Ann Math Artif Intell (2016) 78:3-20 @ CrossMark
DOI 10.1007/510472-016-9508-8

Synthesis with rational environments

Orna Kupferman' - Giuseppe Perelli? - Moshe Y. Vardi®

Published online: 21 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Synthesis is the automated construction of a system from its specification. The
system has to satisfy its specification in all possible environments. The environment often
consists of agents that have objectives of their own. Thus, it makes sense to soften the
universal quantification on the behavior of the environment and take the objectives of its
underlying agents into an account. Fisman et al. introduced rational synthesis: the problem
of synthesis in the context of rational agents. The input to the problem consists of tem-
poral logic formulas specifying the objectives of the system and the agents that constitute
the environment, and a solution concept (e.g., Nash equilibrium). The output is a profile of
strategies, for the system and the agents, such that the objective of the system is satisfied
in the computation that is the outcome of the strategies, and the profile is stable according
to the solution concept; that is, the agents that constitute the environment have no incentive
to deviate from the strategies suggested to them. In this paper we continue to study ratio-
nal synthesis. First, we suggest an alternative definition to rational synthesis, in which the

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
278410, by the Israel Science Foundation (grant 1229/10), and by the US-Israel Binational Science
Foundation (grant 2010431).

Work partially done when the author was a Ph.D. student at the Universita degli Studi di Napoli
Federico II and while visiting Rice University. Research partially supported by the ERC Advanced
Grant RACE (291528) at Oxford.

NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer Augmented Program
Engineering

P< Giuseppe Perelli
perelli.gi @gmail.com

The Hebrew University, Jerusalem, Israel
2 University of Oxford, Oxford, UK

3 Rice University, Houston, TX, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10472-016-9508-8-x&domain=pdf
mailto:perelli.gi@gmail.com

4 O. Kupferman et al.

agents are rational but not cooperative. We call such problem strong rational synthesis. In
the strong rational synthesis setting, one cannot assume that the agents that constitute the
environment take into account the strategies suggested to them. Accordingly, the output is
a strategy for the system only, and the objective of the system has to be satisfied in all the
compositions that are the outcome of a stable profile in which the system follows this strat-
egy. We show that strong rational synthesis is 2EXPTIME-COMPLETE, thus it is not more
complex than traditional synthesis or rational synthesis. Second, we study a richer speci-
fication formalism, where the objectives of the system and the agents are not Boolean but
quantitative. In this setting, the objective of the system and the agents is to maximize their
outcome. The quantitative setting significantly extends the scope of rational synthesis, mak-
ing the game-theoretic approach much more relevant. Finally, we enrich the setting to one
that allows coalitions of agents that constitute the system or the environment.

Keywords Synthesis - Multi-agent systems - Formal methods - Logics for games

Mathematics Subject Classification (2010) 68

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic idea
is simple and appealing: instead of developing a system and verifying that it adheres to its
specification, we would like to have an automated procedure that, given a specification, con-
structs a system that is correct by construction. The first formulation of synthesis goes back
to Church [12]; the modern approach to synthesis was initiated by Pnueli and Rosner, who
introduced LTL (linear temporal logic) synthesis [26]. The LTL synthesis problem receives
as input a specification in LTL and outputs a reactive system modeled by a finite-state
transducer satisfying the given specification — if such exists. It is important to distinguish
between input signals, assigned by the environment, and output signals, assigned by the sys-
tem. A system should be able to cope with all values of the input signals, while setting the
output signals to desired values [26]. Therefore, the quantification structure on input and
output signals is different. Input signals are universally quantified while output signals are
existentially quantified.

Modern systems often interact with other systems. For example, the clients interacting
with a server are by themselves distinct entities (which we call agents) and are many times
implemented by systems. In the traditional approach to synthesis, the way in which the envi-
ronment is composed of its underlying agents is abstracted. In particular, the agents can be
seen as if their only objective is to conspire to fail the system. Hence the term “hostile envi-
ronment” that is traditionally used in the context of synthesis. In real life, however, often
agents have objectives of their own, other than to fail the system. The approach taken in the
field of algorithmic game theory [24] is to assume that agents interacting with a computa-
tional system are rational, i.e., agents act to achieve their own objectives. Assuming agents’
rationality is a restriction on the agents behavior and is therefore equivalent to softening
the universal quantification on the environment.! Thus, the following question arises: can

IEarly work on synthesis has realized that the universal quantification on the behaviors of the environment
is often too restrictive. The way to address this point, however, has been by adding assumptions on the
environment, which can be part of the specification (cf., [9]).

@ Springer

Synthesis with rational environments 5

system synthesizers capitalize on the rationality and objectives of agents interacting with
the system?

In [14], Fisman et al. positively answered this question by introducing and studying
rational synthesis. The input to the rational synthesis problem consists of LTL formulas
specifying the objectives of the system and the agents that constitute the environment, and a
solution concept, e.g., dominant strategies, Nash Equilibria, and the like. The atomic propo-
sitions over which the objectives are defined are partitioned among the system and the
agents, so that each of them controls a subset of the propositions. The desired output is a
strategy profile such that the objective of the system is satisfied in the computation that is
the outcome of the profile, and the agents that constitute the environment have no incentive
to deviate from the strategies suggested to them. Fisman et al. showed that there are spec-
ifications that cannot be realized in a hostile environment but are realizable in a rational
environment. Moreover, the rational synthesis problem for LTL and common solution con-
cepts used in game theory can be solved in 2EXPTIME, thus its complexity coincides with
that of usual synthesis.

In [17], we continued the study of rational synthesis and in this paper we extend those
results. We present the following contributions. First, we suggest a strong definition of ratio-
nal synthesis, in which the agents are rational but not cooperative. Second, we study a richer
specification formalism, where the objectives of the system and the agents are not Boolean
but quantitative. Third, we enrich the setting to one that allows coalitions of agents that con-
stitute the system or the environment. Finally, we show that all these variants of the rational
synthesis problems can be reduced to model checking in fragments of Strategy Logic [20,
22]. Before we describe our contributions in more detail, let us highlight a different way to
consider rational synthesis and our contribution here. Mechanism design is a field in game
theory and economics studying the design of games whose outcome (assuming agents ratio-
nality) achieves some goal [23, 24]. The outcome of traditional games depends on the final
position of the game. In contrast, the systems we reason about maintain an on-going inter-
action with their environment, and we reason about their behavior by referring not to their
final state (in fact, we consider non-terminating systems, with no final state) but rather to
the language of computations that they generate. Rational synthesis can be viewed as a vari-
ant of mechanism design in which the game is induced by the objective of the system, and
the objectives of both the system and the agents refer to their on-going interaction and are
specified by temporal logic formulas. Our contributions here correspond to the classic set-
ting assumed in mechanism design: the agents need not be cooperative, and the outcome is
not Boolean.

