
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/266684087

Towards	a	Full	Support	of	Obligations	In	XACML

CONFERENCE	PAPER	·	AUGUST	2014

DOI:	10.13140/2.1.2888.0641

READS

77

5	AUTHORS,	INCLUDING:

Donia	El	Kateb

University	of	Luxembourg

15	PUBLICATIONS			14	CITATIONS			

SEE	PROFILE

Yehia	Elrakaiby

Fraunhofer	Institute	for	Experimental	Softwa…

17	PUBLICATIONS			58	CITATIONS			

SEE	PROFILE

Tejeddine	Mouelhi

University	of	Luxembourg

33	PUBLICATIONS			270	CITATIONS			

SEE	PROFILE

Yves	Le	Traon

University	of	Luxembourg

236	PUBLICATIONS			2,739	CITATIONS			

SEE	PROFILE

Available	from:	Donia	El	Kateb

Retrieved	on:	03	March	2016

https://www.researchgate.net/publication/266684087_Towards_a_Full_Support_of_Obligations_In_XACML?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/266684087_Towards_a_Full_Support_of_Obligations_In_XACML?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Donia_Kateb?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Donia_Kateb?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Luxembourg?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Donia_Kateb?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Yehia_Elrakaiby?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Yehia_Elrakaiby?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Fraunhofer_Institute_for_Experimental_Software_Engineering_IESE?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Yehia_Elrakaiby?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Tejeddine_Mouelhi?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Tejeddine_Mouelhi?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Luxembourg?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Tejeddine_Mouelhi?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Yves_Le_Traon?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Yves_Le_Traon?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Luxembourg?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Yves_Le_Traon?enrichId=rgreq-bb95cadb-9338-488c-87ec-65c0e720e13e&enrichSource=Y292ZXJQYWdlOzI2NjY4NDA4NztBUzoxNTA2NjE5MDM2ODc2ODJAMTQxMjkzMjAwNTg1OA%3D%3D&el=1_x_7

Towards a Full Support of Obligations In XACML

Donia El Kateb1,2, Yehia ElRakaiby, Tejeddine Mouelhi1

Iram Rubab1,2 and Yves Le Traon1,2

1Security, Reliability and Trust, Interdisciplinary Research Center, SnT
2Laboratory of Advanced Software SYstems (LASSY)

University of Luxembourg
Luxembourg

donia.elkateb, tejeddine.mouelhi, iram.rubab, yves.letraon@uni.lu
yehia.elrakaiby@gmail.com

Abstract. Policy-based systems rely on the separation of concerns, by imple-
menting independently a software system and its associated security policy.
XACML (eXtensible Access Control Markup Language) proposes a conceptual
architecture and a policy language to reflect this ideal design of policy-based
systems. However, while rights are well-captured by authorizations, duties, also
called obligations, are not well managed by XACML architecture. The current
version of XACML lacks (1) well-defined syntax to express obligations and (2)
an unified model to handle decision making w.r.t. obligation states and the his-
tory of obligations fulfillment/violation. In this work, we propose an extension of
XACML reference model that integrates obligation states in the decision making
process. We have extended XACML language and architecture for a better obli-
gations support and have shown how obligations are managed in our proposed
extended XACML architecture: OB-XACML.

Keywords: Usage Control, PEP, PDP, XACML.

1 Introduction

Access control policies regulate users access to the sensitive resources in a given system
and they are commonly defined as a set of rules, specified according to an access control
model. Obligations [1] allow to extend the notion of access rights with related duties. A
complete security policy should encompass both rights and duties, both access autho-
rizations and obligations. XACML (eXtensible Access Control Markup Language) 1

is a standardized policy specification language that defines access control policies in
an XML format and defines a standard way to exchange access control requests/re-
sponses. Even though XACML supports several profiles to handle authorizations sce-
narios, its support for usage control is still in its infancy. Indeed, while access control is
about a simple boolean decision-making (is the user authorized to access a service/re-
source?), obligations imply the notion of state. To the best of our knowledge, access
control based on obligation states history is not yet handled by XACML architecture.

