to proportional and Boltzmann selection. In: Proceedings of the 5th
International Conference on Genetic Algorithms, pp. 124–131 (1993)

11. Nulton, J.D., Salamon, P.: Statistical mechanics of combinatorial optimization.
Phys. Rev. A 37(4), 1351–1356 (1988)

12. Pieters, W.: Defining “the weakest link”: comparative security in complex sys-
tems of systems. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, pp. 39–44, December 2013

13. Pieters, W., Lukszo, Z., Hadžiosmanović, D., Van den Berg, J.: Reconciling mali-
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