
ar
X

iv
:1

41
1.

78
38

v2
 [

cs
.D

S]
 2

 D
ec

 2
01

5

The Complexity of Finding Effectors∗

Laurent Bulteau†1, Stefan Fafianie‡2, Vincent Froese§3, Rolf

Niedermeier¶3, and Nimrod Talmon‖3

1IGM-LabInfo, CNRS UMR 8049, Université Paris-Est

Marne-la-Vallée, France.
2Institut für Informatik, Universität Bonn, Germany.

3Institut für Softwaretechnik und Theoretische Informatik, TU

Berlin, Germany.

Abstract

The NP-hard Effectors problem on directed graphs is motivated
by applications in network mining, particularly concerning the analysis
of probabilistic information-propagation processes in social networks. In
the corresponding model the arcs carry probabilities and there is a proba-
bilistic diffusion process activating nodes by neighboring activated nodes
with probabilities as specified by the arcs. The point is to explain a given
network activation state as well as possible by using a minimum number
of “effector nodes”; these are selected before the activation process starts.

We correct, complement, and extend previous work from the data min-
ing community by a more thorough computational complexity analysis of
Effectors, identifying both tractable and intractable cases. To this end,
we also exploit a parameterization measuring the “degree of randomness”
(the number of ‘really’ probabilistic arcs) which might prove useful for
analyzing other probabilistic network diffusion problems as well.

∗An extended abstract appeared in Proceedings of the 12th Annual Conference on Theory
and Applications of Models of Computation (TAMC ’15), Volume 9076 of LNCS, pages 224–
235, Springer, 2015. This article provides all proofs in full detail.

†(Laurent.Bulteau@u-pem.fr) Supported by the Alexander von Humboldt Foundation,
Bonn, Germany. Main work done while affiliated with TU Berlin.

‡(stefan.fafianie@tu-berlin.de) Supported by the DFG Emmy Noether-program (KR
4286/1). Main work done while affiliated with TU Berlin.

§(vincent.froese@tu-berlin.de) Supported by the DFG, project DAMM (NI 369/13).
¶(rolf.niedermeier@tu-berlin.de)
‖(nimrodtalmon77@gmail.com) Supported by DFG Research Training Group “Methods

for Discrete Structures” (GRK 1408).

1

http://arxiv.org/abs/1411.7838v2

1 Introduction

To understand and master the dynamics of information propagation in networks
(biological, chemical, computer, information, social) is a core research topic in
data mining and related fields. A prominent problem in this context is the
NP-hard problem Effectors [15]: The input is a directed (influence) graph
with a subset of nodes marked as active (the target nodes) and each arc of the
graph carries an influence probability greater than 0 and at most 1. Assuming
a certain diffusion process on the graph, the task is to find few “effector nodes”
that can “best explain” the set of given active nodes, that is, the activation
state of the graph.

Specifically, consider a set of nodes in the graph which are initially active.
Then, due to a certain diffusion process, several other nodes in the graph, which
initially were not active, might become active as a result. The diffusion model
we consider (and which is known as the independent cascade model [14]) is
such that, at each time step, a newly activated node (initially only the chosen
effectors are active) has one chance to activate each non-active out-neighbor
with the corresponding arc probability. If an out-neighbor was successfully
activated in the last time step, then the propagation continues and this node
has the chance to further activate its out-neighbors. The propagation process
terminates when there are no newly activated nodes. Figure 1 shows an example
of a possible propagation process. Given the activation state of the graph at
the end of the propagation process, we ask for the set of nodes, the effectors,
which could best explain the current activation state.

Being able to efficiently compute the set of effector nodes is helpful in many
scenarios. The paper by Lappas et al. [15] mentions several of them, including
being able to better understand how information propagates in social networks,
or finding those countries which are more prominent for spreading epidemics
(here, one might assume a graph where each country is a node, and, given
the current state of some plague, the effector nodes are those countries which
explain this current state). Motivated also by the scenario from epidemics, one
might be interested in providing shields against such plagues. One possible way
to achieve this is by finding the set of effectors, and vaccinating the people in
those countries. Taking monetary costs into account, it is desirable to find a
small set of effectors; thus, in the Effectors problem, the goal is to find a set
of effectors of small size.

It is important to note that we allow effectors to be chosen from the whole
set of graph nodes and not only from the set of target nodes. This makes our
model, in a sense, more general than the original one by Lappas et al. [15].1

See Section 2 for definitions of the main problems, formal definition of our
model, and a discussion about our model and its difference to that of Lappas
et al. [15].

Our main contribution is to extend and clarify research on the computational

1We conjecture that both models coincide if we are allowed to choose an unlimited number
of effectors, that is, if the number of chosen effectors does not matter. On the contrary, they
do not coincide if the number of effectors is bounded, see Section 2.

2

t = 0

0.50.8
0.1

1 0.3
0.9

t = 1

0.50.8
0.1

1 0.3
0.9

t = 2

0.50.8
0.1

1 0.3
0.9

Figure 1: An example depicting the information propagation according to the
independent cascade model. The influence graph is a directed graph where the
arcs are labeled with influence probabilities. Initially, at time t = 0, only the
top node is active (black) and has a chance to independently activate the left
and right node with the corresponding arc probabilities. In the example, the
right node is activated (thick arc) while the left node is not. The probability
of this event is thus 0.5 · (1 − 0.8). The propagation then continues and the
right node has a chance to activate its out-neighbors at time t = 1. Every
activated node has only one chance (namely, after it became active the first
time) to activate other inactive nodes. Note that at time t = 2 the bottom node
cannot activate any new nodes. Hence, the propagation process terminates.
The overall probability of this particular propagation (and of this particular
activation state) equals 0.5 · (1 − 0.8) · 0.3 · (1 − 0.1) = 0.027.

complexity status of Effectors, which has been initiated by Lappas et al. [15].
In short, Lappas et al. [15] have shown that Effectors is generally NP-hard
and hard to approximate, developed an algorithm that is efficient on trees, and
used it to develop an efficient heuristic. As probabilistic information propagation
is central in the independent cascade information-propagation model which is
in the heart of the Effectors problem (as well as in several other information-
propagation models), we put particular emphasis on studying how the “degree of
randomness” in the network governs the computational complexity. Moreover,
compared to previous work, we make an effort to present the results in a more
formal setting, conducting a rigorous mathematical analysis.

Informally speaking (concrete statements of our results appear in Section 2
after having provided formal definitions), we have gained the following main
insights (also refer to Table 1 in Section 2).

• With unlimited degree of randomness, finding effectors is computationally
very hard. In fact, even computing the “cost” (how well does a set of
effectors explain a given activation state) of a given set of effectors is
intractable. This significantly differs from deterministic models.

• Even if the directed input graph is acyclic, then this does not lead to a
significant decrease of the computational complexity.

• Bounding the degree of randomness (in other words, bounding the number

3

of arcs with probability different from 1), that is, parameterizing on the de-
gree of randomness, yields some encouraging (fixed-parameter) tractability
results for otherwise intractable cases.

• We identify some flaws in the work of Lappas et al. [15] (see Section 5.4
for details), who claim one case to be intractable which in fact is tractable
and one case the other way around.

Admittedly, in real-world applications (where influence probabilities are de-
termined through observation and simulation, often involving noise) the number
of probabilistic arcs may be high, thus, at first sight, rendering the parameter
“number of probabilistic arcs” doubtful. However, note that finding effectors is
computationally very hard (also in terms of polynomial-time approximability;
the approximation hardness of Effectors is mentioned by Lappas et al. [15]
and follows, for example, from the reductions which use the Set Cover prob-
lem). So, in order to make the computation of a solution more feasible one
might round up (to 1) arc probabilities which are close to 1 and round down
(to 0) arc probabilities which are close to 0. Thus, one can achieve a trade-off
between running time and accuracy of the result. Depending on the degree of
rounding (as much as a subsequent fixed-parameter algorithm exploiting the
mentioned parameter would “allow”), in this way one might at least find a good
approximation of an optimal set of effectors in reasonable time.

Related work. Our main point of reference is the work of Lappas et al. [15].
Indeed, we use a slightly different problem definition: They define the effectors
to be necessarily a subset of the target nodes, whereas we allow the effectors to
form an arbitrary subset of the nodes. It turns out that these two definitions
really yield different problems, in the sense that a solution for one problem
might not be a solution for the other (see Section 3 for an extensive discussion
of the differences between these two models and for an explanation on why we
have chosen to define our model as it is defined).