We argue that the definition of rational synthesis in [14] is cooperative, in the sense
that the agents that constitute the environment are assumed to follow the strategy profile
suggested to them (as long as it is in an equilibrium). Here, we consider also a strong setting,
in which the agents that constitute the environment may follow any strategy profile that is in
an equilibrium, and not necessarily the one suggested to them by the synthesis algorithm. In
many scenarios, the rational synthesis setting is indeed too optimistic, as the system cannot
assume that the environment, even if it is rational, would follow a suggested strategy, rather
than a strategy that is as good for it. Moreover, sometimes there is no way to communicate
with the environment and suggest a strategy for it. From a technical point of view, we show
that the strong rational synthesis setting requires reasoning about all possible equilibria,
yet, despite this more sophisticated reasoning, it stays 2EXPTIME-COMPLETE. We achieve
the upper bound by reducing rational synthesis to the model-checking problem for Strategy
Logic (SL, for short). SL is a specification formalism that allows to explicitly quantify
over strategies in games as first-order objects [10]. While the model-checking problem for

@ Springer

6 O. Kupferman et al.

strategy logic is in general non-elementary, we show that it is possible to express rational
synthesis in the restricted Nested-Goal fragment of SL, introduced in [20], which leads
to the desired complexity. It is important to observe the following difference between the
non-strong and the strong settings. In the non-strong one, we synthesize strategies for all
agents, with the assumption that the agent that corresponds to the system always follows his
suggested strategy and the agents that constitute the environment decide in a rational manner
whether to follow their strategies. On the other hand, in the strong setting, we synthesize a
strategy only for the agent that corresponds to the system, and we assume that the agents
that constitute the environment are rational, thus the suggested strategy has to win against
all rational behaviors of the environment.

Recall that we study rational synthesis for different solution concepts in game theory. The
most popular concept is Nash equilibrium, where a profile is in an equilibrium if no agent
has an incentive to deviate from his strategy provided that the other agents stay with their
strategies. A weakness of Nash equilibrium is that it is not stable: if one of the other agents
deviates from his strategy, nothing is guaranteed. We address this weakness by formalizing
and studying rational synthesis in the presence of coalitions. There, we allow settings in
which the system and the environment are both composed of several agents that cooperate
against the coalition of the other agents. We show that even this richer setting can be reduced
to the Nested-Goal fragment of SL.

We then turn to address a weakness of the classical synthesis problem, a weakness that is
more apparent in the rational setting. In classical synthesis, the specification is Boolean and
describes the expected behavior of the system. In many applications, systems can satisfy
their specifications at different levels of quality. Thus, synthesis with respect to Boolean
specifications does not address designers’s needs. This latter problem is a real obstacle, as
designers would be willing to give up manual design only after being convinced that the
automatic procedure that replaces it generates systems of comparable quality. In the last
years we see a lot of effort on developing formalisms that would enable the specification of
such quality measures [2, 6].

Classical applications of game theory consider games with quantitative payoffs. In the
Boolean setting, we assumed that the payoff of an agent is 1, if its objective is satisfied,
and is 0 otherwise. In particular, this means that agents whose objectives are not satisfied
have no incentive to follow any strategy, even if the profile satisfies the solution concept. In
real-life, rational objectives are rarely Boolean. Thus, even beyond our goal of synthesizing
systems of high quality, the extension of the synthesis problem to the rational setting calls
also for an extension to a quantitative setting. Unfortunately, the full quantitative setting is
undecidable already in the context of model checking [16]. In [14], Fisman et al. extended
rational synthesis to objectives in the multi-valued logic LLTL, where specifications take
truth values from a finite lattice.

We introduce here a new quantitative specification formalism, termed Objective LTL,
(OLTL, for short). We first define the logic, and then study its rational synthesis. Essentially,
an OLTL specification is a pair 8 = (W, f), where ¥ = (Y1, ¥, ..., ¥p) is a tuple of
LTL formulas and f : {0, 1} — Z is a reward function, mapping Boolean vectors of
length m to an integer. A computation n then maps 6 to a reward in the expected way,
according to the subset of formulas that are satisfied in 5. In the rational synthesis problem
for OLTL, the input consists of OLTL specifications for the system and the other agents, and
the objective of the system is to maximize its reward with respect to environments that are in
an equilibrium. Again, we distinguish between a non-strong and a strong setting. Note that
the notion of an equilibrium in the quantitative setting is much more interesting, as it means
that all agents in the environment cannot expect to increase their payoffs. We show that

@ Springer

Synthesis with rational environments 7

the quantitative setting is not more complex than the non-quantitative one, thus quantitative
rational synthesis is complete for EXPTIME in both the non-strong and strong settings.

2 Preliminaries
2.1 Games

A concurrent game structure (CGS, for short) [4] is a tuple G S (D, 2, (A))icq, S, where
@ and Q = {«p, ..., g} are finite sets of atomic propositions and agents, «; are disjoint
sets of actions, one for each agent «;, S is a finite set of states, so € S is a designated
initial state, and A : S — 2% is a labeling function that maps each state to the set of atomic

. . A . . .
propositions true in that state. By A = ;. @ we denote the union of all possible actions

for all the agents. Let D 2 Ag X ... X Ag be the set of decisions, i.e., (k + 1)-tuples of
actions representing the choices of an action for each agent. Then, 7 : S x D — Sisa
deterministic transition function mapping a pair of a state and a decision to a state.

A path in a CGS G is an infinite sequence of states n = 70 - nl -... € S® that agrees
with the transition function, i.e., such that, for all i € N, there exists a decision d € D such
that ni + 1 = t(ni, d). A track in a CGS G is a prefix p of a path 7, also denoted by n< n,
for a suitable n € N. A track p is non-trivial if |p| > 0,2 i.e., p # &. We use Pth C S®
and Trk C ST to denote the set of all paths and non-trivial tracks, respectively. Also, for
agiven s € S, we use Pth® and Trk® to denote the subsets of paths and tracks starting
from s € S. Intuitively, the game starts in the state so and, at each step, each agent selects
an action in its set. The game then deterministically proceeds to the next state according to
the corresponding decision. Thus, the outcome of a CGS is a path, regulated by individual
actions of the agents.

A strategy for Agent «; is a tool used to decide which decision to take at each phase
of the game. Formally, it is a function 77; : Trk — «; that maps each non-trivial track to
a possible action of Agent «;. By I1; we denote the set of all possible strategies for agent
a;. A strategy profile is a (k 4+ 1)-tuple P = (7o, ..., mx) € Ilg x ... x I that assigns a

strategy to each agent. We denote by P 2 ITg x ... x Ik the set of all possible strategy
profiles. Moreover, given a strategy profile P and a set of strategies P4, one per each agent
a in A, by P[A < P[A]] we denote the strategy profile obtained from P by replacing for
agents in A, the strategies given in P[A].

For a strategy profile P and a state s, we use n = play(P, s) to denote the path that
is the outcome of a game that starts in s and agrees with P, i.e., for all i € N, it holds
that n[i + 1] = = (nli], d[i]), where d[i] = (mo(n[< i), ..., m(n[= i])). By play(P) =
play(P, so) we denote the unique path starting from so obtained from P.