1 http://www.oasis-open.org/committees/xacml/

To meet the challenges of reinforcing XACML standard to support obligations, going
along the same line than Bertino [2], who pioneered the extension of XACML for usage
control, we propose 1) Well-defined XML constructs that are compliant with XACML
3.0 to specify obligations. 2) OB-XACML: An underlying architecture that extends the
current XACML architecture and that is able to take into consideration the history of
obligations fulfillment/violation and obligation states at the level of the decision making
process. OB-XACML introduces an interaction schema between the different key enti-
ties in XACML architecture to keep track of obligations fulfillment/violation related to
the users in the system. To the best of our knowledge, our work is a first initiative that
considers obligation states as a key element that must be considered at the evaluation
time. This paper is organized as follows. Section 2 introduces obligations in XACML.
Section 3 describes our extended architecture OB-XACML. Section 4 introduces the
obligation syntax that supports OB-XACML and describes the different interactions be-
tween OB-XACML components. Section 5 presents the related work. Finally, Section 6
presents our conclusion and future work.

2 Obligations in XACML

XACML defines obligations as actions that have to be returned to the PEP with the PDP
response 2. XACML defines three PEP categories based on PDP decision and the ability
of the PEP to handle obligations.

<O b l i g a t i o n O b l i g a t i o n I d = ‘ ‘ send−e m a i l ” F u l f i l l O n = ‘ ‘ Deny”>
<A t t r i b u t e A s s i g n m e n t A t t r i b u t e I d = ‘ ‘ e m a i l ”>d o n i a . kateb@uni . lu </ A t t r i b u t e A s s i g n m e n t>
</ O b l i g a t i o n>

Listing 1.1. Obligation Example

In the reminder of this paper, we will only consider the Deny-biased PEP. In a Deny-
biased PEP setting, the PEP decision is permit if the PDP decision is permit and all the
obligations that are returned by the PDP are fulfilled. In all other cases, the PEP deci-
sion is deny. The reader may refer to [2] for more details about other PEPs categories.
XACML 2.0 3 defines obligations as simple attributes assignment that are attached to
the policy set or to the policy. In XACML 3.0 4, obligations can also be added to the
rules additionally to the policies and policy sets. An obligation element contains the
obligation identifier and the FulfillOn element which specifies the effect on which the
obligation should be fulfilled by the PEP. For example, FulfillOn “Permit” specifies that
the obligation should be enforced if the PEP decides to permit the request. The XML
snippet in Listing 1.1 shows an example that illustrates that if the PDP decision is deny,
the subject has to send an email to the address “donia.elkateb@uni.lu”.

3 OB-XACML Architecture

In an XACML-based architecture, access control decisions are thus taken without tak-
ing into consideration obligations fulfillment or violation in previous accesses. In this

2 http://www.oasis-open.org/committees/xacml/
3 http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf
4 http://www.oasis-open.org/committees/xacml/

2

Fig. 1. OB-XACML Workflow

work, we propose to introduce obligation information violations/fulfillment at the deci-
sion making time so that access control decisions are taken based on information related
to obligation states or related to previous users obligations fulfillment/violation. Here
are some motivating scenarios:

– A nurse has to send a report to the patient’s treating doctor after each access to the
patient’s medical data. The report should describe some specific indicators about
patient’s health status. If the post-obligation of sending a report after the access is
violated then the nurse should be prohibited from accessing patient’s data in another
access and some penalties measures have to be taken against her as a reaction to
this non professional behavior.

– A user has the pre-obligation to sign a form before he accesses a web application.
If the system keeps track of his fulfilled obligations then the user does not have to
sign the form in every session. The system can thus record the fulfillment of the
obligation in a first login and then the user can access the system in future sessions
without the need to fulfill his pre-obligations.