The special case where all nodes are target nodes (and hence where the
two models above clearly coincide) is called Influence Maximization and
is well studied in the literature [7, 10, 14]. Specifically, it is known that the
Influence Maximization problem is NP-hard, and a polynomial-time (1 −
1/e)-approximation algorithm for this problem is given by Kempe et al. [14].

Finally, a closely related deterministic version (called Target Set Selec-

tion) with the additional difference of having node-individual thresholds speci-
fying how many neighboring nodes need to be active to make a node active has
also been extensively studied, in particular from a parameterized complexity
point of view [4, 5, 6, 8, 16]. Target Set Selection is NP-hard in general,
and hard to approximate, also in the parameterized sense (specifically, cannot
be approximated even in FPT-time (see Section 2) with respect to the solution
size). It is NP-hard even on graphs of diameter 2 [16], and it is tractable on
some restricted graph classes such as trees [6] and cliques [16].

4

2 Preliminaries

In this section, we provide definitions used throughout the work. We basically
use the same definitions as Lappas et al. [15], except for few differences in
notation.

Graph Theory. We consider simple directed graphs G = (V,E) with a set V
of nodes and an arc set E ⊆ {u → v | u, v ∈ V, u 6= v}. If there is an arc u →
v ∈ E, then we call u an in-neighbor of v and we call v an out-neighbor of u.
For a subset V ′ ⊆ V , we denote by G[V ′] := (V ′, E′) the subgraph of G induced
by V ′, where E′ := {u → v ∈ E | u, v ∈ V ′}. An undirected graph G = (V,E)
consists of a vertex set V and an edge set E ⊆ {{u, v} | u, v ∈ V, u 6= v}.

We use the acronym DAG for directed acyclic graphs. An undirected tree
is a connected acyclic graph. A directed tree is an arbitrary orientation of an
undirected tree. The condensation of a directed graph G is a DAG containing a
node vC for each strongly connected component C of G and there is an arc vC →
vC′ if and only if there exists at least one arc from a node in C to a node in C′.

Influence Graphs. An influence graph G = (V,E,w) is a simple directed
graph equipped with a function w : E → (0, 1] ∩ Q assigning an influence
weight to each arc u → v ∈ E which represents the influence of node u on node
v. Strictly speaking, the influence is the probability that u propagates some
information to v. We denote the number of nodes in G by n := |V | and the
number of arcs in G by m := |E|.

Information Propagation. We consider the following information-propaga-
tion process, called the Independent Cascade (IC) model [14]. Within this
model, each node is in one of two states: active or inactive. When a node u be-
comes active for the first time, at time step t, it gets a single chance to activate
its inactive out-neighbors. Specifically, u succeeds in activating a neighbor v
with probability w(u → v). If u succeeds, then v will become active at step
t + 1. Otherwise, u cannot make any more attempts to activate v in any sub-
sequent round. The propagation process terminates when there are no newly
activated nodes, that is, when the graph becomes static.

We remark that, since our algorithms need to manipulate the probabilities
determined by the function w, technically (and as usually) we assume that the
precision of the probabilities determined by this function is polynomially upper-
bounded in the number n of nodes of the input graph, and we ignore the time
costs for adding or multiplying rational numbers assuming that these operations
take constant time.

Cost Function. For a given influence graph G = (V,E,w), a subset X ⊆ V
of effectors, and a subset A ⊆ V of active nodes, we define a cost function

CA(G,X) :=
∑

v∈A

(1 − p(v|X)) +
∑

v∈V \A

p(v|X),

5

where for each v ∈ V , we define p(v|X) to be the probability of v being active
after the termination of the information-propagation process starting with X as
the active nodes. An alternative definition is that CA(G,X) :=

∑

v∈V CA(v,X),
where CA(v,X) := 1 − p(v|X) if v ∈ A and CA(v,X) := p(v|X) if v /∈ A. One
might think of this cost function as computing the expected number of nodes
which are incorrectly being activated or unactivated.

Main Problem Definition. Our central problem Effectors is formulated
as a decision problem—it relates to finding few nodes which best explain (lowest
cost) the given network activation state specified by a subset A ⊆ V of nodes.

Effectors

Input: An influence graph G = (V,E,w), a set of target nodes
A ⊆ V , a budget b ∈ N, and a cost c ∈ Q.
Question: Is there a subset X ⊆ V of effectors with |X | ≤ b and
cost CA(G,X) ≤ c?

We will additionally consider the related problem Effectors-Cost (see Section 4)
where the set X of effectors is already given and one has to determine its cost.

Parameters. The most natural parameters to consider for a parameterized
computational complexity analysis are the maximum number b of effectors, the
cost value c, and the number a := |A| of target nodes. Moreover, we will be
especially interested in quantifying the amount of randomness in the influence
graph. To this end, consider an arc u → v ∈ E: if w(u → v) = 1, then this
arc is not probabilistic. We define the parameter number r of probabilistic arcs,
that is, r := |{u → v ∈ E : w(u → v) < 1}|.

Parameterized Complexity. We assume familiarity with the basic notions
of algorithms and complexity. Several of our results will be cast using the
framework of parameterized complexity analysis. An instance (I, k) of a pa-
rameterized problem consists of the classical instance I and an integer k be-
ing the parameter [11, 13, 17, 9]. A parameterized problem is called fixed-
parameter tractable (FPT) if there is an algorithm solving it in f(k) · |I|O(1)

time, whereas an algorithm with running time |I|f(k) only shows membership
in the class XP (clearly, FPT ⊆ XP). One can show that a parameterized prob-
lem L is (under certain complexity-theoretic assumptions) not fixed-parameter
tractable by devising a parameterized reduction from a W[1]-hard or W[2]-hard
problem (such as Clique or Set Cover, respectively, each parameterized by
the solution size) to L. A parameterized reduction from a parameterized prob-
lem L to another parameterized problem L′ is a function that, given an in-
stance (I, k), computes in f(k) · |I|O(1) time an instance (I ′, k′) with k′ ≤ g(k)
such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L′. The common working hypothesis is that
FPT 6= W[1]. In fact, it is assumed that there is an infinite hierarchy

FPT ⊂ W[1] ⊂ W[2] ⊂ . . .

6

called the W -hierarchy. Thus, for a parameterized problem to be W[2]-hard is
even stronger in the sense that even if FPT = W[1] holds, it is still possible
that FPT 6= W[2].

Counting Complexity. We will also consider so called counting problems of
the form “Given x, compute f(x).”, where f is some function {0, 1}∗ → N (see
Arora and Barak [2, Chapter 9] for an introduction to counting complexity).
The class #P consists of all such functions f such that f(x) equals the number
of accepting computation paths of a nondeterministic polynomial-time Turing
machine on input x. Informally speaking, we can associate a decision problem in
NP (which asks weather there exists a solution or not) with a counting problem
in #P (which asks for the number of solutions). Clearly, if all counting problems
in #P can be solved in polynomial time, then this implies P = NP. Analogously
to NP-hardness, showing that a function is #P-hard gives strong evidence for
its computational intractability. A function f : {0, 1}∗ → {0, 1}∗ is #P-hard if
a polynomial-time algorithm for f implies that all counting problems in #P are
polynomial-time solvable.

Organization. Before we discuss our model and the one by Lappas et al. [15],
we overview our main results in Table 1. We will treat the sub-problem Eff-

ectors-Cost in Section 4, and Effectors in Section 5. Note that most of our
results transfer to the model of Lappas et al. [15]. In particular, this implies that
their claims that the “zero-cost” special case is NP-hard [15, Lemma 1] and that
the deterministic version is polynomial-time solvable are both flawed, because
from our results exactly the opposite follows (see the last part of Section 5.4 for
details).

3 Model Discussion

Our definition of Effectors differs from the problem definition of Lappas
et al. [15] in that we do not require the effectors to be chosen among the target
nodes. Before pointing out possible advantages and motivating our problem
definition, we give a simple example illustrating the difference between these
two definitions.

Consider the influence graph in Figure 2, consisting of one non-target node
(white) having three outgoing arcs with probability 1 each to three target nodes
(black). Clearly, for b = c = 1, this is a “no”-instance if we are only allowed
to pick target nodes as effectors since the probability of being active will be 0
for two of the three target nodes in any case, which yields a cost of at least 2.
According to our problem definition, however, we are allowed to select the non-
target node, which only incurs a cost of 1, showing that this is a “yes”-instance.

Let us compare the two models. First, we think that our model captures
the natural assumption that an effector node does not have to remain active

7

Table 1: Computational complexity of the different variants of Effectors.
Note that all hardness results hold also for DAGs. The parameter a stands for
the number of active nodes, b for the budget, c for the cost value, and r for the
number of probabilistic arcs.

