Skip to main content

Spatial Coordination Games for Large-Scale Visualization

  • Conference paper
  • First Online:
  • 1208 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8953))

Abstract

Dimensionality reduction (‘visualization’) is a central problem in statistics. Several of the most popular solutions grew out of interaction metaphors (springs, boids, neurons, etc.) We show that the problem can be framed as a game of coordination and solved with standard game-theoretic concepts. Nodes that are close in a (high-dimensional) graph must coordinate in a (low-dimensional) screen position. We derive a game solution, a GPU-parallel implementation and report visualization experiments in several datasets. The solution is a very practical application of game-theory in an important problem, with fast and low-stress embeddings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \([c]\) denotes a set with \(c \in \mathbb {N^{+}}\) elements.

  2. 2.

    See [1, 12] for a similar derivation and further details on the relationship between the exponential family and the replicator dynamics.

References

  1. Akin, E.: Exponential families and game dynamics. Can. J. Math. XXXIV(2), 374–405 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bae, S., Qiu, J., Fox, G.: Multidimensional scaling by deterministic annealing with iterative majorization algorithm. In: Proceedings of IEEE eScience 2010 Conference (2010)

    Google Scholar 

  3. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. NVIDIA Technical report NVR-2008-004 (2008)

    Google Scholar 

  4. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996)

    Article  Google Scholar 

  5. Doyle, P., Snell, L.: Random walks and electric networks. Carus mathematical monographs. Mathematical Association of America, Washington, D.C (1984)

    MATH  Google Scholar 

  6. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  7. Erdem, A., Pelillo, M.: Graph transduction as a noncooperative game. Neural Comput. 24(3), 700–723 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fisher, R.: The use of multiple measurements in taxonomic problems. Annu. Eugenics, Part II 7, 179–188 (1936)

    Article  Google Scholar 

  9. Hong, Seok-Hee, Eades, Peter: A linear time algorithm for constructing maximally symmetric straight-line drawings of planar graphs. In: Pach, János (ed.) GD 2004. LNCS, vol. 3383, pp. 307–317. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Georgiou, C., Pavlides, T., Philippou, A.: Network uncertainty in selfish routing. In: IPDPS (2006)

    Google Scholar 

  11. Halpern, J. Pearl, J.: Causes and explanations: a structural-model approach. Part I: Causes. In: UAI (2001)

    Google Scholar 

  12. Harper, M.: Information geometry and evolutionary game theory. In: CoRR (2009)

    Google Scholar 

  13. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  14. Howson, J.: Equilibria of polymatrix games. Manag. Sci. 18(5), 312–318 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kobourov, S.: Force-Directed Drawing Algorithms (2012)

    Google Scholar 

  17. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kruskal, J.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2), 115–129 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Lus, H., Aydn, C.O., Keten, S., Unsal, H.I., Atlgan, A.R.: El farol revisited. Physica A Stat. Mech. Appl. 346(3), 651–656 (2005)

    Article  Google Scholar 

  21. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13(1), 111–124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Moere, A.: Time-varying data visualization using information flocking boids. In: Information Visualization (InfoVis) (2004)

    Google Scholar 

  23. Novembre, J., Stephens, M.: Interpreting principal component analyses of spatial population genetic variation. Nat. Genet. 40, 646–649 (2008)

    Article  Google Scholar 

  24. Olfati-Saber, R., Fax, A., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  25. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Reynolds, C.: Flocks, herds, and schools: a distributed behavioral model. In: Computer Graphics, SIGGRAPH, p. 25 (1987)

    Google Scholar 

  27. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  28. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley, Upper Saddle River (2011)

    Google Scholar 

  29. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  30. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  31. Yonggang, L., Weisberg, R., Christopher, M.: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. 111, (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ribeiro, A., Yoneki, E. (2015). Spatial Coordination Games for Large-Scale Visualization. In: Bulling, N. (eds) Multi-Agent Systems. EUMAS 2014. Lecture Notes in Computer Science(), vol 8953. Springer, Cham. https://doi.org/10.1007/978-3-319-17130-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17130-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17129-6

  • Online ISBN: 978-3-319-17130-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics