
ar
X

iv
:1

41
2.

39
76

v1
 [

cs
.D

S]
 1

2
D

ec
 2

01
4

Reconfiguration of Cliques in a Graph

Takehiro Ito1, Hirotaka Ono2, and Yota Otachi3

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.

takehiro@ecei.tohoku.ac.jp
2 Faculty of Economics, Kyushu University,

Hakozaki 6-19-1, Higashi-ku, Fukuoka, 812-8581, Japan.
hirotaka@econ.kyushu-u.ac.jp

3 School of Information Science, JAIST,
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.

otachi@jaist.ac.jp

Abstract. We study reconfiguration problems for cliques in a graph,
which determine whether there exists a sequence of cliques that trans-
forms a given clique into another one in a step-by-step fashion. As one
step of a transformation, we consider three different types of rules, which
are defined and studied in reconfiguration problems for independent sets.
We first prove that all the three rules are equivalent in cliques. We then
show that the problems are PSPACE-complete for perfect graphs, while
we give polynomial-time algorithms for several classes of graphs, such as
even-hole-free graphs and cographs. In particular, the shortest variant,
which computes the shortest length of a desired sequence, can be solved
in polynomial time for chordal graphs, bipartite graphs, planar graphs,
and bounded treewidth graphs.

1 Introduction

Recently, reconfiguration problems attract attention in the field of theoretical
computer science. The problem arises when we wish to find a step-by-step trans-
formation between two feasible solutions of a problem such that all intermediate
results are also feasible and each step abides by a fixed reconfiguration rule (i.e.,
an adjacency relation defined on feasible solutions of the original problem). This
kind of reconfiguration problem has been studied extensively for several well-
known problems, including satisfiability [10], independent set [3, 11, 12,
14, 22], vertex cover [13, 16], clique, matching [12], vertex-coloring [2],
and so on. (See also a recent survey [21].)

C0 C1 C2

v

w

v

w

C3 C4 C5 C6 = Cr

Fig. 1. A sequence 〈C0, C1, . . . , C6〉 of cliques in the same graph, where the vertices in
cliques are depicted by large (blue) circles (tokens).

http://arxiv.org/abs/1412.3976v1

It is well known that independent sets, vertex covers and cliques are related
with each other. Indeed, the well-known reductions for NP-completeness proofs
are essentially the same for the three problems [7]. Despite reconfiguration prob-
lems for independent sets and vertex covers are two of the most well studied
problems, we have only a few known results for reconfiguration problems for
cliques (as we will explain later). In this paper, we thus investigate the complex-
ity status of reconfiguration problems for cliques systematically, and show that
the problems can be solved in polynomial time for a variety of graph classes, in
contrast to independent sets and vertex covers.

1.1 Our problems and three rules

Recall that a clique of a graph G = (V,E) is a vertex subset of G in which every
two vertices are adjacent. (Figure 1 depicts seven different cliques in the same
graph.) Suppose that we are given two cliques C0 and Cr of G, and imagine
that a token is placed on each vertex in C0. Then, we are asked to transform C0

into Cr by abiding a prescribed reconfiguration rule on cliques. In this paper,
we define three different reconfiguration rules on cliques, which were originally
defined as the reconfiguration rules on independents sets [14], as follows:

• Token Addition and Removal (TAR rule): We can either add or remove a single
token at a time if it results in a clique of size at least a given threshold k ≥ 0.
For example, in the sequence 〈C0, C1, . . . , C6〉 in Fig. 1, every two consecutive
cliques follow the TAR rule for the threshold k = 2. In order to emphasize the
threshold k, we sometimes call this rule the TAR(k) rule.

• Token Jumping (TJ rule): A single token in a clique C can “jump” to any
vertex in V \ C if it results in a clique. For example, consider the sequence
〈C0, C2, C4, C6〉 in Fig. 1, then two consecutive cliques C2i and C2i+2 follow
the TJ rule for each i ∈ {0, 1, 2}.

• Token Sliding (TS rule): We can slide a single token on a vertex v in a clique C
to another vertex w in V \C if it results in a clique and there is an edge vw in
G. For example, consider the sequence 〈C2, C4〉 in Fig. 1, then two consecutive
cliques C2 and C4 follow the TS rule, because v and w are adjacent.

A sequence 〈C0, C1, . . . , Cℓ〉 of cliques of a graph G is called a reconfigura-

tion sequence between two cliques C0 and Cℓ under TAR(k) (or TJ, TS) if
two consecutive cliques Ci−1 and Ci follow the TAR(k) (resp., TJ, TS) rule
for all i ∈ {1, 2, . . . , ℓ}. The length of a reconfiguration sequence is defined
to be the number of cliques in the sequence minus one, that is, the length of
〈C0, C1, . . . , Cℓ〉 is ℓ.

Given two cliques C0 and Cr of a graph G (and an integer k ≥ 0 for TAR),
clique reconfiguration under TAR (or TJ, TS) is to determine whether there
exists a reconfiguration sequence between C0 and Cr under TAR(k) (resp., TJ,
TS). For example, consider the cliques C0 and Cr = C6 in Fig. 1; let k = 2 for
TAR. Then, it is a yes-instance under the TAR(2) and TJ rules as illustrated in
Fig. 1, but is a no-instance under the TS rule.

2

In this paper, we also study the shortest variant, called shortest clique

reconfiguration, under each of the three rules which computes the shortest
length of a reconfiguration sequence between two given cliques under the rule.
We define the shortest length to be infinity for a no-instance, and hence this
variant is a generalization of clique reconfiguration.

1.2 Known and related results

Ito et al. [12] introduced clique reconfiguration under TAR, and proved
that it is PSPACE-complete in general. They also considered the optimization
problem of computing the maximum threshold k such that there is a recon-
figuration sequence between two given cliques C0 and Cr under TAR(k). This
maximization problem cannot be approximated in polynomial time within any
constant factor unless P = NP [12].

Independent set reconfiguration is one of the most well-studied re-
configuration problems, defined for independent sets in a graph. Kamiński et
al. [14] studied the problem under TAR, TJ and TS. It is well known that a
clique in a graph G forms an independent set in the complement G of G, and
vice versa. Indeed, some known results for independent set reconfigura-

tion can be converted into ones for clique reconfiguration. However, as far
as we checked, only two results can be obtained for clique reconfiguration

by this conversion, because we take the complement of a graph. (These results
will be formally discussed in Section 3.3.)

In this way, only a few results are known for clique reconfiguration.
In particular, there is almost no algorithmic result, and hence it is desired to
develop efficient algorithms for the problem and its shortest variant.

1.3 Our contribution

In this paper, we embark on a systematic investigation of the computational sta-
tus of clique reconfiguration and its shortest variant. Figure 2 summarizes
our results, which can be divided into the following four parts.

(1) Rule equivalence (Section 3): We prove that all rules TAR, TS and TJ are
equivalent in clique reconfiguration. Then, any complexity result under
one rule can be converted into the same complexity result under the other
two rules. In addition, based on the rule equivalence, we show that clique
reconfiguration under any rule is PSPACE-complete for perfect graphs,
and is solvable in linear time for cographs.

(2) Graphs with bounded clique size (Section 4.1): We show that the shortest
variant under any of TAR, TS and TJ can be solved in polynomial time for
such graphs, which include bipartite graphs, planar graphs, and bounded
treewidth graphs. Interestingly, independent set reconfiguration un-
der any rule remains PSPACE-complete even for planar graphs [2, 11] and
bounded treewidth graphs [22]. Therefore, this result shows a nice difference
between the reconfiguration problems for cliques and independent sets.

3

PSPACE-comp.

[Prop 1]

linear time

[Prop 2]
linear time

[Thm 5]

Faster FPT

[Prop 3]

cograph

perfect

shortest CR is in PCR is in P

Graphs with bounded

clique size [Thm 3]

Graphs with polynomially

many maximal cliques [Thm 4]

bipartite

series-parallel

interval

chordal

planar bounded treewidth

tree

even-hole-free

Fig. 2. Our results under all rules TAR, TS and TJ. Each arrow represents the inclusion
relationship between graph classes: A → B represents that B is properly included in
A [4]. Graph classes for which shortest clique reconfiguration is solvable in
polynomial time are indicated by thick (red) boxes, while the ones for which clique

reconfiguration is solvable in polynomial time are indicated by thin (blue) boxes.

(3) Graphs with polynomially many maximal cliques (Section 4.2): We show that
clique reconfiguration under any of TAR, TS and TJ can be solved in
polynomial time for such graphs, which include even-hole-free graphs, graphs
of bounded boxicity, and Kt-subdivision-free graphs.

(4) Chordal graphs (Section 5): We give a linear-time algorithm to solve the
shortest variant under any of TAR, TS and TJ for chordal graphs. Note that
the clique size of chordal graphs is not always bounded, and hence this result
is independent from Result (2) above.

Several proofs move to appendices.

2 Preliminaries

In this section, we introduce some basic terms and notation.

2.1 Graph notation

In this paper, we assume without loss of generality that graphs are simple. For
a graph G, we sometimes denote by V (G) and E(G) the vertex set and edge
set of G, respectively. For a graph G, the complement G of G is the graph such
that V (G) = V (G) and E(G) = {vw | v, w ∈ V (G), vw 6∈ E(G)}. We say that a
graph class G (i.e., a set of graphs) is closed under taking complements if G ∈ G
holds for every graph G ∈ G.

In this paper, we deal with several graph classes systematically, and hence we
do not define those graph classes precisely; we simply give the properties used
for proving our results, with appropriate references.

2.2 Definitions for clique reconfiguration

As explained in Introduction, we consider three (symmetric) adjacency relations
on cliques in a graph. Let Ci and Cj be two cliques of a graph G. Then,

4

• Ci ↔ Cj under TAR(k) for a nonnegative integer k if |Ci| ≥ k, |Cj | ≥ k, and
|Ci △ Cj | =

∣

∣(Ci \ Cj) ∪ (Cj \ Ci)
∣

∣ = 1 hold;

• Ci ↔ Cj under TJ if |Ci| = |Cj |, |Ci \ Cj | = 1, and |Cj \ Ci| = 1 hold; and

• Ci ↔ Cj under TS if |Ci| = |Cj |, Ci \ Cj = {v}, Cj \ Ci = {w}, and
vw ∈ E(G) hold.