We model reactive systems by deterministic transducers. A fransducer is a tuple T =
(I, O, S, 50, 8,L), where I is a set of input signals assigned by the environment, O is a set
of output signals, assigned by the system, S is a set of states, so is an initial state, § :
S x 2! — Sisa transition function, and L : S — 2% isa labeling function. When the system
is in state s € S and it reads an input assignment o € 2!, it changes its state to s’ = 8(s, o)
where it outputs the assignment L(s"). Given a sequence ¢ = 01,02,03,... € @2he of
inputs, the execution of T on @ is the sequence of states so, s1, 52, ... such that for all

sz |p| we denote the length of p, classically defined.

@ Springer

8 O. Kupferman et al.

j = 0, we have s;+1 = 8(sj, 0;). The computation n € (2' x 29)® of S on ¢ is then
(L(s0), 01), (L(s1), 02), (L(52), 03),

2.2 Strategy logic

Strategy Logic [21, 22] (SL, for short) is a logic that allows to quantify over strategies in
games as explicit first-order objects. Intuitively, such quantification, together with a syn-
tactic operator called binding, allows us to restrict attention to restricted classes of strategy
profiles, determining a subset of paths, in which a temporal specification is desired to be
satisfied. Since nesting of quantifications and bindings is possible, such temporal specifica-
tions can be recursively formulated by an SL subsentence. From a syntactic point of view,
SL is an extension of LTL with disjoint sets of strategy variables Vary, . .., Varg, where Var;
is a set of strategy variables for Agent «;, existential ({((x;))) and universal ([x;]) strategy
quantifiers, and a binding operator of the form («;, x;) that couples an agent ¢; with one of
its variables x; € Var;.

We first introduce some technical notation. For a tuple t = (¢, ..., t), by t[i < d]
we denote the tuple obtained from ¢ by replacing the i-th component with d. We use X as
an abbreviation for the tuple (xg, ..., xx) € Varg X ... x Varg. By (X)) = (xo)) ... {(xx),
X7 = [xoll...[[xx], and b(X) = (o, xo) - . . (ak, xx) we denote the existential and uni-
versal quantification, and the binding of all the agents to the strategy profile variable X,
respectively. Finally, by b(X_;, y;) = (a0, x0) ... (i, ¥i) . .. (o, x;) we denote the chang-
ing of binding for Agent «; from the strategy variable x; to the strategy variable y; in the
global binding b(X).

Here we define and use a slight variant of the Nested-Goal fragment of SL, namely
SL[NG], introduced in [20]. Formulas in SL[NG] are defined with respect to a set @ of
atomic proposition, a set 2 of agents, and sets Var; of strategy variables for Agent «; € Q.
The set of SL[NG] formulas is defined by the following grammar:

pu=pl-@leAgleVvelXeloUg|eRe| (x)e | [xIe | bX)e,
where, p € @ is an atomic proposition, x; € Var; is a variable, and X € Varg x ... x Varg
is a tuple of variables, one for each agent.

The LTL part has the classical meaning. The formula {(x;))¢ states that there exists a
strategy for Agent «; such that the formula ¢ holds. The formula [[x;]l¢ states that, for
all possible strategies for Agent «;, the formula ¢ holds. Finally, the formula b(X)¢ states
that the formula ¢ holds under the assumption that the agents in Q2 adhere to the strategy
evaluation of the variable x; coupled in b(X).

As an example, {(xo)) [t N2 1@) (pU @) v [yoll(y1) (v2)b ()G F p A G—=g) is an
SL[NG] formula stating that either the system «q has a strategy xo to enforce pU g, no
matters what the environment agents «[1] and «[2] do, or, for all possible behaviors yy of
the system, the environment agents «[1] and «[2] have strategies y; and y, to enforce both
GF pand G —q.

We denote by free(g) the set of strategy variables occurring in ¢ but not in a scope of a
quantifier. A formula ¢ is closed if free(¢) = @.

Similarly to the case of first order logic, an important concept that characterizes the
syntax of SL is the one of alternation depth of quantifiers, i.e., the maximum number of
quantifier switches {(x;)[[x;]l, [[x;]1{(x;)), in the formula. A precise formalization of the
concepts of alternation depth can be found in [21, 22].

Now, in order to define the semantics of SL, we use the auxiliary concept of assignment.
Let Var = Uf:o Var; be a set of variables for the agents in €2, an assignment is a function
x : Var U Q — [T mapping variables and agents to a relevant strategy, i.e., for all o; € Q

@ Springer

Synthesis with rational environments 9

A s

and x; € Var;, we have that x (o), x(x;) € II;. Let Asg = MYaY2 denote the set of all
assignments. For an assignment x and elements / € Var U 2, we use x[l — 7] € Asgto
denote the new assignment that returns 7 on / and the value of x on the other ones, i.e.,

NI E 0 27 and x[l— w1 2 x (1)), for all I’ e (VarU Q)\{/}. By play(x, s) we denote
the path play(P, s), for the strategy profile P that is compatible with x.

We now describe when a given game G and a given assignment x satisfy an SL formula
@, where dom(y)3 = free(p) U Q. We use G, x, s = ¢ to indicate that the path play(x, s)
satisfies ¢ over the CGS G. For ¢ in LTL, the semantics is as usual [19]. For the other
operators, the semantics is as follows.

1. G, x,s &= {x;)e if there exists a strategy 7r; for «; such that G, x[x; — 7;], s = ¢;
2. G, x,s E [[xillg if, for all strategies 7; for «;, it holds that G, x [x; > 71, s = ¢;
3. G, x,s =b(X)gifitholds that G, x[ag > x0]...[ox = x¢], s = @.

Finally, we say that G satisfies ¢, and write G |= ¢, if there exists an assignment x such
that G, x, so = ¢.

Intuitively, at Items 1 and 2, we evaluate the existential and universal quantifiers over a
variable x; by associating with it a suitable strategy. At Item 3 we commit the agents to use
the strategy contained in the tuple variable X.

Theorem 1 [20] The model-checking problem for SL[NG] is of (d + 1)EXPTIME complex-
ity, with d being the alternation depth of the specification, and of PTIMEcomplexity with
respect to the size of the model.

3 Rational synthesis

We define two variants of rational synthesis. The first, rational synthesis, was introduced
in [14]. The second, strong rational synthesis, is new.

We work with the following model: the world consists of a sysfem and an environment
composed of k agents: «[1], ..., ag. For uniformity, we refer to the system as Agent ag. We
assume that Agent «; controls a set X; of propositions, and the different sets are pairwise
disjoint. At each point in time, each agent sets his propositions to certain values. Let X =
Uo<j<x Xi, and X_; = X\ X;. Each agent ¢; (including the system) has an objective ¢;,
specified as an LTL formula over X.

This setting induces the CGS G[Syn] = (D, @, (A))icq, S defined as follows. The set
of agents Q2 = {«g, a[1], ..., o} consists of the system and the agents that constitute the
environment. The actions of Agent «; are the possible assignments to its variables. Thus,
o; = 2% We use A and A_; to denote the sets 2% and 2%, respectively. The states of the
game record the current assignment to the variables. Hence, S = A, and for all s € S and
(00, ...,01) € A[0] x A[1] x --- x A[k], we have §(s, 00, ..., 0k) = {00, , Ok).