To support such scenarios, we extend the current XACML architecture so that in-
formation inherent from subjects fulfillment/violation of their obligations is taken into
consideration at the decision making time. To provide a decision making process that
takes into consideration obligation states, we propose to store obligations states in the
Policy Information Point (PIP) additionally to attributes values such as resource, sub-
ject, environment. Such information is retrieved dynamically at the decision making
time and used for request evaluation. Our extension is shown in Figure 1. The PDP
sends to the PEP the access decision and the obligations that have to be monitored by
the PEP. Each obligation is handled by the obligation manager which tracks obligation
states evolution by monitoring their execution in the system. An obligation life cycle
can been modeled as a state machine as illustrated in [3]. An obligation state can be 1)
Inactive when the fulfillment of the obligation is not needed, 2) Active when the obli-
gation fulfillment is required, 3) Fulfilled when the obligation is satisfied, 4) Violated

3

when the obligation is violated. 5) Fulfilled/violated when the obligation is violated and
later it has been fulfilled 6) An obligation is inactive when it ends. The transition be-
tween the different states is driven by contexts [4]. An activation context specifies the
different conditions under which the obligation has to be fulfilled whereas the viola-
tion context specifies the conditions under which the obligation becomes violated. For
example the obligation to send a report after an access to an administration system is
handled as follows by the obligation manager: 1) The user has an access to the plat-
form: The obligation is in an active state. 2) The user sends the report to the platform:
The obligation is in a fulfilled state. 3) The user does not send the report within a given
time: The obligation is in a violated state. The user behavior at the system level is mon-
itored through aspects which capture the different users actions [5]. The update module
receives information related to the changes in obligations states and updates the PIP
with obligation state attributes that are provided by the obligation manager. We enrich

Obliga'on	

Manger	

	
 	
 	
 	
 1.	
 Access	
 Request	
 to	
 access	
 the	
 auc'on	
 system	
 2.	
 Request	
 to	
 encode	
 	

The	
 request	
 in	
 an	
 	

XACML	
 format	

	
 	
 	
 	
 3.	
 XACML	
 Request	

	
 	
 	
 	
 4.	
 XACML	
 Decision	
 +	
 	

Obliga'ons	
 (1	
 &	
 2)	
 if	
 the	
 	

user	
 is	
 logging	
 the	
 first	
 'me	
 	

or	
 obliga'on	
 2	
 if	
 the	
 user	
 	

has	
 already	
 fulfilled	
 	

obliga'on	
 1	
 in	
 previous	
 sessions	

5.	
 Decision	
 +	
 Obliga'ons	

	
 	
 	
 9.	
 Obliga'on	
 State	
 Update	

6.	
 Request	
 to	
 be	
 no'fied	
 	

about	
 obliga'ons	
 status	

	
 	
 	
 8.	
 PEP	
 No'fica'on	

7.	
 No'fica'on	

about	
 obliga'ons	
 	

status	

	
 	
 	
 10.	
 Access	
 decision	
 is	
 permit	
 	
 if	
 obliga'on	
 1	
 &	
 2	

	
 are	
 fulfilled,	
 deny	
 otherwise	

4.	
 PIP	
 Query	

System	
 PEP	
 PDP	
 PIP	
 Context	

Handler	

Fig. 2. Pre-Obligations Sequence Diagram

XACML conditions to express access control rules that are conditioned by obligations
fulfillment/violation. These conditions will be introduced in the next Section. To explain
the processing of obligations in OB-XACML, we took some illustrative examples from
an Auction Management System (AMS). AMS allows users to perform some bidding
operations online if they have enough money in their account before starting bidding
operations. We consider the following pre-obligations in the AMS system: 1) The user
has to accept the usage terms of the auction before joining the auction system. 2) The
user has to validate his payment for the session. Pre-obligation 1 has just to be ful-
filled in the first login whereas the pre-obligation 2 has to be fulfilled in every session.
Figure 2 illustrates message exchange to process the two pre-obligations in AMS. For
a given access request, the PEP decision is taken under the assumption that our PEP
is a deny-based PEP. Obligations O include pre-obligations opre, post-obligations opost

4

and/or ongoing obligations oongoing . The algorithm 1 specifies how access control deci-
sion are handled by the PEP when the PEP receives an access decision with obligations.

Algorithm 1 - Obligation Management
Input: PDP Decision, a set of obligations O, Output: PEP Decision
/*PDP decision is provided after all preobligations become in an inactive state*/
for all Preobligations opre ∈ O do

opre.state=active
end for
while opre.state 6= inactive ∀ o ∈ O do

/*The PEP is deny-based, all preobligations need to be fulfilled to permit the access if PDP
decision is permit */
if opre.state=violated then

return Deny
end if
PIP update with (opre.id, opre.state, opre.subject, opre.update time)

end while
if PDP Decision 6= Deny then

return Permit
else

return Deny
end if
/*PDP decision is revoked if some ongoing obligations are violated*/
for all Ongoing obligations oongoing ∈ O do

oongoing .state=active
end for
while oongoing .state 6= inactive ∀ oongoing ∈ O do

if oongoing .state=violated then
PDP Decision = Deny

end if
PIP update with (oongoing .id, oongoing .state, oongoing .subject, oongoing .update time)

end while
/*Postobligations do not impact PEP decision*/
for all Postobligations opost ∈ O do

opost.state=active
end for
while opost.state 6= inactive ∀ opost ∈ O do

PIP update with (opost.id, opost.state, opost.subject, opost.update time)
end while

4 OB-XACML Language and Proposed Architecture

This Section introduces the obligation syntax that supports OB-XACML and describes
the different interactions between OB-XACML different components.

4.1 Obligations Syntax in OB-XACML

XACML defines obligations as simple attribute assignment. To specify obligations in
XML, we have leveraged an existing formal obligation model [3] to identify the dif-

5

ferent elements of an obligation. In XACML 3.0, users are able to extend XACML
syntax and to define their own categories, we added new identifiers to define obliga-
tion elements in XACML 3.0. To refer to the entity that is responsible of enforcing an
obligation, we introduce a new Attribute identifier: the obligation-subject encoded as
shown in Listing 1.2:

<C a t e g o r y = u r n : o a s i s : names: t c : xa cml :
1 . 0 : s u b j e c t −c a t e g o r y : o b l i g a t i o n −s u b j e c t>

Listing 1.2. Obligation Subject

Similarly, action and resource identifiers are added using action-category:obligation-
action and resource-category:obligation-object. We distinguish between the obligations
that have to be performed in each session by a given subject and those that have just to
be performed by the first login using the identifier “each session” to specify obligations
that have to be fulfilled in every access and “first login” to specify obligations that have
just to be fulfilled in the first access.

4.2 Description of OB-XACML Components

Figure 3 illustrates the interactions between the different components in OB-XACML:
a) AMS application: We consider an Auction Management System (AMS) which

is a Java policy-based application which contains 122 classes and 797 methods.
b) Obligation Manager: The obligation manager receives obligations from the PEP

and maintains their states. It includes two mapping modules:
• A Mapper from abstract obligations to concrete obligations: This modules translates

obligation parameters included in XACML obligations to parameters that are inter-
preted at the application level. For instance a required action in an obligation is trans-
lated to a method call that triggers some functionality at the business level logic, a
role is mapped to a user, etc.
• An Obligation States Monitor: For obligations state monitoring, we define abstract

rules that describe the impact of application parameters on obligation states. For ex-
ample, the obligation to put a starting bid before joining an auction session evolves
from an active state to a fulfilled one when the user validates the payment. This re-
quirement is described by the rule <i that describes the operations needed for the
obligation “joining an auction” to transition from an active state to a fulfilled state:

<i : State(Obl1:joining an auction, active) 7→ State(Obl1:joining an auction, fulfilled)
If call method(Validate Bid.amount()) && Bid.amount(subject s) returns amount
&& amount > allowed minimum seuil)

To monitor the different parameters related to obligations state changes which are
defined in our mapping rules, we use aspect oriented programming [5]. The obliga-
tion manager is a Java module that monitors a set of events. Each obligation is a Java
class that extends an abstract class event.

c) PIP attributes database: We implemented the PIP using a MySQL database that is
updated with records describing obligation parameters whenever a change in an obliga-

6

tion state is reported using following form: (Obligation ID, Obligation Subject, Obli-
gation Object, Obligation Action, Time, Obligation State). This database is queried by
the PDP during access requests to fetch information related to the obligations status or
related to obligations violation/fulfillment.

d) Update module component: The update module is triggered by aspects in each
obligation state change and it updates the PIP with obligations state attributes.

e) Extended PDP: To extend Sun’s XACML implementation with a PDP that sup-
ports the new types and the new attributes that we have defined in this work, we have
extended XACML standard factory 5 with our new factory.

f) Timer: We use a Java timer to implement a timer that starts when the activation
context starts, the violation context starts when the timer expires and the obligation is
not fulfilled.