A sequence 〈C1, C2, . . . , Cℓ〉 of cliques of G is called a reconfiguration sequence

between two cliques C1 and Cℓ under TAR(k) (or TJ, TS) if Ci−1 ↔ Ci holds
under TAR(k) (resp., TJ, TS) for all i ∈ {2, 3, . . . , ℓ}. A reconfiguration sequence
under TAR(k) (or TJ, TS) is simply called a TAR(k)-sequence (resp., TJ-sequence,
TS-sequence). We write C1 ! Cℓ under TAR(k) (or TJ, TS) if there exists a
TAR(k)-sequence (resp., TJ-sequence, TS-sequence) between C1 and Cℓ. Note
that each clique in any TAR(k)-sequence is of size at least k, while all cliques
in any TJ-sequence or TS-sequence have the same size. In addition, a reconfig-
uration sequence under any rule is reversible, that is, C1 ! Cℓ if and only if
Cℓ ! C1.

Let k be a nonnegative integer, and let C and C′ be two cliques of a graph
G. Then, we define TAR(C,C′, k), as follows:

TAR(C,C′, k) =

{

yes if C ! C′ under TAR(k);
no otherwise.

Given two cliques C0 and Cr of a graph G and a nonnegative integer k, clique
reconfiguration under TAR is to compute TAR(C0, Cr, k). By the definition,
TAR(C0, Cr, k) = no if |C0| < k or |Cr| < k hold, and hence we may assume
without loss of generality that both |C0| ≥ k and |Cr | ≥ k hold; we call such an
instance simply a TAR-instance, and denote it by (G,C0, Cr, k).

For two cliques C and C′ of a graph G, we similarly define TJ(C,C′) and
TS(C,C′). Given two cliques C0 and Cr of G, we similarly define clique recon-

figuration under TJ and TS, and denote their instance by (G,C0, Cr). Then,
we can assume that |C0| = |Cr| holds in a TJ- or a TS-instance (G,C0, Cr).

Given a TAR-instance (G,C0, Cr, k), let C = 〈C0, C1, . . . , Cℓ〉 be a TAR(k)-
sequence in G between C0 and Cr = Cℓ. Then, the length of C is defined to be
the number of cliques in C minus one, that is, the length of C is ℓ. We denote
by distTAR(G,C0, Cr, k) the minimum length of a TAR(k)-sequence in G between
C0 and Cr; we let distTAR(G,C0, Cr, k) = +∞ if there is no TAR(k)-sequence
in G between C0 and Cr. The shortest variant, shortest clique reconfig-

uration, under TAR is to compute distTAR(G,C0, Cr, k). Similarly, we define
distTJ(G,C0, Cr) and distTS(G,C0, Cr) for a TJ- and a TS-instance (G,C0, Cr),
respectively. Then, shortest clique reconfiguration under TJ or TS is
defined similarly. We sometimes drop G and simply write distTAR(C0, Cr, k),
distTJ(C0, Cr) and distTS(C0, Cr) if it is clear from context.

We note that clique reconfiguration under any rule is a decision problem
asking for the existence of a reconfiguration sequence, and its shortest variant
asks for simply computing the shortest length of a reconfiguration sequence.
Therefore, the problems do not ask for an actual reconfiguration sequence. How-

5

ever, our algorithms proposed in this paper can be easily modified so that they
indeed find a reconfiguration sequence.

3 Rule Equivalence and Complexity

In this section, we first prove that all three rules TAR, TS and TJ are equivalent
in clique reconfiguration. We then discuss some complexity results that
can be obtained from known results for independent set reconfiguration.

3.1 Equivalence of TS and TAR rules

TS and TAR rules are equivalent, as in the following sense.

Theorem 1. TS and TAR rules are equivalent in clique reconfiguration,

as follows:
(a) for any TS-instance (G,C0, Cr), a TAR-instance (G,C′

0, C
′

r, k
′) can be

constructed in linear time such that TS(C0, Cr) = TAR(C′

0, C
′

r, k
′) and

distTS(C0, Cr) = distTAR(C
′

0, C
′

r, k
′)/2; and

(b) for any TAR-instance (G,C0, Cr, k), a TS-instance (G,C′

0, C
′

r) can be con-

structed in linear time such that TAR(C0, Cr, k) = TS(C′

0, C
′

r).

By Theorem 1(a), note that the reduction from TS to TAR preserves the shortest
length of reconfiguration sequences.

Proof of Theorem 1(a). Let (G,C0, Cr) be a TS-instance with |C0| = |Cr| = k.
Then, as the corresponding TAR-instance (G,C′

0, C
′

r, k
′), we let C′

0 = C0, C
′

r =
Cr and k′ = k; this TAR-instance can be clearly constructed in linear time. We
thus prove the following lemma, as a proof of Theorem 1(a).

Lemma 1. Let G be a graph, and let C0 and Cr be any pair of cliques of G such

that |C0| = |Cr| = k. Then, TS(C0, Cr) = TAR(C0, Cr, k) and distTS(C0, Cr) =
distTAR(C0, Cr, k)/2.

Proof of Theorem 1(b). Let (G,C0, Cr, k) be a TAR-instance; note that |C0| 6=
|Cr| may hold, and both |C0| ≥ k and |Cr | ≥ k hold. Then, as the corresponding
TS-instance (G,C′

0, C
′

r), let C′

0 ⊆ C0 and C′

r ⊆ Cr be arbitrary subsets of size
exactly k; this TS-instance can be clearly constructed in linear time. We thus
prove the following lemma, as a proof of Theorem 1(b).

Lemma 2. Let (G,C0, Cr, k) be a TAR-instance, and let C′

0 ⊆ C0 and C′

r ⊆ Cr

be arbitrary subsets of size exactly k. Then, TAR(C0, Cr, k) = TS(C′

0, C
′

r).

3.2 Equivalence of TJ and TAR rules

TJ and TAR rules are equivalent, as in the following sense.

Theorem 2. TJ and TAR rules are equivalent in clique reconfiguration,

as follows:

6

(a) for any TJ-instance (G,C0, Cr), a TAR-instance (G,C′

0, C
′

r, k
′) can be

constructed in linear time such that TJ(C0, Cr) = TAR(C′

0, C
′

r, k
′) and

distTJ(C0, Cr) = distTAR(C
′

0, C
′

r, k
′)/2; and

(b) for any TAR-instance (G,C0, Cr, k), a TJ-instance (G,C′

0, C
′

r) can be con-

structed in linear time such that TAR(C0, Cr, k) = TJ(C′

0, C
′

r).

By Theorem 2(a), note that the reduction from TJ to TAR preserves the shortest
length of reconfiguration sequences.

Proof of Theorem 2(a). Let (G,C0, Cr) be a TJ-instance with |C0| = |Cr| = k.
Then, as the corresponding TAR-instance (G,C′

0, C
′

r, k
′), we let C′

0 = C0, C
′

r =
Cr and k′ = k − 1; this TAR-instance can be clearly constructed in linear time.
We thus prove the following lemma, as a proof of Theorem 2(a).

Lemma 3. Let G be a graph, and let C0 and Cr be any pair of cliques of

G such that |C0| = |Cr | = k. Then, TJ(C0, Cr) = TAR(C0, Cr, k − 1) and

distTJ(C0, Cr) = distTAR(C0, Cr, k − 1)/2.

Proof of Theorem 2(b). Let (G,C0, Cr, k) be a TAR-instance; |C0| 6= |Cr| may
hold, and both |C0| ≥ k and |Cr | ≥ k hold. We first give the following lemma.

Lemma 4. Let (G,C0, Cr, k) be a TAR-instance such that C0 6= Cr. Suppose

that there exists an index j ∈ {0, r} such that |Cj | = k and Cj is a maximal

clique in G. Then, TAR(C0, Cr, k) = no.

Proof. Since Cj is maximal, there is no clique in G which can be obtained by
adding a vertex to Cj . Furthermore, since |Cj | = k, we cannot delete any vertex
from Cj to keep the threshold k. Thus, there is no clique C in G such that
Cj ↔ C under TAR(k). Since C0 6= Cr, we have TAR(C0, Cr, k) = no. ⊓⊔

We thus assume without loss of generality that none of C0 and Cr is a
maximal clique in G of size k; note that the maximality of a clique can be
determined in linear time. Then, we construct the corresponding TJ-instance
(G,C′

0, C
′

r), as in the following two cases (i) and (ii):
(i) for each j ∈ {0, r} such that |Cj | ≥ k + 1, let C′

j ⊆ Cj be an arbitrary
subset of size exactly k + 1; and

(ii) for each j ∈ {0, r} such that |Cj | = k, let C′

j ⊃ Cj be an arbitrary superset
of size exactly k + 1.

This TJ-instance can be clearly constructed in linear time. We thus prove the
following lemma, as a proof of Theorem 2(b).

Lemma 5. Let (G,C0, Cr, k) be a TAR-instance, and let (G,C′

0, C
′

r) be the cor-

responding TJ-instance constructed above. Then, TAR(C0, Cr, k) = TJ(C′

0, C
′

r).

3.3 Results obtained from independent set reconfiguration

We here show two complexity results for clique reconfiguration, which can
be obtained from known results for independent set reconfiguration.

Consider a vertex subset C of a graph G. Then, C forms a clique in G if and
only if C forms an independent set in the complement G of G. Therefore, the
following lemma clearly holds.

7

Lemma 6. Let G be a graph, and let Cj be a clique of G for each j ∈ {0, 1, . . . , ℓ}.
Then, 〈C0, C1, . . . , Cℓ〉 is a TAR(k)-sequence of cliques in G if and only if 〈C0, C1,
. . . , Cℓ〉 is a TAR(k)-sequence of independent sets in the complement G of G.

By Lemma 6 we can convert a complexity result for independent set re-

configuration under TAR for a graph class G into one for clique reconfigu-

ration under TAR for G if the graph class G is closed under taking complements.
Note that, by Theorems 1 and 2, any complexity result under one rule can be
converted into the same complexity result under the other two rules.

Proposition 1. Clique reconfiguration is PSPACE-complete for perfect

graphs under all rules TAR, TS and TJ.

Proposition 2. Clique reconfiguration can be solved in linear time for

cographs under all rules TAR, TS and TJ.

4 Polynomial-Time Algorithms

In this section, we show that clique reconfiguration is solvable in polyno-
mial time for several graph classes. We deal with two types of graph classes, that
is, graphs of bounded clique size (in Section 4.1) and graphs having polynomially
many maximal cliques (in Section 4.2).

4.1 Graphs of bounded clique size

In this subsection, we show that shortest clique reconfiguration can be
solved in polynomial time for graphs of bounded clique size; as we will explain
later, such graphs include bipartite graphs, planar graphs, and graphs of bounded
treewidth. For a graph G, we denote by ω(G) the size of a maximum clique in
G. Then, we have the following theorem.

Theorem 3. Let G be a graph with n vertices such that ω(G) ≤ w for a positive

integer w. Then, shortest clique reconfiguration under any of TAR, TS

and TJ can be solved in time O(w2nw) for G.

It is well known that ω(G) ≤ 4 for any planar graph G, and ω(G′) ≤ 2 for
any bipartite graph G′. We thus have the following corollary.

Corollary 1. Shortest clique reconfiguration under TAR, TS and TJ

can be solved in polynomial time for planar graphs and bipartite graphs.

By the definition of treewidth [1], we have ω(G) ≤ t+1 for any graphG whose
treewidth can be bounded by a positive integer t. By Theorem 3 this observation
gives an O

(

t2nt+1
)

-time algorithm for shortest clique reconfiguration.
However, for this case, we can obtain a faster fixed-parameter algorithm, where
the parameter is the treewidth t, as follows.

8

Proposition 3. Let G be a graph with n vertices whose treewidth is bounded by

a positive integer t. Then, shortest clique reconfiguration under any of

TAR, TS and TJ can be solved for G in time O(ctn), where c is some constant.

Proposition 3 implies that shortest clique reconfiguration under any
of TAR, TS and TJ can be solved in time O(cwn) for chordal graphs G when
parameterized by the size w of a maximum clique in G, where n is the number of
vertices in G and c is some constant; because the treewidth of a chordal graph G
can be bounded by the size of a maximum clique in G minus one [17]. However,
we give a linear-time algorithm to solve the shortest variant under any rule for
chordal graphs in Section 5.

4.2 Graphs with polynomially many maximal cliques

In this subsection, we consider the class of graphs having polynomially many
maximal cliques, which properly contains the class of graphs with bounded clique
size (in Section 4.1). Note that, even if a graph G has a polynomial number of
maximal cliques, G may have a super-polynomial number of cliques.

Theorem 4. Let G be a graph with n vertices and m edges, and let M(G) be

the set of all maximal cliques in G. Then, clique reconfiguration under any

of TAR, TS and TJ can be solved for G in time O
(

mn|M(G)|+ n|M(G)|2
)

.

Before proving Theorem 4, we give the following corollary.

Corollary 2. Clique reconfiguration under TAR, TS and TJ can be solved

in polynomial time for even-hole-free graphs, graphs of bounded boxicity, and

Kt-subdivision-free graphs.

Proof. By Theorem 4 it suffices to show that the claimed graphs have polyno-
mially many maximal cliques. Polynomial bounds on the number of maximal
cliques are shown for even-hole-free graphs in [5], for graphs of bounded boxicity
in [18], and for Kt-subdivision-free graphs in [15]. ⊓⊔

In this subsection, we prove Theorem 4. However, by Theorems 1(a) and 2(a)
it suffices to give such an algorithm only for the TAR rule.

Let (G,C0, Cr, k) be any TAR-instance. Then, we define the k-intersection
maximal-clique graph of G, denoted by MCk(G), as follows:

(i) each node in MCk(G) corresponds to a clique in M(G); and
(ii) two nodes in MCk(G) are joined by an edge if and only if |M ∩M ′| ≥ k

holds for the corresponding two maximal cliques M and M ′ in M(G).
Note that any maximal clique inM(G) of size less than k is contained in MCk(G)
as an isolated node. We now give the key lemma to prove Theorem 4.

Lemma 7. Let G be a graph, and let C and C′ be any pair of cliques in G such

that |C| ≥ k and |C′| ≥ k. Let M ⊇ C and M ′ ⊇ C′ be arbitrary maximal cliques

in M(G). Then, C ! C′ under TAR(k) if and only if MCk(G) contains a path

between the two nodes corresponding to M and M ′.

9

Proof of Theorem 4.
For any graph G with n vertices and m edges, Tsukiyama et al. [19] proved

that the set M(G) can be computed in time O
(

mn|M(G)|
)

. Thus, we can con-

struct MCk(G) in time O
(

mn|M(G)|+ n|M(G)|2
)

. By the breadth-first search
on MCk(G) which starts from an arbitrary maximal clique (node) M ⊇ C0, we
can check in time O

(

|M(G)|2
)

whether MCk(G) has a path to a maximal clique
M ′ ⊇ Cr. Then, the theorem follows from Lemma 7. ⊓⊔

5 Linear-Time Algorithm for Chordal Graphs

Since any chordal graph is even-hole free, by Corollary 2 clique reconfigu-

ration is solvable in polynomial time for chordal graphs. Furthermore, we have
discussed in Section 4.1 that the shortest variant is fixed-parameter tractable for
chordal graphs when parameterized by the size of a maximum clique in a graph.
However, we give the following theorem in this section.

Theorem 5. Shortest clique reconfiguration under any of TAR, TS and

TJ can be solved in linear time for chordal graphs.

In this section, we prove Theorem 5. By Theorems 1(a) and 2(a) it suffices to
give a linear-time algorithm for a TAR-instance; recall that the reduction from
TS/TJ to TAR preserves the shortest length of reconfiguration sequences.

Our algorithm consists of two phases. The first is a linear-time reduction
from a given TAR-instance (G,C0, Cr, k) for a chordal graph G to a TAR-
instance (H,C0, Cr, k) for an interval graph H such that distTAR(H,C0, Cr, k) =
distTAR(G,C0, Cr, k). The second is a linear-time algorithm for interval graphs.

Definitions of chordal graphs and interval graphs.
A graph is a chordal graph if every induced cycle is of length three. Recall

that M(G) is the set of all maximal cliques in a graph G, and we denote by
M(G; v) the set of all maximal cliques in G that contain a vertex v ∈ V (G). A
tree T is a clique tree of a graph G if it satisfies the following conditions:

- each node in T corresponds to a maximal clique in M(G); and
- for each v ∈ V (G), the subgraph of T induced by M(G; v) is connected.

It is known that a graph is a chordal graph if and only if it has a clique tree [8].
A clique tree of a chordal graph can be computed in linear time (see [18, §15.1]).

A graph is an interval graph if it can be represented as the intersection graph
of intervals on the real line. A clique path is a clique tree which is a path. It is
known that a graph is an interval graph if and only if it has a clique path [6, 9].

5.1 Linear-time reduction from chordal graphs to interval graphs

In this subsection, we describe the first phase of our algorithm.
Let (G,C0, Cr, k) be any TAR-instance for a chordal graph G, and let T be a

clique tree of G. Then, we find an arbitrary pair of maximal cliquesM0 andMt in
G (i.e., two nodes in T) such that C0 ⊆ M0 and Cr ⊆ Mt. Let (M0,M1, . . . ,Mt)

10

be the unique path in T from M0 to Mt. We define a graph H ′ as the subgraph
of G induced by the maximal cliques M0,M1, . . . ,Mt. Note that H

′ is an interval
graph, because (M0,M1, . . . ,Mt) forms a clique path.

The following lemma implies that the interval graph H ′ has a TAR(k)-
sequence 〈C0, C1, . . . , Cℓ′〉 such that ℓ′ = distTAR(G,C0, Cr, k), and hence yields
that distTAR(H

′, C0, Cr, k) = distTAR(G,C0, Cr, k) holds.

Lemma 8. Let (G,C0, Cr, k) be a TAR-instance for a chordal graph G, and let

T be a clique tree of G. Suppose that 〈C0, C1, . . . , Cℓ〉 is a shortest TAR(k)-
sequence in G from C0 to Cℓ = Cr. Let (M0,M1, . . .Mt) be the path in T from

M0 to Mt for any pair of maximal cliques M0 ⊇ C0 and Mt ⊇ Cr. Then, there

is a monotonically increasing function f : {0, 1, . . . , ℓ} → {0, 1, . . . , t} such that

Ci ⊆ Mf(i) for each i ∈ {0, 1, . . . , ℓ}.

Although Lemma 8 implies that distTAR(H
′, C0, Cr, k) = distTAR(G,C0, Cr, k)

holds for the interval graph H ′, it seems difficult to find two maximal cliques
M0 ⊇ C0 andMt ⊇ Cr (and hence constructH ′ from G) in linear time. However,
by a small trick, we can construct an interval graph H in linear time such that
distTAR(H,C0, Cr, k) = distTAR(G,C0, Cr, k), as follows.

Lemma 9. Given a TAR-instance (G,C0, Cr, k) for a chordal graph G, one can

obtain a subgraph H of G in linear time such that H is an interval graph,

C0, Cr ⊆ V (H) and distTAR(H,C0, Cr, k) = distTAR(G,C0, Cr, k).

5.2 Linear-time algorithm for interval graphs

In this subsection, we describe the second phase of our algorithm.
Let H be a given interval graph, and we assume that its clique path P has

V (P) = M(H) = {M0,M1, . . . ,Mt} and E(P) = {{Mi,Mi+1} | 0 ≤ i < t}.
Note that we can assume that t ≥ 1, that is, H has at least two maximal cliques;
otherwise we can easily solve the problem in linear time (as in Lemma 12 in
Appendix C.1). For a vertex v in H , let lv = min{i | v ∈ Mi} and rv = max{i |
v ∈ Mi}; the indices lv and rv are called the l-value and r-value of v, respectively.
Note that v ∈ Mi if and only if lv ≤ i ≤ rv. For an interval graphH , such a clique
path P and the indices lv and rv for all vertices v ∈ V (H) can be computed in
linear time [20].

Let (H,C0, Cr, k) be a TAR-instance. We assume that C0 ⊆ M0, C0 6⊆ M1

and Cr ⊆ Mt; otherwise, we can remove the maximal cliques Mi with i <
min{rv | v ∈ C0} and i > max{lv | v ∈ Cr} in linear time. Our algorithm
greedily constructs a shortest TAR(k)-sequence from C0 to Cr, as follows:
(1) if C0 6⊆ Cr and |C0| ≥ k + 1, then remove a vertex with the minimum

r-value in C0 \ Cr from C0;
(2) otherwise add a vertex in (Cr \ C0) ∩M0 if any; if no such vertex exists,

add a vertex with the maximum r-value in M0 \ C0.
We regard the clique obtained by the operations above as C0; if necessary, we
shift the indices of Mi so that C0 ⊆ M0 and C0 6⊆ M1 hold; and repeat. If
C0 6= Cr and none of the operations above is possible, we can conclude that

11

(H,C0, Cr, k) is a no-instance. The correctness proof of this greedy algorithm
and the estimation of its running time can be found in Appendix C.3.

This completes the proof of Theorem 5.

6 Conclusion

In this paper, we have systematically shown that clique reconfiguration and
its shortest variant can be solved in polynomial time for several graph classes.
As far as we know, this is the first example of a reconfiguration problem such
that it is PSPACE-complete in general, but is solvable in polynomial time for
such a variety of graph classes.

Acknowledgments

This work is partially supported by MEXT/JSPS KAKENHI 25106504 and
25330003 (T. Ito), 25104521, 26540005 and 26540005 (H. Ono), and 24106004
and 25730003 (Y. Otachi).

References

1. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-approximation algorithm for treewidth. Proc. of FOCS
2013, pp. 499–508 (2013)

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science 410,
pp. 5215–5226 (2009)

3. Bonsma, P.: Independent set reconfiguration in cographs. Proc. of WG 2014, LNCS
8747, pp. 105–116 (2014)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM (1999)
5. da Silva, M.V.G., Vušković, K.: Triangulated neighborhoods in even-hole-free

graphs. Discrete Mathematics, 307:1065–1073, 2007.
6. Fulkerson, D.R., Gross., O.A.: Incidence matrices and interval graphs. Pacific

J. Mathematics 15, pp. 835–855 (1965)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)
8. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal

graphs. J. Combinatorial Theory, Series B 16, pp. 47–56 (1974)
9. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of

interval graphs. Canadian J. Mathematics 16, pp. 539–548 (1964)
10. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity

of Boolean satisfiability: computational and structural dichotomies. SIAM J. Com-
puting 38, pp. 2330–2355 (2009)

11. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343, pp. 72–96 (2005)

12. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412, pp. 1054–1065 (2011)

12

13. Ito, T., Nooka, H., Zhou, X.: Reconfiguration of vertex covers in a graph. To appear
in Proc. of IWOCA 2014.

14. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theoretical Computer Science 439, pp. 9–15 (2012)

15. Lee, C., Oum, S.: Number of cliques in graphs with forbidden subdivision.
arXiv:1407.7707 (2014)

16. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and be-
yond. Proc. of ISAAC 2014, LNCS 8889, pp. 452–463 (2014)

17. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7, pp. 309–322 (1986)

18. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society
(2003)

19. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Computing 6, pp. 505–517 (1977)

20. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. Interna-
tional J. Foundations of Computer Science 18, pp. 911–930 (2007)

21. van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013,
London Mathematical Society Lecture Notes Series 409 (2013).

22. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth.
arXiv:1405.0847 (2014)

13

A Proofs Omitted from Section 3

A.1 Proof of Lemma 1

To prove Lemma 1, we first give the following lemma.

Lemma 10. Let G be a graph, and let C and C′ be any pair of cliques of G
such that |C| = |C′| = k and C ! C′ under TAR(k). Then, there exists a

shortest TAR(k)-sequence 〈C0, C1, . . . , Cℓ〉 from C0 = C to Cℓ = C′ such that

|C2i−1| = k + 1 and |C2i| = k for every i ∈ {1, 2, . . . , ℓ/2}.

Proof. Let 〈C0, C1, . . . , Cℓ〉 be a shortest TAR(k)-sequence from C0 = C to Cℓ =

C′ which minimizes the sum
∑ℓ

i=0 |Ci|. Since each clique in the TAR(k)-sequence
〈C0, C1, . . . , Cℓ〉 is of size at least k, it suffices to show that |Cj | ≤ k + 1 holds
for every j ∈ {1, 2, . . . , ℓ− 1}.

Let s be an index satisfying |Cs| = maxℓi=0 |Ci|, and suppose for a contradic-
tion that |Cs| ≥ k + 2. By the definition of s, we have Cs−1 ⊂ Cs ⊃ Cs+1. Let
Cs = Cs−1∪{a} and Cs+1 = (Cs−1∪{a})\{b}. Note that, since 〈C0, C1, . . . , Cℓ〉
is shortest, we have a 6= b and hence b ∈ Cs−1. We now replace the clique Cs by
another clique C′

s = Cs−1 \ {b}, and obtain the following sequence C′ of cliques:

C′ = 〈C0, C1, . . . , Cs−1, Cs−1 \ {b}, Cs+1, . . . , Cℓ〉.

Since Cs−1 = Cs \ {a} and |Cs| ≥ k + 2, we have |C′

s| = |Cs \ {a, b}| ≥ k
and hence Cs−1 ↔ Cs−1 \ {b} = C′

s under TAR(k). Furthermore, since Cs+1 =
(Cs−1 ∪ {a}) \ {b} = C′

s ∪ {a}, we have C′

s ↔ Cs+1 under TAR(k). Therefore, C′

is a TAR(k)-sequence between C and C′.
Note that C′ is of length ℓ, and hence it is a shortest TAR(k)-sequence between

C and C′. Since C′

s = Cs \ {a, b}, we have |C′

s| < |Cs| and hence

|C′

s|+
∑

{

|Cj | : j ∈ {0, 1, . . . , ℓ} \ {s}
}

<
ℓ

∑

i=0

|Ci|.

This contradicts the assumption that 〈C0, C1, . . . , Cℓ〉 is a shortest TAR(k)-

sequence from C0 = C to Cℓ = C′ which minimizes the sum
∑ℓ

i=0 |Ci|. ⊓⊔

Proof of Lemma 1.
We first prove that TAR(C0, Cr, k) = yes if TS(C0, Cr) = yes. In this case,

there exists a TS-sequence between C0 and Cr; let 〈C0, C1, . . . , Cℓ〉 be a shortest
one, that is, Cℓ = Cr and ℓ = distTS(C0, Cr). Then, since this is a TS-sequence,
we have uj−1wj ∈ E(G) for each j ∈ {1, 2, . . . , ℓ}, where Cj−1 \ Cj = {uj−1}
and Cj \ Cj−1 = {wj}. (See Fig. 3(a).) Therefore, Cj−1 ∪ Cj

(

= Cj−1 ∪ {wj}
)

forms a clique of size k + 1. Then, for each j ∈ {1, 2, . . . , ℓ}, we replace each
sub-sequence 〈Cj〉 with 〈Cj−1 ∪{wj}, Cj〉, and obtain the following sequence C′

of cliques:

C′ = 〈C0, C0 ∪ {w1}, C1, . . . , Cj−1 ∪ {wj}, Cj , . . . , Cℓ−1 ∪ {wℓ}, Cℓ〉.

14

(a)

u
j-1C

j-1

w
j

C
j

(b)

u
2i-1C

2i-2

w
2i-1

C
2i

C
2i-1

Fig. 3. Illustration for Lemma 1.

Notice that Cj−1 ∪ {wj} ↔ Cj under TAR(k) for each j ∈ {1, 2, . . . , ℓ}, because
(

Cj−1 ∪ {wj}
)

\ {uj−1} = Cj . Therefore, the sequence C′ above is a TAR(k)-
sequence from C0 to Cℓ = Cr, and hence TAR(C0, Cr, k) = yes. Furthermore, by
the construction, C′ is of length 2ℓ. Therefore, we have

distTAR(C0, Cr, k) ≤ 2ℓ = 2 · distTS(C0, Cr). (1)

We then prove that TS(C0, Cr) = yes if TAR(C0, Cr, k) = yes. In this case,
there exists a TAR(k)-sequence between C0 and Cr; let 〈C0, C1, . . . , Cℓ′〉 be
a shortest one, that is, Cℓ′ = Cr and ℓ′ = distTAR(C0, Cr, k). Furthermore,
by Lemma 10 we can assume that |C2i−1| = k + 1 and |C2i| = k for ev-
ery i ∈ {1, 2, . . . , ℓ′/2}. Then, observe that C2i−1 = C2i−2 ∪ C2i for every
i ∈ {1, 2, . . . , ℓ′/2}, and let C2i−1 = C2i−2 ∪ {w2i−1} = C2i ∪ {u2i−1}. (See
Fig. 3(b).) Since this TAR(k)-sequence 〈C0, C1, . . . , Cℓ′〉 is shortest, we have
u2i−1 6= w2i−1. Furthermore, since both u2i−1 and w2i−1 belong to the clique
C2i−1, they are adjacent. Therefore, for every i ∈ {1, 2, . . . , ℓ′/2}, we have
C2i−2 ↔ C2i under TS; we replace each sub-sequence 〈C2i−1, C2i〉 with 〈C2i〉,
and obtain C′′ = 〈C0, C2, C4, . . . , Cℓ′〉. In this way, C′′ is a TS-sequence from C0

to Cℓ′ = Cr, and hence TS(C0, Cr) = yes. Furthermore, the length of C′′ is ℓ′/2,
and hence

distTS(C0, Cr) ≤ ℓ′/2 = distTAR(C0, Cr, k)/2. (2)

By Eqs. (1) and (2) we have distTS(C0, Cr) = distTAR(C0, Cr, k)/2. ⊓⊔

A.2 Proof of Lemma 2

Since C′

0 ⊆ C0 and |C′

0| = k, we have C0 ! C′

0 under TAR(k) by deleting
the vertices in C0 \ C′

0 from C0 one by one. Similarly, we have C′

r ! Cr un-
der TAR(k); recall that any reconfiguration sequence is reversible. Since |C′

0| =
|C′

r| = k, by Lemma 1 we have

TS(C′

0, C
′

r) = TAR(C′

0, C
′

r, k). (3)

We now prove that TAR(C0, Cr, k) = yes if TS(C′

0, C
′

r) = yes. In this case, by
Eq. (3) we have TAR(C′

0, C
′

r, k) = yes and hence C′

0 ! C′

r under TAR(k). Thus,
C0 ! C′

0 ! C′

r ! Cr holds under TAR(k), and hence TAR(C0, Cr, k) = yes.
We finally prove that TS(C′

0, C
′

r) = yes if TAR(C0, Cr, k) = yes. In this case,
since TAR(C0, Cr, k) = yes, we have C0 ! Cr under TAR(k). Therefore, C′

0 !

C0 ! Cr ! C′

r holds under TAR(k), and hence TAR(C′

0, C
′

r, k) = yes. By
Eq. (3) we then have TS(C′

0, C
′

r) = yes. ⊓⊔

15

A.3 Proof of Lemma 3

We first give the following lemma, which can be obtained from the same argu-
ments as in Lemma 10 by just shifting the threshold by one.

Lemma 11. Let G be a graph, and let C and C′ be any pair of cliques of G
such that |C| = |C′| = k and C ! C′ under TAR(k − 1). Then, there exists

a shortest TAR(k − 1)-sequence 〈C0, C1, . . . , Cℓ〉 from C0 = C to Cℓ = C′ such

that |C2i−1| = k − 1 and |C2i| = k for every i ∈ {1, 2, . . . , ℓ/2}.

Proof of Lemma 3.
We first prove that TAR(C0, Cr, k−1) = yes if TJ(C0, Cr) = yes. In this case,

there exists a TJ-sequence between C0 and Cr; let 〈C0, C1, . . . , Cℓ〉 be a shortest
one, that is, Cℓ = Cr and ℓ = distTJ(C0, Cr). For each j ∈ {1, 2, . . . , ℓ}, let
Cj−1 \Cj = {uj−1} and Cj \Cj−1 = {wj}. Then, we replace each sub-sequence
〈Cj〉 with 〈Cj−1 \{uj−1}, Cj〉 for each j ∈ {1, 2, . . . , ℓ}, and obtain the following
sequence C′ of cliques:

C′ = 〈C0, C0 \ {u0}, C1, . . . , Cj−1 \ {uj−1}, Cj , . . . , Cℓ−1 \ {uℓ−1}, Cℓ〉.

Notice that Cj−1 \ {uj−1} ↔ Cj under TAR(k − 1) for each j ∈ {1, 2, . . . , ℓ},
because

(

Cj−1 \ {uj−1}
)

∪ {wj} = Cj and
∣

∣Cj−1 \ {uj−1}
∣

∣ = k − 1. Therefore,
the sequence C′ above is a TAR(k − 1)-sequence from C0 to Cℓ = Cr, and hence
TAR(C0, Cr, k − 1) = yes. Furthermore, by the construction, C′ is of length 2ℓ.
Therefore, we have

distTAR(C0, Cr, k − 1) ≤ 2ℓ = 2 · distTJ(C0, Cr). (4)

We then prove that TJ(C0, Cr) = yes if TAR(C0, Cr, k−1) = yes. In this case,
there exists a TAR(k − 1)-sequence between C0 and Cr; let 〈C0, C1, . . . , Cℓ′〉 be
a shortest one, that is, Cℓ′ = Cr and ℓ′ = distTAR(C0, Cr, k − 1). Furthermore,
by Lemma 11 we can assume that |C2i−1| = k − 1 and |C2i| = k for every
i ∈ {1, 2, . . . , ℓ′/2}. For every i ∈ {1, 2, . . . , ℓ′/2}, let C2i−1 = C2i−2\{u2i−2} and
C2i = C2i−1∪{w2i−1}. Since 〈C0, C1, . . . , Cℓ′〉 is shortest, we have u2i−2 6= w2i−1.
Then, for every i ∈ {1, 2, . . . , ℓ′/2}, we have C2i−2 ↔ C2i under TJ; we replace
each sub-sequence 〈C2i−1, C2i〉 with 〈C2i〉, and obtain C′′ = 〈C0, C2, C4, . . . , Cℓ′〉.
In this way, C′′ is a TJ-sequence from C0 to Cℓ′ = Cr, and hence TJ(C0, Cr) =
yes. Furthermore, the length of C′′ is ℓ′/2, and hence

distTJ(C0, Cr) ≤ ℓ′/2 = distTAR(C0, Cr, k − 1)/2. (5)

By Eqs. (4) and (5) we have distTJ(C0, Cr) = distTAR(C0, Cr, k − 1)/2. ⊓⊔

A.4 Proof of Lemma 5

Similarly as in the proof of Lemma 2, in both cases (i) and (ii), we have C0 ! C′

0

and Cr ! C′

r under TAR(k). Note that |C′

0| = |C′

r| = k+1. Then, by Lemma 3
we have

TJ(C′

0, C
′

r) = TAR(C′

0, C
′

r, k). (6)

16

We first prove that TAR(C0, Cr, k) = yes if TJ(C′

0, C
′

r) = yes. In this case, by
Eq. (6) we have TAR(C′

0, C
′

r, k) = yes, and hence C′

0 ! C′

r under TAR(k). Thus,
C0 ! C′

0 ! C′

r ! Cr holds under TAR(k), and hence TAR(C0, Cr, k) = yes.
We then prove that TJ(C′

0, C
′

r) = yes if TAR(C0, Cr, k) = yes. In this case,
since TAR(C0, Cr, k) = yes, we have C0 ! Cr under TAR(k). Therefore, C′

0 !

C0 ! Cr ! C′

r holds under TAR(k), and hence TAR(C′

0, C
′

r, k) = yes. By
Eq. (6) we then have TJ(C′

0, C
′

r) = yes. ⊓⊔

A.5 Proof of Proposition 1

Kamiński et al. [14, Theorem 3] proved that independent set reconfigura-

tion under TAR is PSPACE-complete for perfect graphs. Since the class of per-
fect graphs is closed under taking complements [L72], by Lemma 6 clique re-

configuration under TAR is PSPACE-complete for perfect graphs. Then, The-
orems 1(b) and 2(b) imply that clique reconfiguration remains PSPACE-
complete for perfect graphs under TS and TJ, too. ⊓⊔

A.6 Proof of Proposition 1

From the definition, the class of cographs is closed under taking complements,
and we note that the complement of a cograph can be computed in linear
time [CPS85]. Bonsma [3] proved that independent set reconfiguration

under TAR is solvable in linear time for cographs, and hence by Lemma 6 we can
solve clique reconfiguration under TAR in linear time for cographs. Then,
Theorems 1(a) and 2(a) imply that clique reconfiguration can be solved in
linear time for cographs under TS and TJ, too. ⊓⊔

B Proofs Omitted from Section 4

B.1 Proof of Theorem 3

By Theorems 1(a) and 2(a) it suffices to give an O(w2nw)-time algorithm for
a TAR-instance; recall that the reduction from TS/TJ to TAR preserves the
shortest length of reconfiguration sequences. Note that, however, the arguments
for TAR below can be applied to the other rules TS and TJ, and one can obtain
algorithms directly for TS and TJ rules.

Let (G,C0, Cr, k) be any TAR-instance such that ω(G) ≤ w. Then, the num-
ber of cliques of size at least k in G can be bounded by

∑w

i=k

(

n

i

)

= O(nw). We
now construct a reconfiguration graph R = (V , E), as follows:

(i) each node in R corresponds to a clique of G with size at least k; and
(ii) two nodes in R are joined by an edge if and only if C ↔ C′ holds under

TAR(k) for the corresponding two cliques C and C′.
This reconfiguration graph R can be constructed in time O(w2nw) as follows: we
first enumerate all cliques in time O(w2nw) by checking all O(nw) vertex subsets
of size at most w; we then add edges from each clique to its O(w) subsets with

17

one less vertex. The graph R has |V| = O(nw) nodes and |E| = O(wnw) edges.
Then, there is a TAR(k)-sequence between C0 and Cr if and only if there is a
path in R between the two corresponding nodes. Therefore, by the breadth-first
search on R which starts from the node corresponding to C0, we can check if
R has a desired path or not in time O(|V| + |E|) = O(wnw). Furthermore, if
such a path exists, it corresponds to a shortest TAR(k)-sequence between C0

and Cr . ⊓⊔

B.2 Proof of Proposition 3

We first compute a tree-decomposition T with width 5t + 4 in O(ctn) time,
where c is some constant, by using the algorithm in [1]. Additionally, we can
assume that the number of bags in T is O(n) [1]. By the definition of the tree-
decomposition, every clique in G is included in at least one bag of T . Since the
width of T is 5t+ 4, each bag in T contains at most 5t+ 5 vertices of G. Thus,
there are at most 25t+5 cliques in each bag of T , and hence we can conclude
that G has O(25t+5n) cliques. Then, the proposition follows, because we can
construct a reconfiguration graph R in time O(t225t+5n), similarly as in the
proof of Theorem 3. ⊓⊔

B.3 Proof of Lemma 7

We first prove the if-part. Suppose that there is a path 〈M0,M1, . . . ,Mℓ〉 in
MCk(G) from the node M = M0 ⊇ C to the node M ′ = Mℓ ⊇ C′. Let C0 = C,
and let Cj be any clique in Mj−1 ∩Mj of size k for each j ∈ {1, 2, . . . , ℓ}; such
a clique Cj exists because |Mj−1 ∩ Mj | ≥ k. Then, Cj−1 ! Cj holds under
TAR(k) because Cj−1 ∪Cj ⊆ Mj−1 and hence Cj−1 ∪Cj forms a clique of G for
each j ∈ {1, 2, . . . , ℓ}. We thus have C = C0 ! C1 ! · · · ! Cℓ under TAR(k).
Since both Cℓ and C′ are contained in the same maximal clique Mℓ = M ′, we
have Cℓ ! C′ and hence C ! C′ holds under TAR(k).

We then prove the only-if-part. Suppose that there is a TAR(k)-sequence
C = 〈C0, C1, . . . , Cℓ′〉 such that C0 = C and Cℓ′ = C′. Let MCk(G; C) be the
subgraph of MCk(G) induced by all nodes (i.e., maximal cliques in M(G)) that
contain at least one clique in C. Then, it suffices to show that MCk(G; C) is
connected; then MCk(G) has a path from any node M ⊇ C to any node M ′ ⊇
C′. Suppose for a contradiction that MCk(G; C) is not connected. Then, there
exists an index j such that the cliques Cj−1 and Cj are contained in different
maximal cliques Mp−1 and Mp which belong to different connected components
in MCk(G; C). In this case, Cj must be obtained by adding a vertex u to Cj−1,
that is, Cj = Cj−1 ∪ {u}; otherwise both Cj−1 and Cj are contained in the
same maximal clique Mp−1. Since C is a TAR(k)-sequence, we have |Cj−1| ≥ k
and hence |Cj−1 ∩ Cj | ≥ k. Then, since Cj−1 ⊆ Mp−1 and Cj ⊆ Mp, we have
|Mp−1∩Mp| ≥ k. Therefore,Mp−1 and Mp must be joined by an edge in MCk(G)
and hence in MCk(G; C). This contradicts the assumption that Mp−1 and Mp

are contained in different connected components in MCk(G; C). We have thus

18

proved that MCk(G; C) is connected, and hence there is a path in MCk(G) from
any node M ⊇ C to any node M ′ ⊇ C′. ⊓⊔

C Proofs Omitted from Section 5

C.1 Proof of Lemma 8

We first prove the following lemma, which can be applied to any graph.

Lemma 12. For two cliques C and C′ in a graph G, suppose that C ∪ C′

also forms a clique in G. Then, distTAR(C,C
′, k) = |C △ C′| for every integer

k ≥ min{|C|, |C′|}. Furthermore, every clique in an arbitrary shortest TAR(k)-
sequence from C to C′ consists only of vertices in C ∪ C′.

Proof. We first prove that distTAR(C,C
′, k) ≤ |C △ C′| holds for every integer

k ≥ min{|C|, |C′|}, by constructing a TAR(k)-sequence between C and C′ of
length |C △ C′|, as follows: we first add the vertices in C′ \ C to C one by
one, and obtain the clique C ∪ C′; and we then delete the vertices in C \ C′

from C ∪ C′ one by one, and obtain the clique C′. Since the minimum size of
a clique in this sequence is min{|C|, |C′|}, this is a TAR(k)-sequence for every
integer k ≥ min{|C|, |C′|}. Furthermore, the length of this TAR(k)-sequence is
|C △ C′|. Therefore, we have distTAR(C,C

′, k) ≤ |C △ C′|.
We then prove that distTAR(C,C

′, k) ≥ |C △ C′| holds for every integer
k ≥ min{|C|, |C′|}. Since k ≥ min{|C|, |C′|}, there exists at least one TAR(k)-
sequence between C and C′ as explained above. Note that, in an arbitrary
TAR(k)-sequence between C and C′, every vertex in C △ C′ must be either
deleted or added at least once. Therefore, we have distTAR(C,C

′, k) ≥ |C △ C′|.
We have thus proved that distTAR(C,C

′, k) = |C △ C′| holds for every integer
k ≥ min{|C|, |C′|}. Consider an arbitrary shortest TAR(k)-sequence C from C
to C′. Then, every vertex in C △ C′ must be either deleted or added by C at
least once. Therefore, if C deletes or adds a vertex not in C ∪C′, then the length
of C is strictly greater than |C △ C′|. This contradicts the assumption that
C is shortest. We can thus conclude that every clique in an arbitrary shortest
TAR(k)-sequence from C to C′ consists only of vertices in C ∪ C′. ⊓⊔

Let G = (V,E) be a graph, and let X,Y ⊆ V . A vertex subset S ⊆ V is
called an (X,Y)-separator of G if any two vertices x ∈ X \ S and y ∈ Y \ S do
not belong to the same component in G−S, where G−S denotes the subgraph
of G induced by the vertex set V \ S.

Proof of Lemma 8.
We prove the statement by induction on the length t of the unique path

(M0,M1, . . . ,Mt) in T between M0 and Mt.
First, consider the case where t = 0. Then, since C0 ⊆ M0 and Cr ⊆ Mt =

M0, both C0 and Cr are contained in the same maximal clique M0. Therefore,
C0∪Cr forms a clique, and hence by Lemma 12 every shortest TAR(k)-sequence

19

passes through cliques consisting of vertices only in M0. Thus, we set f(i) = 0
for all i ∈ {0, 1, . . . , ℓ}.

Next, consider the case where t ≥ 1. We assume that Cr 6⊆ M0, because
otherwise we can set f(i) = 0 for all i ∈ {0, 1, . . . , ℓ} similarly as for the case
t = 0. Then, by the definition of a clique tree,M0∩M1 forms a (C0, Cr)-separator
of G (see [BP93, Lemma 4.2]).

We now claim that there exists at least one clique Cj in the shortest TAR(k)-
sequence 〈C0, C1, . . . , Cℓ〉 such that Cj ⊆ M0 ∩M1. Suppose for a contradiction
that Ci 6⊆ M0 ∩ M1 for all i ∈ {0, 1, . . . , ℓ}. Let wi be an arbitrary vertex in
Ci \ (M0 ∩ M1) for each i ∈ {0, 1, . . . , ℓ}. Since 〈C0, C1, . . . , Cℓ〉 is a TAR(k)-
sequence, either Ci ⊂ Ci+1 or Ci ⊃ Ci+1 holds for each i ∈ {0, 1, . . . , ℓ− 1} and
hence Ci ∪Ci+1 forms a clique. Therefore, the vertices wi and wi+1 in Ci ∪Ci+1

are either the same or adjacent. This implies that the subgraph of G induced
by {wi | 0 ≤ i ≤ ℓ} is connected, and hence it contains a path from w0 to wℓ.
However, since w0 ∈ C0 \ (M0∩M1) and wℓ ∈ Cℓ \ (M0∩M1) = Cr \ (M0∩M1),
this contradicts the assumption that M0 ∩M1 is a (C0, Cr)-separator.

As the induction hypothesis, assume that the statement is true for the length
t− 1 ≥ 0. Let Cj be an arbitrary clique in 〈C0, C1, . . . , Cℓ〉 such that Cj ⊆ M0 ∩
M1. Note that, since 〈C0, C1, . . . , Cℓ〉 is shortest, 〈C0, C1, . . . , Cj〉 is a shortest
TAR(k)-sequence from C0 to Cj . Then, since C0 ∪ Cj ⊆ M0, Lemma 12 implies
that 〈C0, C1, . . . , Cj〉 passes through cliques consisting of vertices only in M0,
that is,

Ch ⊆ M0 (7)

holds for each h ∈ {0, 1, . . . , j}. Let C′

i = Cj+i for each i ∈ {0, 1, . . . , ℓ − j},
and let M ′

i = M1+i for each i ∈ {0, 1, . . . , t − 1}. Note that 〈C ′

0, C
′

1, . . . , C
′

ℓ−j〉
is a shortest TAR(k)-sequence from C′

0 = Cj to C′

ℓ−j = Cℓ = Cr. Furthermore,
C′

0 = Cj ⊆ M1 = M ′

0, C
′

ℓ−j = Cr ⊆ Mt = M ′

t−1 and (M ′

0,M
′

1, . . . ,M
′

t−1) is
a path in T of length t − 1. Therefore, by the induction hypothesis, there is a
monotonically increasing function f ′ : {0, 1, . . . , ℓ − j} → {0, 1, . . . , t − 1} such
that

C′

i ⊆ M ′

f ′(i) (8)

for all i ∈ {0, 1, . . . , ℓ − j}. Now we construct a mapping f : {0, 1, . . . , ℓ} →
{0, 1, . . . , t}, as follows:

f(i) =

{

0 if i < j,

f ′(i − j) + 1 otherwise.

Since f ′ is a monotonically increasing function, f is too. Furthermore, by Eqs. (7)
and (8) we have Ci ⊆ Mf(i) for all i ∈ {0, 1, . . . , ℓ}. Thus, f satisfies the desired
property. ⊓⊔

C.2 Proof of Lemma 9

Before giving our linear-time reduction, we give the following lemma.

20

Lemma 13. Suppose that 〈C0, C1, . . . , Cℓ〉 is a shortest TAR(k)-sequence in a

chordal graph G. Let p and q be two indices in {0, 1, . . . , ℓ} such that p < q. If
there is a vertex v in Cp ∩ Cq, then v ∈ Ci holds for all i ∈ {p, p+ 1, . . . , q}.

Proof. Suppose for a contradiction that the statement does not hold. We may
assume without loss of generality that v /∈ Ci for every i ∈ {p+1, p+2, . . . , q−1}
by setting p as large as possible and q as small as possible. Then, observe that
Cp+1 ∪ {v} = Cp and Cq−1 ∪ {v} = Cq.

Let T be a clique tree of G. Let (M0,M1, . . .Mt) be the path in T from M0

to Mt for any pair of maximal cliques M0 ⊇ C0 and Mt ⊇ Cℓ. By Lemma 8
there is a monotonically increasing function f : {0, 1, . . . , ℓ} → {0, 1, . . . , t} such
that Ci ⊆ Mf(i) for each i ∈ {0, 1, . . . , ℓ}. Then, f(p) ≤ f(i) ≤ f(q) for each
i ∈ {p + 1, p + 2, . . . , q − 1}. Recall that, by the definition of a clique tree,
the subgraph of T induced by M(G; v) is connected. Since v ∈ Cp ∩ Cq ⊆
Mf(p) ∩ Mf(q), we can conclude that the vertex v is contained in all maximal
cliques Mf(p),Mf(p+1), . . . ,Mf(q).