A strategy for the system is a function w9 : Trk — A[0O]. In the standard synthesis
problem, we say that 7 realizes ¢p if, no matter which strategies the agents composing
the environment follow, all the paths in which the system follows g satisfy ¢g. In rational
synthesis, on the contrary, we assume that the agents that constitute the environment are
rational, which softens the universal quantification on the behavior of the environment.

3By dom(f) we denote the domain of the function f.

@ Springer

10 O. Kupferman et al.

Recall that the rational synthesis problem gets a solution concept as a parameter. As
discussed in Section 1, the fact that a strategy profile is a solution with respect to the concept
guarantees that it is not worthwhile for the agents constituting the environment to deviate
from the strategies assigned to them. Several solution concepts are studied and motivated in
game theory. Here, we focus on the concepts of dominant strategy and Nash equilibrium,
defined below.

The common setting in game theory is that the objective for each agent is to maximize
his payoff — a real number that is a function of the outcome of the game. We use payoff; :
Pth — Rto denote the payoff function of Agent ;. That is, payoff; assigns to each possible
path n a real number payoff; (1) expressing the payoff of «; on 7. For a strategy profile P,
we use payoff; (P) to abbreviate payoff; (play(P, so)). In the case of an LTL objective v;, we
define payoff;(n) = 1 if n = v¥; and payoff; () = 0, otherwise.

3.1 Solution concepts

The simplest and most appealing solution concept is dominant-strategies solution [25]. A
dominant strategy is a strategy that maximizes agent’s payoff, regardless of the strategies
of the other agents. Therefore, if there is a profile of strategies P = (my, ..., mx) in which
all strategies 7r; are dominant, then no agent has an incentive to deviate from the strategy
assigned to him in P. Formally, P is a dominant strategy profile if for every 1 <i < k and
for every (other) profile P’, we have that payoff; (P") < payoff;(P'[i < m;]).

As an example, consider the game in Fig. 1a, played by three agents, Alice, Bob, and
Charlie, whose actions are {aj, a>}, {by, b>}, and {cy, ¢}, respectively. The arrows are
labeled with the possible actions of the agents. Each agent wants to visit a state marked with
his initial letter, infinitely often. In this game, the strategy for Alice of always choosing a;
on node 0 is dominant. Indeed, no matter what is the choice for the other players, the exe-
cution hits infinitely often a state labeled with an a, thus satisfying Alice’s objective. On the
other hand, Bob and Charlie have no dominant strategies, since their objectives depend in a
decisive way on the strategies adopted by Alice. In several games, it can happen that agents
have no dominant strategy. For this reason, one would consider also other kinds of solution
concepts.

Another well known solution concept is Nash equilibrium [25]. A strategy profile is a
Nash equilibrium if no agent has an incentive to deviate from his strategy in P provided
that the other agents adhere to the strategies assigned to them in P. Formally, P is a Nash
equilibrium profile if for every 1 < i < k and for every (other) strategy 7/ for agent a;, we
have that payoff; (P[i <— 7/]) < payoff;(P). An important advantage of Nash equilibrium

VRN
a1
®/
77N
c1 c2 by
/ N ®/
(a) The game (b) Nash equilibrium

Fig. 1 A game and a Nash Equilibrium on it

@ Springer

Synthesis with rational environments 11

is that it is more likely to exist than an equilibrium of dominant strategies [25].% As an
example, consider again the game in Fig. 1a and the strategy profile illustrated by the non-
dotted arrows as in Fig. 1b, i.e., players a, b and ¢ pick the actions aj, b; and c1, respectively.
It is easy to see that it is a Nash Equilibrium. Indeed, players a and c reach a winning point,
while player b, assuming the other players adhere to their strategies, can never improve his
payoff, as his winning point is never reachable.

For the case of repeated-turn games like infinite games, a suitable refinement of Nash
Equilibria is the Subgame perfect Nash-equilibrium [27] (SPE, for short). A strategy profile
P = (mo,...,mx) is an SPE if for every possible history of the game, no agent ¢; has
an incentive to deviate from her strategy mr;, assuming that the other agents follow their
strategies in P. Intuitively, an SPE requires the existence of a Nash Equilibrium for each
subgame starting from any possible finite path of the original one. In [14], the authors have
studied rational synthesis also for the solution concept of SPE. To do this, the synthesis
algorithm in [14] was extended to consider all possible histories of the game. In SL such
a path property can be expressed combining strategy quantifiers with temporal operators.
Indeed, the formula ¢ = [[X]Ib(X)G ¥ (¥), with free(p) = ¥, states that, for all possible
strategy profile the agents can follow, the game is always in a position in which the formula
¥ (¥) holds. Thus, for all possible paths that can be generated by agents, the property holds.
By replacing v (y) with the above formula, we then obtain a formula that represents SPEs.
Hence, the non-strong and strong synthesis problems can be asserted in SL also for SPE,
and our results hold also for this solution concept.

A weakness of Nash equilibrium is that it is not nearly as stable as a dominant-strategy
solution: if one of the other agents deviates from his assigned strategy, nothing is guaran-
teed. Indeed, consider again the game in Fig. 1 and the Nash Equilibrium described above.
If players a and b collaborate, they can improve the payoff of b by taking the action a; and
b, respectively. So, NE is not expressive enough to handle coalitions and to identify devia-
tions due to collaborations among agents. To handle also this case, the concept of i-resilient
has been introduced [5, 15]. A strategy profile P is a h-resilient equilibrium if it tolerates
deviations of up to & players in the game. Formally, for all sets A € Q with |A| < &,
and for all sets of strategies P[A], it holds that payoff; (P[A < P[A]]) < payoff; (P), for all
i € A. In the case that deviation from a given strategy profile is unavoidable, it may happen
that such deviation affects the non deviating agents payoff. Indeed, in the case the agents
a and b deviate from the NE described in Fig. 1b, player c loses. To investigate this prob-
lem, the concept of f-immune equilibrium has been introduced [1, 15]. A strategy profile
P is a t-immune equilibrium if, in the case up to ¢ agents deviate from it, the remaining
ones do not decrease their own payoff. Formally, for all sets A € Q with |A| < ¢, and
for all sets of strategies P[A], it holds that payoff;(P) < payoff;(P[A < P[A]]), for all
ieQ\A.

Clearly, we can combine h-resilient and f-immune equilibria. We say that a strategy
profile P is (%, t)-robust if it is both A-resilient and 7-immune.

According to their definitions, it is not hard to see that, for games with k players, dom-
inant strategies equilibria corresponds exactly to (0, k — 1)-robust equilibria, while NE
corresponds exactly to (1, 0)-robust equilibria.

In rational synthesis, we control the strategy of the system and assume that the agents
that constitute the environment are rational. Consider a strategy profile P = (mo, ..., mx)

“4In particular, all k-agent turn-based games with w-regular objectives have Nash equilibrium [11].

@ Springer

12 O. Kupferman et al.

and a solution concept y (that is, dominant, NE, SPE, k-resilient, or -immune). We say that
P is correct if play(P) satisfies ¢g. We say that P is in a mo-fixed y-equilibrium if the agents
composing the environment have no incentive to deviate from their strategies according to
the solution concept y, assuming that the system continues to follow g. More generally,
we say that P is in a P[A]-fixed y-equilibrium if the agents in & \ A have no incentive to
deviate from their strategies according to the solution concept y, assuming the agents in A
continue to follow the strategies provided in P.

3.2 Formal definition of rational synthesis

In the context of objectives in LTL, we assume the following simple payoffs. If the objective
@; of Agent o; holds, then his payoff is 1, and if ¢; does not hold, then the payoff of Agent i
is 0. Accordingly, P = (mo, ..., m) is in a mp-fixed dominant-strategy equilibrium if for
every | < i < k and profile P' = (71'(’), ...,y with 71'(’) = my, if play(P") | ¢;, then
play(P’[i < 7;]) = ¢;. Also, P is in a Nash-equilibrium if for every 1 < i < k and strategy
/. if play(P[i < 7/]) = ¢;, then play(P) = ¢;.

Definition 1 (Rational synthesis) The input to the rational strategy problem is a set X of
atomic propositions, partitioned into Xo, . .., Xg, LTL formulas ¢o, . .., ¢k, describing the
objectives of the system and the agents composing the environment, and a solution concept
y. We distinguish between two variants of the problem:

1. In Rational synthesis [14], the desired output is a strategy profile P such that play(P)
satisfies ¢ and P is a mo-fixed y -equilibrium.

2. In Strong rational synthesis, the desired output is a strategy o for the system such that
for every strategy profile P that includes m(and is a mp-fixed y-equilibrium, we have
that play(P) satisfies ¢q.

Thus, in the variant of [14], we assume that once we suggest to the agents in the envi-
ronment strategies that are in a y-equilibrium, they will adhere to the suggested strategies.
In the strong variant we introduce here, the agents may follow any strategy profile that is
in a y-equilibrium, and thus we require the outcome of all these profiles to satisfy ¢p. It is
shown in [14] that the rational synthesis problem is 2EXPTIME-COMPLETE.

As a more general case, we can assume that also the system is composed by a set of
agents, rather than a single one. For this case, it makes sense to consider the whole set of
agents divided into two coalitions, one for the system agents, and the other for the environ-
ment ones, both of them having assigned a specific solution concept to deal with. Formally,
we have the following.

Definition 2 (Coalition vs Coalition Rational Synthesis) The input of the Coalition vs
Coalition rational synthesis problem is given by two sets of agents S = {«g,...,a,}
and E = {Bi,..., Bm}, representing the system and the environment, respectively, a
set X of atomic propositions, partitioned into X, ..., Xq,, Xg,, . .. Xg,,, LTL formulas
b1, Un, @1, ..., ¢y describing the objectives of the system and environment coali-
tions, and two solution concepts ys and yg. We distinguish between two variants of the
problem:

1. In Rational synthesis, the desired output is a strategy profile P that is in a P[E]-fixed
ys-equilibrium and in a P[S]-fixed yg-equilibrium.

@ Springer

Synthesis with rational environments 13

2. In Strong rational synthesis, the desired output is a partial strategy profile P[S] for
the system coalition such that for every strategy profile P that extends P[S] and is a
P[S]-fixed yg-equilibrium, we have that it is also a P[E]-fixed ys-equilibrium.

Remark 1 The h-resilient equilibria solution concepts are used to measure the “degree of
stability* of a given strategy profile. Instead of what Definition 2 prescribes, they do not
describe any behavior of a specific coalition, but only that there is no group of size smaller
than a fixed parameter having incentive to cooperatively deviate from the suggested strategy.
We can then combine the coalition rational synthesis with such a kind of equilibria, in order
to obtain a solution concept specification, saying that a given coalition is stable up to &
deviators inside it.

Note that the input to the rational synthesis problem may not have a solution, so when we
solve the rational synthesis problem, we first solve the rational realizability problem, which
asks if a solution exists. As with classical synthesis, the fact that SL model-checking algo-
rithms can be easily modified to return a regular witness for the involved strategies in case
an existentially quantified strategy exists, makes the realizability and synthesis problems
strongly related.

In the following example, we show that Rational Synthesis and Strong Rational Syn-
thesis problems can have different answers on the same instances. We start with the
solution concept of dominant strategies (Example 1), and then continue to Nash Equilibrium
(Examples 2 and 3).

Example 1 Consider the three-player game in which the agents «g (system), «[1] and «[2]
(environment) control {t}, {p, q}, and {r, s}, respectively. Let the players’ objective be ¢y =
Fp)AFr)A(Ft), o1 = (Fp) Vv (Fq), and ¢ = (Fr) Vv (F s), respectively. It is easy to
see that the strategies “eventually play t”, “eventually play p, and “eventually play r* for ap,
a[1], and «[2], respectively, is a solution for the Rational Synthesis problem with dominant
strategies as solution concept. However, also the strategies “eventually play q and never
play p” and “eventually play s and never play r for «[1] and «[2] is a pair of dominant
strategies, no matters what o plays, and ¢ cannot be satisfied. Hence, the Strong Rational
Synthesis has a negative answer.

This difference between Rational Synthesis and Strong Rational Synthesis applies
also in the case the solution concept is the Nash Equilibrium, as the following example
shows.

Example 2 Consider a file-sharing network with the system and an environment consist-
ing of two agents. The system controls the signals d; and d; (Agent «[1] and «[2] can
download, respectively) and it makes sure that an agent can download only when the
other agent has uploaded in the previous step. The system’s objective is that both agents
will upload infinitely often. Agent «[1] controls the signal u; (Agent «[1] uploads), and
similarly for Agent «[2] and u;. The objective of both agents is to download infinitely
often.

Formally, the set of atomic propositions is X = {di, da, uy, uz}, partitioned into Xo =
{d1, d2}, X1 = {u1}, and X5 = {uy}. The objectives of the system and the environment are
as follows.

- @ =G (—u; > X—d)) AG(—up > X—d;) AGFu; AGF uy,

@ Springer

14 O. Kupferman et al.

- @1 =GFdi,
- ¢ =GFds.

First, note that in standard synthesis, ¢ is not realizable, as a hostile environment does
not need to upload. In the rational synthesis setting, the system can suggest to both agents
the following TIT FOR TAT strategy: upload at the first time step, and from that point onward
upload iff the other agent uploads. The system itself follows a strategy mp according to
which it enables downloads whenever possible (that is, do is true whenever Agent «[1]
has uploaded in the previous step, and d; is true whenever Agent «[2] has uploaded in the
previous step). It is not hard to see that the tit for tat strategy profile is a mo-fixed Nash
Equilibrium. Indeed, ¢ and ¢, are satisfied and so agents «[1] and «[2] do not have any
incentive to deviate. Moreover, also ¢y is satisfied. Thus the rational synthesis problem with
Nash Equilibrium as solution concept has a positive answer. What about the strong rational
synthesis? Consider the above strategy 7o of the system, and consider strategies for the
agents that never upload. The tuple of the three strategies is in a mo-fixed Nash equilibrium.
Indeed, assuming the system to hold on g, neither agent «[1] nor «[2] can deviate and get
its objective achieved. Moreover, note that ¢ is not satisfied. This means that the strong
rational synthesis problem has a negative answer.