 PIP Attributes

 AMS Application

XACML Policy

XACML
Request

Inactive

Active

Violated

Fulfilled

Obligation Manager

Update
Module

XACML
Response

Access
Request

Response

PIP
Query

PEP interaction with
the obligation manager to
monitor obligations states

Timer

PIP
Attributes Update

PEP PEP

PEP

PDP

Aspects

Fig. 3. OB-XACML Workflow

5 Related Work

In the last few years, several research initiatives have motivated the support of obliga-
tions in XACML at the level of XACML language and architecture. In [6], the authors
have proposed a framework and a supporting language extending XACML to take into
consideration UCON features. They have thus added some identifiers to XACML refer-
ence language to support mutability of attributes and identifiers to handle the different
access phases, thus taking into consideration the continuity of access features in UCON
model. The work presented in [7] [8] follows the same direction and aims at enriching
XACML model to take into consideration UCON features by adding the identifier in the

5 http://sunxacml.sourceforge.net/guide.html

7

condition element to distinguish between pre-obligations, ongoing and post-obligations.
The element AttrUpdates is added to reason about attributes update and an XML re-
trieval policy has been introduced to specify where the attributes have to be retrieved
for update. In [2], the authors have proposed a language and an underlying architecture
to handle obligations. Obligations are commonly defined as application-specific and
thus their handling is left to the platform that manages them. Their proposed obligation
schema includes a list of event families that categorize events types interacting with an
obligation. To the best of our knowledge, our XACML extend model is a first initiative
that considers the user’s history of obligation violation/fulfillment information at the
decision making time.

6 Conclusion

The work that we are in presenting in this paper goes in a research direction that we are
currently investigating, which spans over policy-based software architectures and par-
ticularly those that are based on XACML [9,10]. In this paper, we propose a syntax to
support obligation polices in XACML and an extension of the standard XACML archi-
tecture to take into consideration obligations states and information related to their vio-
lation/fulfillment in the decision making process. The changes that we have introduced
at the level of XACML architecture do not require to perform many modifications at the
level of XACML reference model, which eases the adoption of OB-XACML. Our per-
spectives to extend this work are twofold: (1) At the level of XACML policy language,
we plan to extend the language and to define a priority order between obligations so that
the PEP is able to handle obligations returned by the PDP according to the obligations
priority strategy stated in the policy. (2) At the level of OB-XACML model, we need to
analyze the impact of messages exchange between the PEP and the PIP on the overall
performance of real-life policy-based systems.

References
1. X. Zhang, “Formal model and analysis of usage control,” Ph.D. dissertation, 2006.
2. N. Li, H. Chen, and E. Bertino, “On practical specification and enforcement of obligations,”

in CODASPY, 2012, pp. 71–82.
3. Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia, “Formal enforcement and management

of obligation policies,” Data Knowl. Eng., 2012.
4. Y. Elrakaiby, T. Mouelhi, and Y. L. Traon, “Testing obligation policy enforcement using

mutation analysis,” in ICST, 2012, pp. 673–680.
5. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin,

“Aspect-oriented programming,” in ECOOP, 1997, pp. 220–242.
6. U. e Ghazia, R. Masood, M. A. Shibli, and M. Bilal, “Usage control model specification in

xacml policy language,” in CISIM, 2012, pp. 68–79.
7. F. M. Maurizio Colombo, Aliaksandr Lazouski and P. Mori, “A proposal on enhancing xacml

with continuous usage control features,” in Grids, P2P and Services Computing, 2010.
8. A. Lazouski, F. Martinelli, and P. Mori, “A prototype for enforcing usage control policies

based on xacml,” in TrustBus, 2012, pp. 79–92.
9. D. E. Kateb, T. Mouelhi, Y. L. Traon, J. Hwang, and T. Xie, “Refactoring access control

policies for performance improvement,” in ICPE, 2012, pp. 323–334.
10. J. Hwang, T. Xie, D. E. Kateb, T. Mouelhi, and Y. L. Traon, “Selection of regression system

tests for security policy evolution,” in ASE, 2012, pp. 266–269.

8