Therefore, for each i ∈ {p, p+1, . . . , q}, both Ci ⊆ Mf(i) and v ∈ Mf(i) hold,
and hence Ci ∪ {v} forms a clique which is contained in Mf(i). Furthermore,
Ci ∪ {v} ↔ Ci+1 ∪ {v} under TAR(k) for each i ∈ {p, p+ 1, . . . , q − 1}, because
Ci ↔ Ci+1 under TAR(k). Recall that Cp+1 ∪ {v} = Cp and Cq−1 ∪ {v} = Cq,
and hence we replace the sub-sequence 〈Cp, Cp+1, . . . , Cq〉 of length q − p with
the following sequence of length q − p− 2:

〈Cp+1 ∪ {v}, Cp+2 ∪ {v}, . . . , Cq−1 ∪ {v}〉.

However, this contradicts the assumption that 〈C0, C1, . . . , Cℓ〉 is shortest. ⊓⊔

Proof of Lemma 9.
We first add two dummy vertices d0 and dr to a given chordal graph G. We

then join d0 with all vertices in C0 by adding new edges to G; similarly, we
join dr with all vertices in Cr . Let G′ be the resulting graph. Then, G′ is also
a chordal graph, because the dummy vertices cannot create any new induced
cycle of length more than three. Note that each of C0 ∪ {d0} and Cr ∪ {dr}
forms a maximal clique in G′. Furthermore, in the set M(G′) of all maximal
cliques in G, the only maximal cliques C0 ∪ {d0} and Cr ∪ {dr} contain d0 and
dr, respectively.

We now construct a clique tree T ′ of G′ in linear time [18, §15.1]. Then, T ′

contains two nodes M0 = C0 ∪{d0} and Mt = Cr ∪{dr}. Therefore, we can find
the path (M0,M1, . . . ,Mt) in T ′ in linear time. Let H ′′ be the subgraph of G
induced by the maximal cliques M0,M1, . . . ,Mt. Then, H

′′ is an interval graph.
Furthermore, since M0 = C0 ∪ {d0} and Mt = Cr ∪ {dr}, Lemma 8 implies that

distTAR(H
′′, C0, Cr, k) = distTAR(G

′, C0, Cr, k). (9)

Let H be the graph obtained from H ′′ by removing the dummy vertices d0 and
dr. Since H ′′ is an interval graph, H is also an interval graph. In this way, H
can be constructed in linear time.

21

Now we claim that

distTAR(G
′, C0, Cr, k) = distTAR(G,C0, Cr, k) (10)

and
distTAR(H,C0, Cr, k) = distTAR(H

′′, C0, Cr, k). (11)

Then, by Eqs. (9)–(11) we have distTAR(H,C0, Cr, k) = distTAR(G,C0, Cr, k), as
required. Note that V (G) △ V (G′) = V (H) △ V (H ′′) = {d0, dr}. Thus, to prove
Eqs. (10) and (11), it suffices to show that there is a shortest TAR(k)-sequence in
G′ (or in H ′′) from C0 to Cr which does not pass through any clique containing
d0 or dr.

Let 〈C0, C1, . . . , Cℓ〉 be a shortest TAR(k)-sequence in G′ (or in H ′′) from
C0 to Cℓ = Cr. Suppose for a contradiction that d0 ∈ Ci holds for some i ∈
{1, 2, . . . , ℓ − 1}. (The proof for dr is the same.) Since d0 /∈ C0 ∪ Cℓ, Lemma 13
implies that there exists a pair of indices l and r in {1, 2, . . . , ℓ − 1} such that
l ≤ r and d0 ∈ Ci holds for all i ∈ {l, l + 1, . . . , r}. Recall that C0 ∪ {d0} is a
maximal clique in G′ (or in H ′′), and that no other maximal clique in G′ (or in
H ′′) contains d0. This implies that Ci ⊆ C0 ∪ {d0} for each i ∈ {l, l+ 1, . . . , r}.
Since Cl−1 = Cl \ {d0} and Cr+1 = Cr \ {d0}, it follows that Cl−1 ∪ Cr+1 ⊆ C0

and hence Cl−1∪Cr+1 forms a clique. Now, by Lemma 12 every shortest TAR(k)-
sequence from Cl−1 to Cr+1 passes through cliques consisting of vertices only
in Cl−1 ∪ Cr+1 ⊆ C0. Since d0 6∈ C0, this contradicts the assumption that
〈Cl−1, Cl, . . . , Cr+1〉 is shortest. ⊓⊔

C.3 Correctness of the algorithm for interval graphs

In this subsection, we prove the correctness of the greedy algorithm in Section 5.2
and estimate its running time. For a vertex v in a graph G, let N(v) = {w ∈
V (G) | vw ∈ E(G)} and let N [v] = N(v)∪ {v}. We denote by deg(v) the degree
of v, that is, deg(v) = |N(v)|.

We first prove the correctness of Step (1) of the algorithm: if C0 6⊆ Cr and
|C0| ≥ k + 1, then remove a vertex u with the minimum r-value in C0 \ Cr

from C0. The following lemma ensures that this operation preserves the shortest
length of reconfiguration sequences.

Lemma 14. Suppose that C0 6⊆ Cr and |C0| ≥ k + 1. Let u be any vertex with

the minimum r-value in C0 \ Cr. Then,

distTAR(C0, Cr, k) = distTAR(C0 \ {u}, Cr, k) + 1.

Proof. First, observe that ru = 0 since C0 6⊆ M1. Thus, N [u] = M0 ⊆ N [v]
holds for every vertex v ∈ M0. Consider any clique C in H such that C0 ↔ C
under TAR(k). Then, either (i) C = C0 \ {v} for some vertex v ∈ C0, or (ii)
C = C0 ∪ {w} for some vertex w ∈ M0 \C0; recall that C0 ⊆ M0 and C0 6⊆ M1.
Therefore, it suffices to verify the following two inequalities:

distTAR(C0 \ {u}, Cr, k) ≤ distTAR(C0 \ {v}, Cr, k) (12)

22

for any vertex v ∈ C0; and

distTAR(C0 \ {u}, Cr, k) ≤ distTAR(C0 ∪ {w}, Cr, k) (13)

for any vertex w ∈ M0 \ C0.

We first prove Eq. (12). Let v be any vertex in C0\{u}, and let 〈C1, C2, . . . , Cℓ〉
be a shortest TAR(k)-sequence from C1 = C0 \ {v} to Cℓ = Cr. By Lemma 13
we have v /∈ Ci for all i ∈ {1, 2, . . . , ℓ}. On the other hand, since u ∈ C1 \ Cℓ,
there exists an index j ≥ 1 such that Cj+1 = Cj \ {u}; Lemma 13 implies that
u ∈ Ci if and only if i ∈ {1, 2, . . . , j}. Then, C′

i = (Ci \ {u})∪{v} forms a clique
for each i ∈ {1, 2, . . . , j}, because N [u] ⊆ N [v] for the vertex v ∈ C0 \{u} ⊂ M0.
For each i ∈ {1, 2, . . . , j}, we replace the clique Ci in 〈C1, C2, . . . , Cℓ〉 with the
clique C′

i = (Ci \ {u}) ∪ {v}, and obtain the following sequence C′ of cliques:

C′ = 〈C′

1, C′

2, . . . , C ′

j , Cj+1, Cj+2, . . . , Cℓ〉.

Since 〈C1, C2, . . . , Cℓ〉 is a TAR(k)-sequence, we have |C′

i| = |Ci| ≥ k. Further-
more, C′

i ↔ C′

i+1 under TAR(k) for all i ∈ {1, 2, . . . , j − 1}, since Ci ↔ Ci+1

under TAR(k). Finally, since Cj+1 = Cj \{u}, we have C′

j \{v} = Cj+1 and hence
C′

j ↔ Cj+1 under TAR(k). Therefore, C′ is a TAR(k)-sequence from C′

1 = C0\{u}
to Cℓ = Cr, which has the same length ℓ as the shortest TAR(k)-sequence
〈C1, C2, . . . , Cℓ〉 from C1 = C0 \ {v} to Cℓ = Cr. We have thus verified Eq. (12).

We then prove Eq. (13). Letw be any vertex inM0\C0, and let 〈C1, C2, . . . , Cℓ〉
be a shortest TAR(k)-sequence from C1 = C0 ∪ {w} to Cℓ = Cr. Let j ∈
{1, 2, . . . , ℓ − 1} be the index such that u ∈ Ci if and only if i ∈ {1, 2, . . . , j}.
Since ru = 0, all cliques C1, C2, . . . , Cj are contained in M0. Furthermore,
since Cj+1 = Cj \ {u}, we have Cj+1 ⊆ M0 and hence C1 ∪ Cj+1 (⊆ M0)
forms a clique. Then, Lemma 12 implies that distTAR(C1, Cj+1, k) = |C1 △

Cj+1|. Note that, since the sub-sequence 〈C1, C2, . . . , Cj+1〉 is shortest, we have
distTAR(C1, Cj+1, k) = |C1 △ Cj+1| = j. On the other hand, consider the
clique C′

1 = C0 \ {u}; note that, since |C0| ≥ k + 1, we have |C′

1| ≥ k. Since
C′

1, Cj+1 ⊆ M0, the set C′

1 ∪Cj+1 forms a clique. Then, Lemma 12 implies that
distTAR(C

′

1, Cj+1, k) = |C′

1 △ Cj+1|. We now prove that

distTAR(C
′

1, Cj+1, k) ≤ distTAR(C1, Cj+1, k) = j. (14)

Indeed, we show that |C′

1 △ Cj+1| ≤ |C1 △ Cj+1|, as follows. Since C′

1 =
C1 \ {u,w}, u,w ∈ C1 and u /∈ Cj+1, we have

|C′

1 △ Cj+1| = |C′

1 ∪ Cj+1| − |C′

1 ∩ Cj+1|

= |(C1 \ {u,w}) ∪ Cj+1| − |(C1 \ {u,w}) ∩ Cj+1|

=

{

(|C1 ∪ Cj+1| − |{u}|)− (|C1 ∩ Cj+1| − |{w}|) if w ∈ Cj+1,

(|C1 ∪ Cj+1| − |{u,w}|)− |C1 ∩ Cj+1| if w /∈ Cj+1

≤ |C1 ∪ Cj+1| − |C1 ∩ Cj+1|

= |C1 △ Cj+1|.