Example 3 Consider an ATM system composed by two agents o1 and «», controlling the
sets of variables {wy, wp} and {fail}, respectively, and two environment agents 81 and f»,
controlling the variables r; and rp, respectively. The agent oy is in charge of performing
a withdrawal w; for the agent §; whenever it requests by using r;, unless a failure state
fail appears in the execution. Moreover, to make the ATM fair and secure, it cannot allow
withdrawing in case no request has been performed and, after a single occurrence of a
fail signal, has to immediately stop allowing withdrawals forever. We can represent these
properties by Qaiion = Ni_y(G (i — FW)), @hora = Ai— G Wi — X (~w;Ur)),
and ¢4 = F (fail A X G (—=w; A —=w3)). The agent «; is in charge of checking whether
the request flow has not been tricked by a bad behavior of the environment. This is done
by issuing a failure whenever a request of an agent overlaps the withdrawal execution for
the other agent. We can represent this property by means of the formula ¢ raijcheck =

\/142:1 (F (ri A =w;Uri_;) — Ffail) We can specify the setting by the following objectives.

- Qa; = Phota N ((G —fail A Qaiiow) V (ﬂfail),
- Qo = G —fail v P failcheck»

- ¢ =GFwy,

_ (pﬁz = G FW2.

It is easy to see that the objectives are realizable in the model of coalition-vs-coalition
with the solution concept of dominant strategies for the system and a Nash Equilibrium for
the environment. Indeed, agent op has a strategy consisting of always setting fail to false,
unless one of the two environment agents performs a requests during the withdrawal execu-
tion of the other. Furthermore, as far as the variable fail is always false agent o1 can perform
a requested withdrawal for an environment agent. In case fail occurs to be true in some
point, then agent o can always perform no withdrawals to get her objective achieved. On
the other hand, assuming that the system agents are using these strategies, the environment
agents can behave in a way that they never overlap their request, so that their objective is
achieved. Note that an environment strategy for agent 8; cannot be dominant, as player 8,
can deviate in order to make an overlapping request, and the same applies symmetrically

@ Springer

Synthesis with rational environments 15

for player B,. On the other hand, every Nash Equilibrium for the agents 8 and 8, makes
the objectives ¢, and ¢, satisfied. This means that also the strong variant of the problem
has a positive answer.

4 Qualitative rational synthesis

In this section we study rational synthesis and strong rational synthesis and show that they
can be reduced to the model-checking problem for SL[NG]. Both the rational synthesis
problems for several solution concepts can be stated in SL[NG].

We first show how to state that a given strategy profile y = (o, ..., yx) is in a yo-fixed
y-equilibrium. For o; € , let ¢; be the objective of Agent «;. For a solution concept y
and a strategy profile ¥ = (¥, ..., yk), the formula ¢” (¥), expressing that the profile y is
a yo-fixed y-equilibrium, is defined as follows.

— For the solution concept of dominant strategies, we define:
0" () = IEIAZ 0@ = bG—i. y)i)-

— For the solution concept of Nash equilibrium, we define:
0" () = ED Aizy 0G—i, 2091 = DD

— For the solution concept of Subgame Perfect Equilibrium, we define:
" () = [IFIb G0, y0)G Aiy [z 10G—i, z)ei — (P

— For the solution concept of A-resilient, we define:

@7 (y) := X1 /\AgQ;\A|§h(/\ieA(b()_}fA,iA)l//i) - V¥i).
For the solution concept of #-immune, we define:

97 (3) = X1 Aacq: aj=e Nieana W) = PO-A, X))

We can now state the existence of a solution to the non-strong and strong rational
synthesis problem, respectively, with input ¢, . . ., ¢k by the closed formulas:

L @lrs = (o) (1) - (PG (@7 () A go);
2. ¢ ks = (NI . . Iy TP (@” F) — o).

Indeed, the formula 1 specifies the existence of a strategy profile P = (m, ..., m¢) that
is mo-fixed y-equilibrium and such that the outcome satisfies ¢g. On the other hand, the
formula 2 specifies the existence of a strategy mg for the system such that the outcome of
all profiles that are in a mo-fixed y-equilibrium satisfy ¢g.

Analogously to the previous case, we can state the existence of a solution to the
non-strong and strong coalition vs coalition rational synthesis, with input ¢y, ..., ¢,, ¥1,
..., ¥, and two solution concepts ys and yE.

1. w,V;;Z;S = () -)) (D, B (@7 A (975 (X));
2. @I = (1) e)X [DG,) (@7 () — (975 (X)),

As shown above, all the solution concepts we are taking into account can be specified in
SL[NG] with formulas whose length is polynomial in the number of the agents and in which
the alternation depth of the quantification is 1. Hence we can apply the known complexity
results for SL[NG]:

Theorem 2 (Rational synthesis and Strong rational synthesis complexity) The non-strong

and strong rational synthesis and coalition-vs-coalition rational synthesis problems in the
qualitative setting are 2EXPTIME-complete.

@ Springer

16 O. Kupferman et al.

Proof Consider an input ¢, ..., ¢k, X, and y to the rational synthesis or strong rational
synthesis problem. As explained in Section 3, the input induces the game G[Syn] with
nodes in 2% and the SL[NG] formulas wZR g and go,’: oncRs for the rational synthesis and
strong rational synthesis problems, respectively, in a way that a solution exists if and only
if G[Syn] E gog/RS, for the non-strong case, or G[Syn] & goZancRS, for the strong one.
Observe that, G[Syn] is of size exponential w.r.t. the size of the input. For the case of dom-
inant strategies, Nash Equilibria, and Subgame Perfect Nash Equilibria, the upper bound
then follows from the fact that the model checking problem for SL[NG] formulas of alter-
nation depth 1 is in EXPTIME in the size of the formula and PTIME in the size of the model
(Cf., Theorem 1), thus providing an overall complexity of 2EXPTIME.

For the f-immune (resp., h-resilient) case, observe that the related formula is of length
exponential in the size of the input, as it is given by a conjunction ranging over all the possi-
ble sets of agents of size at most ¢ (resp., &). Despite this, the procedure is still of 2EXPTIME
complexity, as the corresponding automaton used to model-check the formula is built in a
way that it universally guesses which of the conjuncts is not satisfied in the structure, which
is yet polynomial in the size of the input. Now, since every conjunction of the formula is of
polynomial size, we get that the whole formula is checked in CONPTIME?EXPTIME which
is equivalent to 2EXPTIME.

Moreover, the model-checking algorithm provided in [20] returns finite-state transducers
that model strategies that are existentially quantified.

For the lower bound, it is easy to see that the classical LTL synthesis problem is a special
case of the non-strong and strong rational synthesis problem. Indeed, ¢ (I, O) is realizable
against a hostile environment iff the solution to the strong rational synthesis problem for a
system that has an objective ¢ and controls / and an environment that consists of a single
agent that controls O and has an objective True, is positive. O

5 Quantitative rational synthesis

As discussed in Section 1, a weakness of classical synthesis algorithms is the fact that spec-
ifications are Boolean and miss a reference to the quality of the satisfaction. Applications of
game theory consider games with quantitative payoffs. Thus, even more than the classical
setting, the rational setting calls for an extension of the synthesis problem to a quantitative
setting. In this section we introduce Objective LTL, a quantitative extension of LTL, and
study an extension of the rational synthesis problem for specifications in Objective LTL. As
opposed to other multi-valued specification formalisms used in the context of synthesis of
high-quality systems [2, 6], Objective LTL uses the syntax and semantics of LTL and only
augments the specification with a reward function that enables a succinct and convenient
prioritization of sub-specifications.

5.1 The quantitative setting

Objective LTL (OLTL, for short) is an extension of LTL in which specifications consist of
sets of LTL formulas weighted by functions. Formally, an OLTL specification over a set
X of atomic propositions is a pair 6 = (W, f), where ¥ = (Y1, ¥, ..., ¥y,) is a tuple of
LTL formulas over X and f : {0, 1}'* — Z is a reward function, mapping Boolean vectors
of length m to integers. We assume that f is given by a polynomial. We use |¥| to denote
Z,’-":l |¥;|. For a computation n € (2X)®, the signature of ¥ in 1, denoted sig(¥, n), is
a vector in {0, 1} indicating which formulas in W are satisfied in n. Thus, sig(V, n) =

@ Springer

Synthesis with rational environments 17

(v1, V2, ..., Uy) is such that for all 1 < i < m, we have that v; = 1 if n &= ¥; and
v; = 0if n & ;. The value of 6 in n, denoted val(@, n) is then f(sig(¥, n)). Thus, the
interpretation of an OLTL specification is quantitative. Intuitively, val(@, n) indicates the
level of satisfaction of the LTL formulas in W in 5, as determined by the priorities induced
by f. We note that the input of weighted LTL formulas studied in [13] is a special case of
Objective LTL.

It is worth to observe that, as the domain of any reward function f : {0, 1}* — Zis a
finite set of size 2™. Then, for a given OLTL specification 8 = (W, f), the set of possible
outcomes is of size at most 2™, thus finite.

Example 4 Consider a system with m buffers, of capacities cy, ..., c,. Let full;, for
1 < i < m, indicate that buffer i is full. The OLTL specification 8 = (W, f), with
W = (Ffully, Ffullp,...,Ffull,) and f(v) = ¢y - vi + -+ 4+ ¢y - v, enables us to give

different satisfaction values to the objective of filling a buffer. Note that val((\, f), n) in a
computation 7 is the sum of capacities of all filled buffers.

Example 5 Consider a system with n agents, each of them having their own OLTL objec-
tives 6; = (W;,f;), with ¥; = (wi,...,w,;i) and f; : {0, 1} — Z. Suppose the
system agent og wants to maximize the overall satisfaction. Then, the OLTL objective
for the system agent is given by (W, fp), with g = Wy, ..., W, and the function
fo : {0, 1}t — 7 is given by fo(Vi, ..., Vu) = > i_, fi(V;). Suppose, instead, the
system wants to ensure that the satisfaction level among the agents is fairly equal. In this
case, it needs to minimize the differences between the satisfaction levels. This can be done

2
by means of the formula fo(V1, ..., Vi) = — X0y (o (i (%) = n - £;07))

In the quantitative setting, the objective of Agent ¢; is given by means of an OLTL spec-
ification 6; = (W;, f;), specifications describe the payoffs to the agents, and the objective
of each agent (including the system) is to maximize his payoff. For a strategy profile P, the
payoff for Agent ; in P is simply val(6;, play(P)).

In the quantitative setting, rational synthesis is an optimization problem. Here, in order
to solve it, we provide a decision version by making use of a threshold. It is clear that the
optimization version can be solved by searching for the best threshold in the decision one.
Indeed, since the possible outcomes are of finite number, we need to perform a check for
the best threshold a finite number of times.

Definition 3 (Quantitative rational synthesis) The input to the quantitative rational strategy
problem is a set X of atomic propositions, partitioned into Xy, . .., Xy, OLTL specifications
6o, 61, ..., 0k, with 6; = (;, f;), and a solution concept y. We distinguish between two
variants of the problem:

1. In quantitative rational synthesis, the desired output for a given threshold z € Z is a
strategy profile P such that payoffy(P) > z and P is in a mp-fixed y-equilibrium.

2. In strong quantitative rational synthesis, the desired output for a given threshold z € Z
is a strategy ;o for the system such that, for each strategy profile P including 7o and
being in a mp-fixed y-equilibrium, we have that payoff,(P) > z.

SWe are denoting the concatenation product of the W;’s.

@ Springer

18 O. Kupferman et al.

Now, we introduce some auxiliary formula that helps us to formulate also the quantitative
rational synthesis problem in SL[NG].

For a tuple W = (¥, ..., ¥,,) of LTL formulas and a signature v = {vy, ..., vy}
€ {0, 1}, let mask(W,v) = (/\;,—0 ~¥i) A (N\isy,=1 ¥i) be the LTL formula that
characterizes the computations 7 for which sig(¥, n) = v.

By means of mask(¥, v), we can adjust the SL formulas ®Y (y) described in Sec-
tion 4 to the quantitative setting. Recall that ®Y (¥) holds iff the strategy profile assigned
to y is in a mo-fixed y-equilibrium. There, the formula is a conjunction over all agents in
{o[1], ..., a}, stating that Agent «; does not have an incentive to change his strategy. In
our quantitative setting, this means that the payoff of Agent ; in an alternative profile is
not bigger than his payoff in y. For two strategy profiles, assigned to y and y’, an SL for-
mula that states that Agent ¢; has no incentive that the profile would change from y to y’
can state that the signature of W in play(y’) results in a payoff to Agent ¢; that is smaller
than his current payoff. Formally, we have that:

(5. ') = Vue(0,17 1,0) <payof, 5) P(F)mask(W; . v).

We can now adjust ®Y(y) for all the cases of solution concepts we are taking into
account.

— For the solution concept of dominant strategies, we define:
— For the solution conEépt of Nash equilibrium, we define:
D7) = Nieqt,..n [EN9 (3, G=i 20))s

— For the solution concept of Subgame Perfect Equilibrium, we define: ®Y(y) :=

.....

— For the solution concept of k-resilient, we define:

QV@) = [[i]] /\AgQ;\A|5k (/\ieA q);?q (5’" (y—A, ZA)));
— For the solution concept of 7-immune, we define:

@7 (5) = (X1 Ancayai= Nieara @i O G-@a)s 2214)))-

Once we adjust ®” (¥) to the quantitative setting, we can use the same SL formula used
in the non-quantitative setting to state the existence of a solution to the rational synthesis
problem.

Theorem 3 The non-strong and strong quantitative rational synthesis problems are
2EXPTIME-COMPLETE.