Deterministic
(r = 0)

Parameterized
(by r)

Probabilistic
(arbitrary r)

Effectors-

Cost
FPT [wrt. r], Theorem 2 #P-hard, Corollary 1

Effectors

(general case)
W[2]-hard [wrt. b + c], Theorem 3

W[1]-hard [wrt. a + b + c], Theorem 3

XP [wrt. min(a, b, c)],
1

Infinite budget
(b = ∞)

FPT [wrt. r], Theorem 5
NP-hard, Theorem 4

open: FPT[wrt. a or c]

Influence
Maximization

(A = V)
W[1]-hard [wrt. min(b, c)], Theorem 6

FPT [wrt. b + c],
Theorem 6

1 1 1
Figure 2: Example where it
is optimal to choose a non-
target node as effector.

forever2. Indeed, the modeling of Lappas et al. [15] might be interpreted as a
“monotone version” as for example discussed by Askalidis et al. [3], while in this
sense our model allows for “non-monotone explanations”. Second, our model
is more resilient to noise; consider, for example, Figure 2. It might be the case
that indeed the top node is activated, however, due to noisy sampling methods,
it looks to us as if this top node is inactive. In this simple example, a solution
according to the model of Lappas et al. [15] would have to use three effectors
to wrongly explain the data, while a solution according to our model would be
compute a correct and optimal solution with only one effector.

Clearly, if all nodes are target nodes (this particular setting is called Influ-

ence Maximization), then the two models coincide. Furthermore, we strongly
conjecture that if we have an unlimited budget, then it suffices to search for a
solution among the target nodes, that is, for b = ∞, we believe that the two
problem definitions are also equivalent:

Conjecture 1. For b = ∞, it holds that every “yes”-instance (G,A, b, c) of
Effectors has a solution X ⊆ A.

2Notably, in our model it actually remains active. The point is that before the whole com-
putation starts (and after it ends) nodes may (have) become inactive again. Still, “temporary
activeness” may make a node an effector that helps explaining the currently observed network
activation state.

8

At least for directed trees (that is, the underlying undirected graph is a tree—
these also have been studied by Lappas et al. [15]) we can prove 1. The idea of
proof is that if an optimal solution contains a non-target node v, then this node
only influences nodes reachable from it via paths that do not visit other nodes
in the solution. Within this smaller tree of influenced nodes there must be some
subtrees rooted at target nodes such that the expected cost for such a subtree
is smaller if its target root node is activated during the propagation process
compared to the case when it is not. Choosing these target nodes directly as
effectors, replacing the non-target node v, yields another optimal solution with
fewer non-target nodes.

Theorem 1. 1 holds for directed trees.

Proof. Before proving the actual theorem, let us have a brief look on the proba-
bilistics of the information-propagation process in directed trees. Clearly, in any
influence graph, a node v can activate another node u only if there is a directed
path from v to u. Note that in a directed tree this path is unique if it exists.
Moreover, the probability p(u|X) only depends on those nodes v ∈ X that are
connected to u by a directed path that contains no other node from X . To see
that this is true, consider a node v ∈ X such that all directed paths from v to u
contain another node from X . Then, on each of these paths the corresponding
node x ∈ X has only one chance to activate u via propagation along the path.
Since v cannot “re-activate” x (x is already active from the beginning), the ac-
tivation probability of u does not depend on v. For a node v ∈ V , let cl(v) ⊆ V
denote the closure of v, that is, the set of all nodes u ∈ V for which there exists
a directed path from v to u (including v itself, that is, v ∈ cl(v)).

Let (G = (V,E,w), A, b, c) with b = ∞ be an input instance of Effectors,
where G is an arbitrary directed tree. Let X ⊆ V be an optimal solution
with X 6⊆ A, that is, there exists a node x ∈ X \ A. We show that there is an
optimal solution X∗ containing fewer non-target nodes than X . More formally,
we show that there exists a solution X∗ with x 6∈ X∗ and X∗ \A (X \A such
that CA(G,X∗) ≤ CA(G,X). Recursively applying this argument then proves
the theorem.

First, note that if CA(G,X ′) ≤ CA(G,X) holds for X ′ := X \ {x}, then we
are done. Thus, we can assume CA(G,X ′) > CA(G,X), or, equivalently:

CA(G,X ′) − CA(G,X) > 0

⇔
∑

v∈A

(1 − p(v|X ′)) +
∑

v∈V \A

p(v|X ′) −
(

∑

v∈A

(1 − p(v|X)) +
∑

v∈V \A

p(v|X)
)

> 0

⇔
∑

v∈A

(

p(v|X) − p(v|X ′)
)

−
∑

v∈V \A

(

p(v|X) − p(v|X ′)
)

> 0. (1)

Now, consider a node v that is not in the closure of x. Clearly, it holds
that p(v|X) = p(v|X ′) since there is no directed path from x to v, and thus x
cannot change the probability of v becoming active during the information-
propagation process. Therefore, if we let Ax := cl(x) ∩A and Ax := cl(x) \Ax,

9

then Inequality (1) can be rewritten as

∑

v∈Ax

(

p(v|X) − p(v|X ′)
)

−
∑

v∈Ax

(

p(v|X) − p(v|X ′)
)

> 0. (2)

For a directed tree G, the subgraph Tx := G[cl(x)] induced by the closure of x is
a rooted directed tree with root x, where all the arcs are directed from x to the
leaves (that is, an out-tree). Moreover, for a node v ∈ Ax, there is exactly one
directed path from x to v in Tx. Let A′

x ⊆ Ax be the subset of target nodes v
in the closure of x such that the directed path from x to v contains no other
target node from Ax. Then, we can write the closure of x as the disjoint union
cl(x) =

⋃

v∈A′

x
cl(v) ∪ Z, where Z := cl(x) \ (

⋃

v∈A′

x
cl(v)). Note that Z ⊆ Ax.

Therefore, we can write Inequality (2) as

∑

v∈A′

x

(

∑

u∈Av

(

p(u|X) − p(u|X ′)
)

−
∑

u∈Av

(

p(u|X) − p(u|X ′)
)

)

−

∑

v∈Z

(

p(v|X) − p(v|X ′)
)

> 0.

Note that p(v|X) ≥ p(v|X ′) holds for all v ∈ V since X ′ ⊆ X , which yields

∑

v∈Z

(

p(v|X) − p(v|X ′)
)

≥ 0.

Therefore, the following holds

∑

v∈A′

x

(

∑

u∈Av

(

p(u|X) − p(u|X ′)
)

−
∑

u∈Av

(

p(u|X) − p(u|X ′)
)

)

> 0. (3)

Now, let p(v|X) denote the probability that a node v is not activated given
that the nodes in X are active and let p(u|v,X) be the probability of u being
activated given that v is inactive and the nodes in X are active.

Note that, for v ∈ cl(x) and u ∈ cl(v), the probability of u being active
conditioned on v does not depend on x since v lies on the directed path from x
to u, that is, p(u|v,X) = p(u|v,X ′) and p(u|v,X) = p(u|v,X ′). Hence, we have

p(u|X) = p(u|v,X)p(v|X) + p(u|v,X)p(v|X)

= p(u|v,X ′)p(v|X) + p(u|v,X ′)(1 − p(v|X))

and
p(u|X ′) = p(u|v,X ′)p(v|X ′) + p(u|v,X ′)(1 − p(v|X ′)).

This yields

p(u|X) − p(u|X ′) = p(u|v,X ′)
(

p(v|X) − p(v|X ′)
)

+ p(u|v,X ′)
(

p(v|X ′) − p(v|X)
)

=
(

p(v|X) − p(v|X ′)
)(

p(u|v,X ′) − p(u|v,X ′)
)

.

10

Thus, for each v ∈ A′
x, we have

∑

u∈Av

(

p(u|X) − p(u|X ′)
)

−
∑

u∈Av

(

p(u|X) − p(u|X ′)
)

=

(

p(v|X) − p(v|X ′)
)

(

∑

u∈Av

(

p(u|v,X ′) − p(u|v,X ′)
)

−

∑

u∈Av

(

p(u|v,X ′) − p(u|v,X ′)
)

)

. (4)

In the following, let

δv(X ′) :=
∑

u∈Av

(

p(u|v,X ′) − p(u|v,X ′)
)

−
∑

u∈Av

(

p(u|v,X ′) − p(u|v,X ′)
)

.

Consider now Inequality (3) again. Since the outer summation in Inequal-
ity (3) over all nodes v ∈ A′

x is positive, there must be some nodes v ∈ A′
x for

which the summand (that is, the right-hand side product of Equation (4)) is
positive. Note that p(v|X) − p(v|X ′) ≥ 0 since X ′ ⊆ X for all v ∈ A′

x. Hence,
the set A∗ := {v ∈ A′

x | δv(X ′) > 0} is non-empty since these are the nodes
for which the above product is positive. Furthermore, we define the new set of
effectors X∗ := X \ {x} ∪A∗ = X ′ ∪A∗, which does not include the non-target
node x.

Now, consider the difference CA(G,X)−CA(G,X∗). Since {x}∪A∗ ⊆ cl(x),
it follows p(v|X) = p(v|X∗) for all v 6∈ cl(x). Thus, analogously to the above
steps, we can write CA(G,X) − CA(G,X∗) as

∑

v∈A′

x

(

∑

u∈Av

(

p(u|X∗) − p(u|X)
)

−
∑

u∈Av

(

p(u|X∗) − p(u|X)
)

)

−

∑

v∈Z

(

p(v|X∗) − p(v|X)
)

.

Note that, for each v ∈ Z, it holds for all u ∈ A∗ that v 6∈ cl(u). Hence,
p(v|X∗) = p(v|X ′), which implies

∑

v∈Z

(

p(v|X∗) − p(v|X)
)

≤ 0.

Thus, we obtain the following inequality

CA(G,X)−CA(G,X∗) ≥
∑

v∈A′

x

(

∑

u∈Av

(

p(u|X∗) − p(u|X)
)

−
∑

u∈Av

(

p(u|X∗) − p(u|X)
)

)

. (5)

11

As in Equation (4), we can rewrite the right-hand side of Inequality (5) to

∑

v∈A′

x

(

p(v|X∗) − p(v|X)
)

(

∑

u∈Av

(

p(u|v,X) − p(u|v,X)
)

−

∑

u∈Av

(

p(u|v,X) − p(u|v,X)
)

)

. (6)

Clearly, for v ∈ A′
x, the probability of u ∈ cl(v) being active conditioned on v

does not depend on x, that is, it holds p(u|v,X) = p(u|v,X ′) and p(u|v,X) =
p(u|v,X ′). By substituting these probabilities into (6) we arrive at

CA(G,X) − CA(G,X∗) ≥
∑

v∈A′

x

(

p(v|X∗) − p(v|X)
)

δv(X ′).

Now, for each node v ∈ A∗, it holds δv(X ′) > 0 and p(v|X∗) − p(v|X) =
1 − p(v|X) ≥ 0, and thus

(

p(v|X∗) − p(v|X)
)

δv(X ′) ≥ 0. For each v ∈ A′
x \A

∗,

it holds δv(X ′) ≤ 0 and p(v|X∗) = p(v|X ′) ≤ p(v|X), and thus
(

p(v|X∗) −

p(v|X)
)

δv(X ′) ≥ 0.
Hence, CA(G,X)−CA(G,X∗) ≥ 0 and, clearly, X∗ \A (X \A, and we are

done.

The last theorem shows that our model for the Effectors problem and
that of Lappas et al. [15] sometimes coincide. In general, however, it is not
completely clear how the computational complexity of our model for the Ef-

fectors problem differs from that of Lappas et al. [15]. We do mention that
our algorithmic results (Lemma 1, 1, Theorem 5) easily transfer to the model
of Lappas et al. [15], as well as Theorem 6.

4 Computing the Cost Function

We consider the problem of computing the cost for a given set of effectors.

Effectors-Cost

Input: An influence graph G = (V,E,w), a set of target nodes
A ⊆ V , and a set of effectors X ⊆ V .
Compute: The cost CA(G,X).

Effectors-Cost is polynomial-time solvable on directed trees [15]. By
contrast, Effectors-Cost is unlikely to be polynomial-time solvable even on
DAGs. This follows from a result by Wang et al. [19, Theorem 1]. They show
that computing the expected number of activated nodes for a single given effec-
tor is #P-hard on DAGs. Note that for the case A = ∅ (that is, a = 0), the cost
equals the expected number of activated nodes at the end of the propagation
process. Hence, we obtain the following corollary of Wang et al. [19].

Corollary 1. Effectors-Cost on directed acyclic graphs is #P-hard even
for a = 0 and |X | = 1.

12

Note that Corollary 1 implies that Effectors-Cost on DAGs is not fixed-
parameter tractable with respect to the combined parameter (a, |X |).

On the positive side, Effectors-Cost is fixed-parameter tractable with
respect to the number r of probabilistic arcs. The general idea is to recursively
simulate the propagation process, branching over the probabilistic arcs, and to
compute a weighted average of the final activation state of the graph.

Theorem 2. Given an instance (G = (V,E), A,X) of Effectors-Cost, the
probability p(v|X) for a given node v ∈ V can be computed in O(2r · n(n + m))
time, where r is the number of probabilistic arcs.

Accordingly, Effectors-Cost can be solved in O(2r · n2(n + m)) time.

Proof. The overall idea of the proof is as follows. For each subset of the proba-
bilistic arcs, we compute the cost, conditioned on the event that the propagation
process was successful on these arcs, but not successful on the other probabilis-
tic arcs. For each such subset we also compute the probability that this event
happens. Then, by applying the law of total probability, it follows that the
overall cost equals the weighted average of these conditioned costs, weighted by
the probability of these events.

We present the algorithm in a recursive way, mainly for the sake of hav-
ing a formal proof for its correctness. To this end, let (G = (V,E), A,X)
be an input instance of Effectors-Cost. Note that in order to compute the
cost CA(G,X), we compute the probability p(v|X) for each node v ∈ V , because
given all these probabilities it is straightforward to compute the cost in polyno-
mial time. Hence, we prove the theorem by showing that computing p(v|X) is
fixed-parameter tractable with respect to r using a search-tree algorithm that
computes p(v|X) for a given node v by recursively “simulating” all possible
scenarios which could appear during the propagation process.

To this end, we define an auxiliary function p̃(v,X, F) denoting the proba-
bility that v is activated during the propagation process given that exactly the
nodes in X are active but only the nodes in F ⊆ X are allowed to activate
further nodes in the next step, whereas the nodes in X \ F can never activate
any other node (indeed, p(v|X) = p̃(v,X,X)).

We now show how to compute p̃(v,X, F). First, if v ∈ X , then p̃(v,X, F) =
1, as it is already activated. Otherwise, if v 6∈ X and F is closed (that
is, F has no outgoing arcs to V \ X), then there is no propagation at all and
thus p̃(v,X, F) = 0. Otherwise, if X is not closed, then let N ⊆ V \X denote
the set of nodes in V \ X that have an incoming arc from some node in F .
Further, let Nd ⊆ N be the set of nodes that have at least one deterministic
incoming arc from F , and let Np := N \ Nd. Also, let Ep ⊆ E be the set of
probabilistic arcs from F to N . Clearly, all nodes in Nd will be active in the
next step of the propagation process, while the nodes in Np will be active in
the next step only with some positive probability. We can use the law of total
probability on the subsets of Np, and write

p̃(v,X, F) =
∑

R⊆Np

p̃(v,XR, FR)q(XR|X),

13

Algorithm 1: Pseudocode for p̃(v,X,X).

if v ∈ X then
return 1

if v /∈ X and X is closed then
return 0

foreach R ⊆ Np do
compute q(XR|X)
compute p̃(v,XR, FR) recursively

return
∑

R⊆Np
q(XR|X) · p̃(v,XR, FR)

where XR := X ∪ FR denotes the set of active nodes in the next time step,
FR := Nd ∪ R denotes the set of newly active nodes in the next time step,
and q(XR|X) denotes the probability that exactly the nodes in XR are active
in the next step given that exactly the nodes in X are active. Note that, for
each subset R ⊆ Np,

q(XR|X) =
∏

u∈R

(

1 − pu

)

∏

u∈Np\R

pu, where pu :=
∏

v→u∈Ep

(1 − w(v → u)),

is polynomial-time computable. As a result, we end up with the following
recursive formula:

p̃(v,X, F) :=











1, if v ∈ X

0, if v 6∈ X and X closed
∑

R⊆Np
q(XR|X) · p̃(v,XR, FR), else.

Algorithm 1 presents the pseudocode for computing p̃. For the running
time, consider the recursion tree corresponding to the computation of p̃(v,X,X),
where each vertex corresponds to a call of p̃.

For the running time, note that the inner computation (that is, without
further recursive calls) of each node in the recursion tree can be done in time
O(n + m). Moreover, for each call, either at least one node is inserted to X , or
the recursion stops. Therefore, the height of the recursion tree is upper-bounded
by the number n of nodes. Lastly, each leaf in the recursion tree corresponds
to a distinct subset of the probabilistic arcs, specifically, to those probabilistic
arcs along which the propagation process carried on. Since there are 2r different
subsets of probabilistic arcs, it follows that the number of leaves of the recursion
tree is upper-bounded by 2r. Thus, the overall size of the recursion tree is upper-
bounded by 2r · n, and hence, the running time is O(2r · n(n + m)).

5 Finding Effectors

We treat the general variant of Effectors in Section 5.1, the special case of
unlimited budget in Section 5.2, and the special case of influence maximization
in Section 5.3.

14

5.1 General Model

We study how the parameters number a of target nodes, budget b, and cost
value c influence the computational complexity of Effectors. We first observe
that if at least one of them equals zero, then Effectors is polynomial-time
solvable. This holds trivially for parameters a and b; simply choose the empty
set as a solution. This is optimal for a = 0, and the only feasible solution for
b = 0. For parameter c, the following holds, using a simple decomposition into
strongly connected components.

Lemma 1. For c = 0, Effectors can be solved in linear time.

Proof. If there is a directed path from a target node to a non-target node,
then we have a “no”-instance. Now every target node must be activated with
probability 1, which is only possible along deterministic arcs. Let G′ be the
condensation (that is, the DAG of strongly connected components) of the influ-
ence graph G after removing all probabilistic arcs. Then, we consider only the
strongly connected components which contain at least one target node (note that
all nodes in this component must be targets). Finally, if there are more than b
of these target components that are sources in G′, then we have a “no”-instance.
Otherwise, we arbitrarily pick a node from each component corresponding to a
source, and return a positive answer. Each step requires linear time.

Based on Lemma 1, by basically checking all possibilities in a brute-force man-
ner, we obtain simple polynomial-time algorithms for Effectors in the cases
of a constant number a of target nodes, budget b, or cost c.

Proposition 1. For r = 0, Effectors is in XP with respect to each of the
parameters a, b, and c.

Proof. Containment in XP for the parameter b is straightforward: For each
possible set of effectors, we compute the cost in linear time and then return the
best set of effectors.

Note that for the case r = 0, we can assume that b ≤ a. To see this, let X ⊆
V be a solution of size |X | > a and let A′ ⊆ A be the subset of target nodes
that are activated by choosing X . Clearly, choosing A′ as effectors is a better
solution since it activates the same target nodes and only activates a subset of
the non-target nodes activated by X . Therefore, we also have containment in
XP with respect to a.

It remains to show the claim for parameter c. First, we choose which
c′ ≤ c nodes incur a cost. Among these nodes, we set the target nodes to
be non-targets, and vice versa. Then, we run the polynomial-time algorithm
of Lemma 1 with cost 0. We exhaustively try all possible

∑c
c′=0

(

n
c′

)

∈ O(nc)
choices to find a positive answer and return a negative answer otherwise.

In the following, we show that, even for r = 0 and the influence graph being a
DAG, Effectors is W[1]-hard with respect to the combined parameter (a, b, c),
and even W[2]-hard with respect to the combined parameter (b, c).

15

u

v

...

{u, v}

...

(c(u), c(v))

. . .

. . .

. . .

...

vertex
nodes

edge
nodes

(

k
2

)

pairs

(

k
2

)

+ k + 1

Figure 3: Illustration of the influence graph used in the reduction from Multi-

Colored Clique. In this example arcs are shown for one of the edge nodes.
An arc from an edge node to a set of color pair nodes is used to represent the
(

k
2

)

+k+1 arcs to all nodes for this color pair. All arcs have an influence weight
of 1.

Theorem 3.

1. Effectors, parameterized by the combined parameter (a, b, c), is W[1]-
hard, even if r = 0 and the influence graph is a DAG.

2. Effectors, parameterized by the combined parameter (b, c), is W[2]-hard,
even if r = 0 and the influence graph is a DAG.

Proof. We begin with the first statement, namely, that Effectors, parame-
terized by the combined parameter (a, b, c), is W[1]-hard, even if r = 0 and G
is a DAG. We describe a parameterized reduction from the following W[1]-hard
problem [12].

Multi-Colored Clique

Input: A simple and undirected graph G = (V,E) with k colors on
the vertices and k ∈ N.
Question: Is there a k-vertex clique with exactly one occurrence of
each color in the clique?

Consider an instance (G = (V,E), k) of Multi-Colored Clique. We
assume that k > 1, otherwise the instance can be solved trivially. We construct
an instance of Effectors with b =

(

k
2

)

, c =
(

k
2

)

+k and an influence graph (see

Figure 3 for an illustration) defined as follows. Add
(

k
2

)

+ k + 1 nodes for each
unordered pair of distinct colors. Let us call these nodes color-pair nodes. These
color-pair nodes are the target nodes A, thus a =

(

k
2

)

· (
(

k
2

)

+ k + 1). Now, add
a vertex node nv for each v ∈ V , add an edge node eu,v for each e = {u, v} ∈ E,
and add arcs {eu,v → nu, eu,v → nv}. For each edge e = {u, v} ∈ E, let Le

16

be the color-pair nodes corresponding to the colors of u and v and add arcs
{eu,v → ℓ | ℓ ∈ Le}. Finally, set the influence weights of all arcs to 1.

Let G′ be the influence graph obtained by the above construction and notice
that G′ is a DAG. We show that there is a k-vertex multi-colored clique in G if
and only if there is a size-b set of effectors that incurs a cost of at most c in G′.

Suppose that there is a multi-colored clique with k vertices in G. Let X be
the edge nodes corresponding to the edges of this clique. Clearly, |X | =

(

k
2

)

=
b. These effectors activate all color-pair nodes, that is, the complete target
set A with probability 1. Furthermore, the non-active edge and vertex nodes
corresponding to the clique are activated, and a total cost of

(

k
2

)

+ k = c is
incurred.

For the reverse direction, let X be a size-b set of effectors that incurs a cost
of at most c in G′. Directly picking a vertex node is not optimal, since they are
non-target nodes without outgoing arcs. Hence, they can only increase the cost.
Also, without loss of generality, we can assume that X does not contain a color-
pair node x. To see this, assume the contrary and suppose that X contains
at least one edge node which influences x. Then X \ {x} is a solution with
equivalent cost and smaller budget. In the other case, suppose that no such
edge node is in X . Then, we pay for at least k + 1 other nodes corresponding
to the same color-pair as x since we can only take b =

(

k
2

)

out of
(

k
2

)

+ k + 1
nodes. Directly picking an edge node instead of x incurs a cost of at most 3. By
assumption, k > 1, that is, any optimal solution can be replaced by one that
chooses only edge nodes as effectors. Now, in order to avoid a cost higher than
(

k
2

)

+ k = c, every color-pair node must be directly activated by an edge node.

Then X must contain exactly
(

k
2

)

edge nodes, one for each color pair. A cost of

at most
(

k
2

)

+k is only obtained if they activate at most k vertex nodes, i.e., the
edges corresponding to the chosen edge nodes must form a multi-colored clique
with k vertices.

We continue with the second statement, namely, that Effectors, parame-
terized by the combined parameter (b, c), is W[2]-hard, even if r = 0 and G is
a DAG. We provide a parameterized reduction from the W[2]-complete Domi-

nating Set problem [11].

Dominating Set

Input: A simple and undirected graph G = (V,E), k ∈ N.
Question: Is there a vertex subset D ⊆ V such that |D| ≤ k and
for each v ∈ V either v ∈ D or ∃v′ ∈ D such that {v, v′} ∈ E?

Consider an instance (G = (V,E), k) of Dominating Set. We construct an in-
stance for Effectors with b = c = k, and obtain the influence graph (see
Figure 4 for an illustration) as follows: Add a node iv and a set of nodes
{cv,1, . . . , cv,k+1} for each vertex v ∈ V . Let us call these the initiator and
copies of v, respectively. We connect each initiator of v to all of its copies by
adding arcs {iv → cv,1, . . . iv → cv,k+1}. In a similar fashion, for each edge
{u, v} ∈ E, we connect the initiator of u to all copies of v and vice versa. Fi-
nally, let the set of target nodes A contain all copies of vertices and set the
influence weight of all arcs to 1.

17

...

. . .

. . .

. . .

...

initiators

k + 1 copies

Figure 4: Illustration of the influence graph in the reduction from Dominating

Set. The vertices corresponding to the two initiators at the top are neighbors in
the input graph. An arc from an initiator to a set of copies is used to represent
k + 1 arcs, one to each copy. All arcs have an influence weight of 1.

Let G′ be the influence graph obtained in the construction and note that G′

is a DAG. We show that there is a size-k set D that dominates all vertices in G
if and only if there is a size-k set X of effectors that incurs a cost of at most k
in G′. Suppose that D is a k-dominating set for G. Let X be the initiators of
vertices in D. These effectors activate all copies of vertices, i.e., the complete
target set A with probability 1. Clearly, |X | = k = b and a cost of k = c is
incurred for picking the initiators as effectors.

For the reverse direction, let X be a size-k set of effectors that incur a cost
of at most k in G′. Consider a solution in which we directly pick a copy x of
a vertex v as an effector. Suppose that X contains the initiator of v or one
of its neighbors. Then X \ {x} is a solution with equivalent cost and smaller
budget. In the other case, suppose that X contains no such initiator. Then, we
pay for at least one other copy of v since we can take at most k out of k + 1
copies. Therefore, any optimal solution can be replaced by one that chooses
only initiators as effectors. Now, every copy must be directly activated by an
initiator to avoid a cost higher than k. Furthermore, X can contain at most
k initiators. These initiators can only influence copies of their corresponding
vertex or its neighbors, that is, the vertices corresponding to the chosen initiators
are a k-dominating set.

5.2 Special Case: Unlimited Budget

Here, we concentrate on a model variant where we are allowed to choose any
number of effectors, that is, the goal is to minimize the overall cost with an
unlimited budget of effectors. In general, Effectors with unlimited budget
remains intractable, though.

Theorem 4. If P 6= NP, then Effectors, even with unlimited budget, is not
polynomial-time solvable on DAGs.

Proof. We consider the following #P-hard [18] counting problem.

18

s

t

s s′

t

1 − pz′

Figure 5: Example illustrating the construction in the proof of Theorem 4. Left:
A directed acyclic graph with two distinguished vertices s and t, where the gray
vertices lie on a directed s-t-path. Right: The corresponding influence graph
with target nodes colored in black. Dashed arcs have an influence weight of 1/2
and thick arcs have an influence weight of 1.

s-t Connectedness

Input: A directed acyclic graph G = (V,E), two vertices s, t ∈ V .
Compute: Number of subgraphs of G in which there is a directed
path from s to t.

In the following, let #st(G) denote the number of subgraphs of G in which
there exists a directed path from s to t (where distinct isomorphic subgraphs are
considered different). We give a polynomial-time reduction from the decision
version of s-t Connectedness, which asks whether #st(G) is at least a given
integer z.

Let I = (G = (V,E), s, t, z) be an instance of the decision version of s-

t Connectedness. We create an Effectors instance I ′ = (G′ = (V ′, E′, w),
A, b, c) as follows. Let Vst ⊆ V be the set of vertices that lie on some directed
path from s to t and let Est ⊆ E be the set of arcs of all directed paths from s to t.
Further, let W := Vst \ {s, t}. Clearly, it holds #st(G) = #st(G[Vst]) · 2|E\Est|

since #st(G[V \ Vst]) = 0. Thus, in order to decide whether #st(G) ≥ z, we
have to decide whether #st(G[Vst]) ≥ z′, where z′ := ⌈z · 2−|E\Est|⌉.

We initialize G′ as the induced subgraph G[Vst] and set w(v → u) := 1/2
for each v → u ∈ Est. We further create a copy v′ for each vertex v ∈ W , and
add the arc v → v′ with w(v → v′) := 1. We also create a copy s′ of s, and
add the arc s → s′ with w(s → s′) := 1 − pz′ , where pz′ := z′ · 2−|Est|. Finally,
we set A := W ∪ {s}, b = ∞, and c := |W | + 1 − 2−|Est|. The construction is
illustrated in Figure 5.

In the following, we prove two claims used to show the correctness of the
above reduction. First, we claim that an optimal solution X of I ′ either equals ∅
or {s}. This can be seen as follows. Choosing s′, t, or any copy v′ to be an
effector is never optimal as these are all non-target nodes without outgoing arcs.

19

Now, assume that X contains a node v ∈ W and let X ′ := X \ {v}. Then, we
have

CA(G′, X) − CA(G′, X ′) =p(s|X ′) − p(s|X) + p(s′|X) − p(s′|X ′)+
∑

u∈W

(p(u|X ′) − p(u|X) + p(u′|X) − p(u′|X ′))+

p(t|X) − p(t|X ′).

Since G′ is a DAG, it holds that there is no directed path from v to s and thus
p(s|X ′) = p(s|X) and consequently also p(s′|X ′) = p(s′|X), Moreover, note that
p(u|X) = p(u′|X) and p(u|X ′) = p(u′|X ′) holds for all u ∈ W , and p(t|X) ≥
p(t|X ′) clearly holds since X ′ ⊆ X . Hence, CA(G′, X) − CA(G′, X ′) ≥ 0 and
therefore X ′ is also an optimal solution not containing v, which proves the claim.

Next, we claim that p(t|{s}) = #st(G
′[Vst])·2−|Est|. To prove this, we define

an s-t-scenario S ⊆ Est to be a subset of arcs such that {s, t} ⊆ V (S) and there
is a directed path from s to each v ∈ V (S) in G[S]. Let S∗ := {v → u ∈
Est | v ∈ V (S)} denote the set of all outgoing arcs from nodes in V (S). We
denote the set of all s-t-scenarios by Sst. Note that each scenario S constitutes
a possible propagation in which exactly the arcs in S activated their endpoints
and the arcs in S∗ \ S did not activate their endpoints. The probability q(S)
for a given s-t-scenario S to occur is thus 2−|S∗|. Clearly, we can write

p(t|{s}) =
∑

S∈Sst

q(S) =
∑

S∈Sst

2−|S∗| = 2−|Est| ·
∑

S∈Sst

2|Est\S
∗|.

Now, for a subset F ⊆ Est of arcs where s is connected to t in the sub-
graph G′[F], let sc(F) denote the scenario S ∈ Sst where S ⊆ F and S (S′ for
all S′ 6= S ∈ Sst such that S′ ⊆ F . It holds that F = S ∪ F ∗, where S := sc(F)
and F ∗ := F \ S ⊆ Est \ S∗. Hence, we have #st(G

′[Vst]) =
∑

S∈Sst
2|Est\S

∗|,
which proves the claim.

We now decide the instance I as follows. Note that CA(G′, ∅) = |W | + 1
and CA(G′, {s}) = |W |+ 1− pz′ + p(t|{s}). Therefore, if I ′ is a “yes”-instance,
then {s} is the optimal solution with |W | + 1 − pz′ + p(t|s) ≤ c = |W | + 1 −
2−|Est|, which implies pz′ − p(t|{s}) ≥ 2−|Est|. It follows that #st(G

′[Vst]) < z′.
Therefore, I is a “no”-instance. If I ′ is a “no”-instance, then pz′ − p(t|{s}) <
2−|Est|, which implies #st(G

′[Vst]) ≥ z′, hence I is a “yes”-instance.

With unlimited budget, however, Effectors becomes fixed-parameter tract-
able with respect to the parameter number r of probabilistic arcs.

Theorem 5. If b = ∞, then Effectors is solvable in O(4r ·n4) time, where r
is the number of probabilistic arcs.

Proof. The general idea is to fully determine the probabilistic aspects of the
graph, and then to remove all of the corresponding nodes and arcs. We can
show that this leaves an equivalent “deterministic graph” that we can solve
using a reduction to the problem Maximum Weight Closure, which is itself
polynomial-time solvable by a polynomial-time reduction to a flow maximization
problem [1, Chapter 19].

20

X X X X
VpXp

Xo

Yp

Yo
V ′

Figure 6: Illustration for Theorem 5. Effectors of a solution are marked with
an aura. Probabilistic arcs are dashed, and nodes of Vp (with an outgoing prob-
abilistic arc) are marked with a cross. For readability, target nodes are not
represented. Intuitively, the algorithm guesses the partition of Vp into Xp (ef-
fectors) and Yp (non-effectors). Node set Xp (respectively, Yp) is then extended
to its closure Xo (respectively, its closure Yo in the reverse graph). The remain-
ing nodes form a deterministic subgraph G[V ′], in which effectors, forming the
set X ′, are selected by solving an instance of Maximum Weight Closure.

Maximum Weight Closure

Input: A directed graph G = (V,E) with weights on the vertices.
Compute: A maximum-weight set of vertices X ⊆ V with no arcs
going out of the set.

We start with some notation (see Figure 6 for an illustration). For an input
graph G = (V,E), let Ep := {u → v ∈ E | w(u → v) < 1} denote the set of
probabilistic arcs and let Vp := {u | u → v ∈ Ep} denote the set of nodes with
at least one outgoing probabilistic arc. For a node v ∈ V , let cldet(v) (cl-1det(v))
denote the set of all nodes u such that there exists at least one deterministic
path from v to u (respectively, from u to v), where a deterministic path is a path
containing only deterministic arcs. We extend the notation to subsets V ′ of V
and write cldet(V

′) =
⋃

v∈V ′ cldet(v) and cl-1det(V
′) =

⋃

v∈V ′ cl-1det(v). We call a
subset V ′ ⊆ V of nodes deterministically closed if and only if cldet(V

′) = V ′,
that is, there are no outgoing deterministic arcs from V ′ to V \ V ′.

Our algorithm will be based on a closer analysis of the structure of an
optimal solution. To this end, let G = (V,E,w) be an input graph with a
set A ⊆ V of target nodes and let X ⊆ V be an optimal solution with minimum
cost CA(G,X). Clearly, we can assume that X is deterministically closed, that
is, cldet(X) = X , since we have an infinite budget b = ∞.

We write Vp as a disjoint union of Xp := Vp∩X and Yp := Vp\X . We also use
Xo := cldet(Xp), Yo := cl-1det(Yp), and Vo = Xo∪Yo. Since X is deterministically
closed, we have that Xo ⊆ X and Yo ∩ X = ∅. We write V ′ := V \ Vo and

21

X ′ := X \Xo = X ∩ V ′. Note that X ′ is deterministically closed in G[V ′] and
that G[V ′] contains only deterministic arcs. Moreover, note that the sets Xo,
Yp, Yo, Vo, and V ′, are directly deduced from the choice of Xp, and that for a
given Xp, the set X ′ can be any deterministically closed subset of V ′.

We first show that the nodes in Vo are only influenced by effectors in Xo,
that is, for any node v ∈ Vo, it holds that p(v|X) = p(v|Xo). This is clear for
v ∈ Xo, since in this case p(v|X) = p(v|Xo) = 1. Assume now that there is a
node x ∈ X ′ with a directed path to v ∈ Yo that does not contain any node
from Xo (if every directed path from x to v passes through X0, then clearly x
does not influence v). Two cases are possible, depending on whether this path
is deterministic. If it is, then, since v ∈ cl-1det(Yp), there exists a deterministic
path from x to some u ∈ Yp, via v. Hence, x ∈ cl-1det(Yp) = Yo, yielding a
contradiction. Assume now that the path from x to v has a probabilistic arc
and write u → u′ for the first such arc. Hence, x ∈ cl-1det(u) and u ∈ Vp. Since
we assumed that the path does not contain any node from Xo, we have u /∈ Xp,
and therefore u ∈ Yp. Again, we have x ∈ cl-1det(Yp), yielding a contradiction.
Hence, the nodes in Vo are not influenced by the nodes in X ′.

Now consider the nodes in V ′. Note that we have p(v|X) = 1 for v ∈ X ′

and p(v|X) = p(v|Xo) for v ∈ V ′ \ X ′, since G[V ′] is deterministic and X ′ is
deterministically closed. Overall, CA(v,X) = CA(v,Xo) for all v ∈ V \X ′. The
total cost of solution X can now be written as

CA(G,X) =
∑

v∈V \X′

CA(v,Xo) +
∑

v∈X′

CA(v,X)

=
∑

v∈V

CA(v,Xo) −
∑

v∈X′

(CA(v,Xo) − CA(v,X))

= α(Xo) − β(Xo, X
′),

where

α(Xo) :=
∑

v∈V

CA(v,Xo) and β(Xo, X
′) :=

∑

v∈X′

(CA(v,Xo) − CA(v,X)).

We further define, for all v ∈ V ′, γ(v,Xo) := 1−p(v|Xo) if v ∈ A, and γ(v,Xo) =
p(v|Xo)−1 if v /∈ A. Note that, for v ∈ X ′, the difference CA(v,Xo)−CA(v,X)
is exactly γ(v,Xo), hence β(Xo, X

′) =
∑

v∈X′ γ(v,Xo).
The algorithm can now be described directly based on the above formulas.

Specifically, we branch over all subsets Xp ⊆ Vp (note that the number of
these subsets is upper-bounded by 2r). For each such subset Xp ⊆ Vp, we
can compute Xo and Yo in linear time because this involves propagation only
through deterministic arcs (outgoing for Xo and ingoing for Yo). Then, for
each node v ∈ V , we compute p(v|Xo) using Theorem 2 in O(2r · n(n + m))
time. This yields the values α(Xo) and γ(v,Xo) for each v ∈ V ′. By the
discussion above, it remains to select a closed subset X ′ ⊆ V ′ such that the cost
CA(G,Xo ∪X ′) = α(Xo) − β(Xo, X

′) is minimized. That is, we have to select
the subset X ′ that maximizes the value of β(Xo, X

′). Hence, the subset X ′ can

22

Algorithm 2: Pseudocode for Effectors with b = ∞.

foreach Xp ⊆ Vp do
compute Xo := cldet(Xp)
compute Yo := cl-1det(Vp \Xp)
foreach v ∈ V do

compute p(v|Xo) (using Theorem 2) and γ(v,Xo)
compute α(Xo)
compute X ′ maximizing β(Xo, X

′) using Maximum Weight

Closure on G[V ′], with weights γ(v,Xo)
return the Xo ∪X ′ which gives the minimum α(Xo) − β(Xo, X

′)

be computed as the solution of Maximum Weight Closure on G[V ′] (which
is solved by a maximum flow computation in O(n3) time), where the weight
of any v ∈ V ′ is γ(v,Xo). Finally, we return the set Xo ∪ X ′ that yields the
minimum cost α(Xo) − β(Xo, X

′). A pseudocode is given in Algorithm 2.

5.3 Special Case: Influence Maximization

In this section, we consider the special case of Effectors, called Influence

Maximization, where all nodes are targets (A = V). Note that in this case
the variant with unlimited budget and the parameterization by the number of
target nodes are irrelevant.

In the influence maximization case, on deterministic instances, one should
intuitively choose effectors among the “sources” of the influence graph, that is,
nodes without incoming arcs (or among strongly connected components without
incoming arcs). Moreover, the budget b bounds the number of sources that
can be selected, and the cost c bounds the number of sources that can be
left out. In the following theorem, we prove that deterministic Effectors

remains intractable even if either one of these parameters is small, but, by
contrast, having b + c as a parameter yields fixed-parameter tractability in the
deterministic case. We mention that the first statement is proven by a reduction
from the W[2]-hard Set Cover problem, while the second statement is proven
by a reduction from the W[1]-hard Independent Set problem.

Theorem 6.

1. Influence Maximization, parameterized by the maximum number b of
effectors, is W[2]-hard, even if G is a deterministic (r = 0) DAG.

2. Influence Maximization, parameterized by the cost c, is W[1]-hard,
even if G is a deterministic (r = 0) DAG.

3. If r = 0, then Influence Maximization can be solved in O(
(

b+c
b

)

· (n +
m)) time.

Proof. We begin with the first statement, namely, that Influence Maximiza-

tion (which is equivalent to Effectors where all nodes are target nodes, that

23

is, where A = V), parameterized by the maximum number b of effectors, is W[2]-
hard, even if G is a deterministic (r = 0) DAG. We provide a parameterized
reduction from the W[2]-complete Set Cover problem [11].

Set Cover

Input: Sets S = {S1, . . . , Sm} over elements U = {u1, . . . , un}, and
parameter h ∈ N.
Question: Is there S′ ⊆ S such that |S′| = h and

⋃

Si∈S′ Si = U?

Given an instance for Set Cover, we create an instance for Influence Max-

imization as follows. Add a node vSj
for each set Sj and write VS = {vSi

|
Si ∈ S}. Add a node vui

for each element ui and write VU = {vui
| ui ∈ U}.

For each ui ∈ Sj , add an arc vSj
→ vui

with influence probability 1. Set b := h,
c := m− h, and A := VS ∪ VU .

We can assume that any solution X is such that X ⊆ VS and |X | = b. Note
that all nodes of VU are activated if and only if S′ := {Si | vSi

∈ VS′} is a set
cover for U . Hence, any solution with cost c = |VS \X | = m − h needs to pay
only for the unselected nodes of VS , and yields a set cover of U . Reversely, for
any set cover S′ for U of size h, the set X := {vSi

| Si ∈ S′} is a set of effectors
with cost at most c.

We continue with the second statement, namely, that Influence Maxi-

mization, parameterized by the cost c, is W[1]-hard, even if G is a determin-
istic (r = 0) DAG. We provide a reduction from the following W[1]-complete
problem [11].

Independent Set

Input: An undirected graph G = (V,E) and parameter k ∈ N.
Question: Is there an independent set I ⊆ V (i.e., no edge has both
endpoints in I) such that |I| ≥ k?

Consider an instance (G = (V,E), k) of Independent Set. Create an influence
graph as follows: For each vertex v ∈ V , add a node nv and for each edge e ∈ E,
add a node ne. Let NV := {nv | v ∈ V } and NE := {ne | e ∈ E}. Add an arc
nv → ne with influence probability 1 for each edge e incident to vertex v in G.
Set c := k, b := |V | − k, and A := NV ∪NE .

Consider any solution with cost c. Note that we can assume any optimal
solution to choose only nodes from NV , since for any edge e = {u, v} ∈ E it is
always better to choose either nv or nu instead of the node ne. Write X ⊆ NV

for the set of effectors, NI = NV \X , and I = {v | nv ∈ NI}. We have |X | ≤ b
and |I| = |NI | = |V | − |X | ≥ |V | − b = k = c. Since the cost equals c, it
follows that |NI | = c and only the nodes in NI are left inactive. Hence, no
edge e has both endpoints in I. That is, I is an independent set of size c = k.
Conversely, any independent set I of G directly translates into a set of effectors
X = {nv | v ∈ V \ I} for the created influence graph.

We finish with the third statement, namely, that if r = 0, then Influence

Maximization can be solved in O(
(

b+c
b

)

·(n+m)) time. To start with, let G′ be
the condensation of G (that is, the DAG obtained by contracting each strongly

24

connected component (SCC) of G into one node). Note that since r = 0, we
can assume that any minimal solution selects at most one node from each SCC
in G. Moreover, it does not matter which node of an SCC is selected since they
all lead to the same activations. Hence, in the following, we solve Influence

Maximization on the condensation G′, where selecting a node means to select
an arbitrary node in the corresponding SCC in G.

Let R denote the set of nodes of G′ with in-degree zero. Note that any
node in R not chosen as an effector yields a cost of at least 1 in G, since the
nodes in its corresponding SCC cannot be activated by in-neighbors. Hence, we
can assume that |R| ≤ b + c, because otherwise the instance is a “no”-instance.
Moreover, we can assume that all effectors are chosen from R. Indeed, consider
any solution selecting a node u /∈ R as effector. Then, u has at least one in-
neighbor v and selecting v instead yields the same number of effectors, while
the cost can only be reduced (since at least as many nodes are activated). Since
the graph G′ is a DAG, repeating this process yields a solution with smaller
cost having only effectors in R. Hence, it is sufficient to enumerate all possible
choices of size-b subsets of the b + c nodes in R, and check in polynomial time
whether the chosen set of effectors in G yields a cost of at most c.

5.4 Results in Contradiction with Lappas et al. [15].

The following two claims of Lappas et al. [15] are contradicted by the results
presented in our work.

According to Lappas et al. [15, Lemma 1], in the Influence Maximiza-

tion case with cost value c = 0, Effectors is NP-complete. The reduction is
incorrect: it uses a target node ℓ which influences all other vertices with prob-
ability 1 (in at most two steps). It suffices to select ℓ as an effector in order to
activate all vertices, so such instances always have a trivial solution (X = {ℓ}),
and the reduction collapses. On the contrary, we prove in our Lemma 1 that all
instances with c = 0 can be solved in linear time.

According to the discussion of Lappas et al. [15] following their Corollary 1,
there exists a polynomial-time algorithm for Effectors with deterministic
instances (meaning r = 0). Their model coincides with our model in the case of
Influence Maximization. However, the given algorithm is flawed: it does not
consider the influence between different strongly connected components. Indeed,
as we prove in Theorem 6, finding effectors under the deterministic model is NP-
hard, even in the case of Influence Maximization.

6 Conclusion

Inspired by work of Lappas et al. [15], we contributed a fine-grained computa-
tional complexity analysis of a “non-monotone version” of finding effectors in
networks. Indeed, we argued why we believe this to be at least as natural as
the more restricted “monotone model” due to Lappas et al. [15]. A particular
case for this is that we may find more robust solutions, that is, solutions that

25

are more resilient against noise. The central point is that, other than Lappas
et al. [15], we allow non-target nodes to be effectors as well, motivated by the
assumption that knowledge about the state of a node may get lost from time to
time (see Section 3 for further discussion). Altogether, we observed that both
models suffer from computational hardness even in very restricted settings. For
the case of unlimited budget, we believe that both models coincide with respect
to solvability and hence with respect to a fine-grained computational complexity
classification.

Our work is of purely theoretical and classification nature. One message for
practical solution approaches we can provide is that it may help to get rid of
some probabilistic arcs by rounding them up to 1 (making them deterministic) or
rounding them down to 0 (deleting the arcs)—this could be interpreted as some
form of approximate computation of effectors. Network structure restrictions
seem to be less promising since our hardness results even hold for directed acyclic
graphs. Still, there is hope for finding further islands of tractability, for instance
by ignoring budget constraints and restricting the degree of randomness.

We leave several challenges for future research. First, it remains to prove
or disprove 1. Moreover, while we considered most of the parameterizations for
most of the variants of the Effectors problem, we have left some work for
future research, specifically the parameterized complexity of Effectors where
there is infinite budget and arbitrarily-many probabilistic arcs (see the corre-
sponding open question in Table 1). A further, more general direction would
be to consider other diffusion models and other cost functions. For example, it
is also natural to maximize the probability that precisely the current activation
state is achieved when selecting the effectors to be initially active. Moreover,
it seems as if the current diffusion model and its somewhat complicated proba-
bilistic nature is one of the main reasons for the intractability of our problem. It
would be interesting to consider other diffusion models, possibly simpler ones,
and see whether it is possible to push the tractability results to apply for more
cases. Specifically, it would be interesting to extend our results concerning the
parameter “degree of randomness” to such models.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[3] G. Askalidis, R. A. Berry, and V. G. Subramanian. Explaining snapshots of
network diffusions: Structural and hardness results. In Proceedings of the
20th International Conference on Computing and Combinatorics, volume
8591 of LNCS, pages 616–625. Springer, 2014.

[4] C. Bazgan, M. Chopin, A. Nichterlein, and F. Sikora. Parameterized inap-

26

proximability of target set selection and generalizations. Computability, 3
(2):135–145, 2014.

[5] C. Bazgan, M. Chopin, A. Nichterlein, and F. Sikora. Parameterized ap-
proximability of maximizing the spread of influence in networks. Journal
of Discrete Algorithms, 27:54–65, 2014.

[6] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. Treewidth gov-
erns the complexity of target set selection. Discrete Optimization, 8(1):
87–96, 2011.

[7] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization
in social networks. In Proceedings of the Third International Workshop on
Internet and Network Economics, volume 4858 of LNCS, pages 306–311.
Springer, 2007.

[8] M. Chopin, A. Nichterlein, R. Niedermeier, and M. Weller. Constant
thresholds can make target set selection tractable. Theory of Computing
Systems, 55(1):61–83, 2014.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[10] P. Domingos and M. Richardson. Mining the network value of customers.
In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 57–66. ACM, 2001.

[11] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Springer, 2013.

[12] M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the pa-
rameterized complexity of multiple-interval graph problems. Theoretical
Computer Science, 410(1):53–61, 2009.

[13] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[14] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of
influence through a social network. Theory of Computing, 11:105–147, 2015.

[15] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila. Finding effectors in
social networks. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1059–1068.
ACM, 2010.

[16] A. Nichterlein, R. Niedermeier, J. Uhlmann, and M. Weller. On tractable
cases of target set selection. Social Network Analysis and Mining, 3(2):
233–256, 2013.

[17] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

27

[18] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

[19] C. Wang, W. Chen, and Y. Wang. Scalable influence maximization for
independent cascade model in large-scale social networks. Data Mining
and Knowledge Discovery, 25(3):545–576, 2012.

28

	1 Introduction
	2 Preliminaries
	3 Model Discussion
	4 Computing the Cost Function
	5 Finding Effectors
	5.1 General Model
	5.2 Special Case: Unlimited Budget
	5.3 Special Case: Influence Maximization
	5.4 Results in Contradiction with LTGMH10.

	6 Conclusion