23

Let 〈C′

1, C
′

2, . . . , C
′

j , Cj+1〉 be a shortest TAR(k)-sequence from C′

1 to Cj+1.
Then, by Eq. (14) the length of 〈C′

1, C
′

2, . . . , C
′

j , Cj+1〉 is at most j. We replace
the sub-sequence 〈C1, C2, . . . , Cj , Cj+1〉 of length j with the TAR(k)-sequence
〈C′

1, C
′

2, . . . , C
′

j , Cj+1〉. Then, 〈C′

1, C
′

2, . . . , C
′

j , Cj+1, Cj+2, . . . , Cℓ〉 is a TAR(k)-
sequence from C′

1 = C0 \ {u} to Cℓ = Cr, whose length is at most ℓ − 1 =
distTAR(C0 ∪ {w}, Cr, k). We have thus verified Eq. (13). ⊓⊔

We then prove the correctness of Step (2) of the algorithm: if no vertex
can be deleted from C0 according to Lemma 14, then add a vertex u chosen
by the following lemma, with preserving the shortest length of reconfiguration
sequences.

Lemma 15. Assume that C0 ⊆ Cr or |C0| = k. Let u be any vertex in (Cr \
C0) ∩M0 if exists; otherwise, let u be any vertex with the maximum r-value in

M0 \ C0. Then,

distTAR(C0, Cr, k) = distTAR(C0 ∪ {u}, Cr, k) + 1.

Proof. Note that, if |C0| = k, then no vertex can be deleted from C0 due to
the size constraint k. On the other hand, if C0 ⊆ Cr, then by Lemma 13 no
shortest TAR(k)-sequence from C0 to Cr deletes any vertex v in C0, because
v ∈ C0 ∩ Cr. Therefore, in any shortest TAR(k)-sequence 〈C0, C1, . . . , Cℓ〉 from
C0 to Cℓ = Cr, the clique C1 must be obtained from C0 by adding a vertex
v ∈ V (G) \ C0. Furthermore, since C0 ⊆ M0, C0 6⊆ M1 and C1 = C0 ∪ {v} is
a clique, the added vertex v must be in M0 \ C0. Thus, to prove the lemma, it
suffices to show that

distTAR(C0 ∪ {u}, Cr, k) ≤ distTAR(C0 ∪ {v}, Cr, k) (15)

for any vertex v ∈ M0 \ C0.
Let v be any vertex in M0\C0, and let 〈C1, C2, . . . , Cℓ〉 be a shortest TAR(k)-

sequence from C1 = C0 ∪ {v} to Cℓ = Cr. For each i ∈ {1, 2, . . . , ℓ}, let

C′

i =

{

(Ci \ {v}) ∪ {u} if v ∈ Ci and u /∈ Ci,

Ci otherwise.
(16)

We will prove below that 〈C′

1, C
′

2, . . . , C
′

ℓ〉 is a TAR(k)-sequence from C0∪{u} to
Cr. Then, since 〈C′

1, C
′

2, . . . , C
′

ℓ〉 is of length ℓ = distTAR(C0∪{v}, Cr, k), Eq. (15)
follows.

We first claim that C′

1 = C0 ∪ {u} and C′

ℓ = Cℓ. Since v ∈ C0 ∪ {v} = C1

and u 6∈ C0 ∪{v} = C1, we have C
′

1 = (C1 \ {v})∪{u} = C0 ∪{u}. On the other
hand, if u is chosen from (Cr \C0) ∩M0, then u ∈ Cr = Cℓ and hence C′

ℓ = Cℓ.
Otherwise, (Cr \ C0) ∩M0 = (M0 \ C0) ∩ Cr = ∅ holds, and hence v ∈ M0 \ C0

is not contained in Cr = Cℓ; we then have C′

ℓ = Cℓ.
We then prove that C′

i forms a clique of size at least k for each i ∈ {1, 2, . . . , ℓ},
and prove that C′

i ↔ C′

i+1 under TAR(k) for each i ∈ {1, 2, . . . , ℓ − 1}. Since
〈C1, C2, . . . , Cℓ〉 is a TAR(k)-sequence, by Eq. (16) we have |C′

i| = |Ci| ≥ k.

24

Therefore, it suffices to show that C′

i ∪ C′

i+1 forms a clique such that |C′

i △

C′

i+1| = 1 for each i ∈ {1, 2, . . . , ℓ − 1}. This claim trivially holds for the case
where both C′

i = Ci and C′

i+1 = Ci+1 hold, because 〈C1, C2, . . . , Cℓ〉 is a TAR(k)-
sequence. By symmetry, we thus assume that C′

i = (Ci \{v})∪{u}, that is, both
v ∈ Ci and u /∈ Ci hold. Then, there are the following three cases to consider;
note that, since both v ∈ Ci and u /∈ Ci hold and Ci ↔ Ci+1 under TAR(k), we
do not need to consider the case where both v 6∈ Ci+1 and u ∈ Ci+1 hold.

Case (i) v ∈ Ci+1 and u /∈ Ci+1.
In this case, we have C′

i+1 = (Ci+1 \ {v}) ∪ {u}. Since C′

i = (Ci \ {v}) ∪ {u}
and Ci ↔ Ci+1 under TAR(k), we have |C′

i △ C′

i+1| = |Ci △ Ci+1| = 1. Notice
that lv = lu = 0 and rv ≤ ru, because ru = t or u has the maximum r-value
in M0 \ C0. Therefore, N [v] ⊆ N [u] holds. Then, since Ci ∪ Ci+1 is a clique,
C′

i ∪ C′

i+1 =
(

(Ci ∪ Ci+1) \ {v}
)

∪ {u} forms a clique.

Case (ii) v, u ∈ Ci+1.
In this case, we have C′

i+1 = Ci+1. Recall that both v ∈ Ci and u /∈ Ci hold.
Then, since v, u ∈ Ci+1 and Ci ↔ Ci+1 under TAR(k), we have Ci ∪ {u} =
Ci+1 = C′

i+1. Since C′

i = (Ci ∪ {u}) \ {v}, we thus have C′

i = C′

i+1 \ {v} and
hence |C′

i △ C′

i+1| = |{v}| = 1. Furthermore, since C′

i+1 = Ci+1 and Ci+1 is a
clique, C′

i ∪C′

i+1 = C′

i+1 forms a clique.

Case (iii) v, u /∈ Ci+1.
In this case, we have C′

i+1 = Ci+1. Recall again that both v ∈ Ci and
u /∈ Ci hold. Then, since v, u 6∈ Ci+1 and Ci ↔ Ci+1 under TAR(k), we have
Ci\{v} = Ci+1 = C′

i+1. Since C
′

i = (Ci\{v})∪{u}, we thus have C′

i = C′

i+1∪{u}
and hence |C′

i △ C′

i+1| = |{u}| = 1. Then, C′

i ∪ C′

i+1 = C′

i = (Ci \ {v}) ∪ {u}.
Since N [v] ⊆ N [u] holds and Ci is a clique, C′

i ∪ C′

i+1 = (Ci \ {v}) ∪ {u} forms
a clique.

In this way, we have proved that 〈C′

1, C
′

2, . . . , C
′

ℓ〉 is a TAR(k)-sequence from
C0 ∪ {u} to Cr, and hence Eq. (15) holds as we have mentioned above. ⊓⊔

The correctness of the greedy algorithm in Section 5.2 follows from Lem-
mas 14 and 15. Therefore, to complete the proof of Theorem 5, we now show
that the algorithm runs in linear time.

Estimation of the running time.
Lemma 13 implies that each vertex is removed at most once and added at

most once in any shortest TAR(k)-sequence. Therefore, it suffices to show that
each removal and addition of a vertex u can be done in time O(deg(u)), because
∑

u∈V (G) deg(u) = 2|E(H)|.

We first estimate the running time for Step (1) of the algorithm. We first
check whether both C0 6⊆ Cr and |C0| ≥ k + 1 hold or not. These conditions
can be checked in constant time by maintaining |C0| and |C0 ∩ Cr|. We then
find a vertex u with the minimum r-value in C0 \ Cr; this can be done in time
O(|C0|). After the removal of u, the clique C0 := C0 \ {u} may be included
by some of M1,M2, . . . ,Mt; in such a case, we need to shift the indices of Mi

25

so that C0 ⊆ M0 and C0 6⊆ M1 hold. To do so, we compute the shift-value
i0 = min{ru | u ∈ C0}, and set Mi := Mi−i0 for each i ∈ {1, 2, . . . , t} and
rw := rw− i0 for each vertex w ∈ V (H). However, since we just have to compute
and store only the shift-value i0 in the actual process, this post-process can be
done also in time O(|C0|). Since C0 ⊆ N [u], we have |C0| ≤ deg(u)+1. Therefore,
Step (1) can be executed in time O(deg(u)).

We then estimate the running time for Step (2) of the algorithm. We find a
vertex u which either is in (Cr \C0)∩M0 or has the maximum r-value in M0\C0.
In either case, such a vertex u can be found in time O(|M0|). Since M0 ⊆ N [u],
the addition of u can be done in time O(deg(u)).

References

[BP93] Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees.
Graph Theory and Sparse Matrix Computation 56, pp. 1–29 (1993)

[CPS85] Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for
cographs. SIAM J. Computing 14, pp. 926–934 (1985)

[L72] Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics 2, pp. 253–267 (1972)

26