Proof We can reduce the problems to the model-checking problem of the SL formulas @% s
and QDZ onRks Fespectively. We should, however, take care when analyzing the complexity of
the procedure, as the formulas Cqu (¥, ¥'), which participate in CD% ¢ and CIDZ onRs iNvolve a
disjunction over vectors in {0, 1}, resulting in @Zon rs Of an exponential length.

While the above prevents us from using the doubly exponential known bound on SL[NG]
model checking for formulas of alternation depth 1 as is, it is not difficult to observe that the
run time of the model-checking algorithm in [20], when applied to <I>Zon rs» 18 only doubly
exponential.

Indeed, the extra exponential blow-up in the construction of the automaton Ag in
Lemma 5.6 [20] is given by an exponential number of applications of the disjunction rule.
From that point the automaton requires a doubly exponential check for each disjunction, due
to the innermost construction of the automaton for LTL formulas inside. Hence, the overall
complexity is given by an exponential execution of a doubly exponential procedure, which
is still doubly exponential, and it can return the witnessing strategies.

@ Springer

Synthesis with rational environments 19

Hardness in EXPTIME follows easily from hardness in the non-quantitative setting. [

6 Discussion

The understanding that synthesis corresponds to a game in which the objective of each
player is to satisfy his specification calls for a mutual adoption of ideas between formal
methods and game theory. In rational synthesis, introduced in [14], synthesis is defined in
a way that takes into account the rationality of the agents that constitute the environment
and involves an assumption that an agent cooperates with a strategy to a strategy profile
in which his objective is satisfied. Here and in [17], we extend the idea and consider also
strong rational synthesis, in which agents need not cooperate with suggested strategies and
may prefer different strategies that are at least as beneficial for them.

Many variants of the classical synthesis problem have been studied [7, 8]. It is interesting
to examine the combination of the rational setting with the different variants. To begin
with, the non-strong and strong settings can be combined into a framework in which one
coalition of agents is competing with another coalition of agents, where each coalition is
internally cooperative, but the two coalitions are non-cooperative. Furthermore, we plan to
study rational synthesis with incomplete information. In particular, we plan to study rational
synthesis with incomplete information [18], where agents can view only a subset of the
signals that other agents output, and rational stochastic synthesis [11], which models the
unpredictability of nature and involves stochastic agents that assign values to their output
signals by means of a distribution function. Beyond a formulation of the richer settings, one
needs a corresponding extension of strategy logic and its decision problems.

As discussed in Section 1, classical applications of game theory consider games with
quantitative payoffs. We added a quantitative layer to LTL by introducing Objective- LTL
and studying its rational synthesis. In recent years, researchers have developed more refined
quantitative temporal logics, which enable a formal reasoning about the quality of systems.
In particular, we plan to study rational synthesis for the multi-valued logics LTL[F] [2],
which enables a prioritization of different satisfaction possibilities, and LTL[D] [3], in
which discounting is used in order to reduce the satisfaction value of specifications whose
eventualities are delayed. The rational synthesis problem for these logics induce a game
with much richer profiles, making the search for a stable solution much more challenging.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed Computing Meets Game Theory: Robust
Mechanisms for Rational Secret Sharing and Multiparty Computation. In: Proceedings of the Twenty-
Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, Denver, CO, USA,
July 23-26, 2006, pp. 53-62 (2006). doi:10.1145/1146381.1146393

2. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: ICALP’13, LNCS,
vol. 7966, pp. 15-27 (2013)

3. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: TACAS’ 14, LNCS, vol. 8413, pp. 424—
439. Springer (2014)

4. Alur, R., Henzinger, T., Kupferman, O.: Alternating-Time Temporal logic. JACM 49(5), 672-713 (2002)

@ Springer

http://dx.doi.org/10.1145/1146381.1146393

20

O. Kupferman et al.

10.

11.

12.

13.

20.

21.

22.

23.

24.

. Aumann, R.J.: Acceptable points in general cooperative n-person games. Contributions to the Theory of

Games 4, 287-324 (1959)

. Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better quality in synthesis through quantitative

objectives. In: CAV’09, LNCS, vol. 5643, pp. 140-156. Springer (2009)

. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Pure Nash equilibria in concurrent games. In:

Logical Methods in Computer Science (2015). To appear

. Brenguier, R., Raskin, J.F., Sankur, O.: Assume-admissible synthesis. In. CONCUR ’15, pp. 100-113

(2015)

. Chatterjee, K., Henzinger, T., Jobstmann, B.: Environment Assumptions for Synthesis. In: CONCUR’08,

LNCS, vol. 5201, pp. 147-161. Springer (2008)

Chatterjee, K., Henzinger, T., Piterman, N.: Strategy Logic. In: CONCUR’07, LNCS 4703, pp. 59-73.
Springer (2007)

Chatterjee, K., Majumdar, R., Jurdzinski, M.: On Nash Equilibria in Stochastic Games. In: CSL, LNCS,
vol. 3210, pp. 26-40. Springer (2004)

Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International Congress of
Mathematicians, pp. 23-35. Institut Mittag-Leffler (1963)

Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events. IEEE Trans. Autom.
Control 43(10), 1399-1418 (1998)

. Fisman, D., Kupferman, O., Lustig, Y.: Rational Synthesis. In: TACAS’10, LNCS 6015, pp. 190-204.

Springer (2010)

. Halpern, J.Y.: Beyond Nash equilibrium: solution concepts for the 21st Century. In: Gamesec, pp. 1-3

(2011)

. Henzinger, T.: From boolean to quantitative notions of correctness. In: POPL’10, pp. 157-158. ACM

(2010)

. Kupferman, O., Perelli, G., Vardi, M.Y.: Synthesis with rational environments. In: EUMAS’ 14, pp. 219—

235 (2014). doi:10.1007/978-3-319-17130-2_15

. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. Bull. Symb. Log. 5(2), 245-263 (1999)
. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems - Specification. Springer

(1992)

Mogavero, F., Murano, A., Perelli, G., Vardi, M.: Reasoning about strategies: on the Model-Checking
problem. TOCL 15(4) (2014). doi:10.1145/2631917

Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What Makes ATL* Decidable? a Decidable Fragment
of Strategy Logic. In: CONCUR’12, LNCS, vol. 7454, pp. 193-208 (2012)

Mogavero, F., Murano, A., Vardi, M.: Reasoning about Strategies. In: FSTTCS’ 10, LIPIcs 8, pp. 133-144
(2010)

Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35(1-2), 166-196
(2001)

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University
Press (2007)

. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: POPL’89, pp. 179-190 (1989)
. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J.

Game Theory 4(1), 25-55 (1975)

@ Springer

http://dx.doi.org/10.1007/978-3-319-17130-2_15
http://dx.doi.org/10.1145/2631917

	Synthesis with rational environments
	Abstract
	Introduction
	Preliminaries
	Games
	Strategy logic

	Rational synthesis
	Solution concepts
	Formal definition of rational synthesis

	Qualitative rational synthesis
	Quantitative rational synthesis
	The quantitative setting

	Discussion
	Open Access
	References

