arXiv:1412.2470v1 [cs.CC] 8 Dec 2014

Bounded Treewidth and Space-efficient Linear
Algebra

Nikhil Balaji & Samir Datta*

Chennai Mathematical Institute (CMI), India
{nikhil,sdatta}@cmi.ac.in

Abstract. Motivated by a recent result of Elberfeld, Jakoby and Tantau[EJT10]
showing that MSO properties are Logspace computable on graphs of
bounded tree-width, we consider the complexity of computing the deter-
minant of the adjacency matrix of a bounded tree-width graph and as
our main result prove that it is in Logspace. It is important to notice
that the determinant is neither an MSO-property nor counts the number
of solutions of an MSO-predicate. This technique yields Logspace algo-
rithms for counting the number of spanning arborescences and directed
Euler tours in bounded tree-width digraphs.

We demonstrate some linear algebraic applications of the determinant
algorithm by describing Logspace procedures for the characteristic poly-
nomial, the powers of a weighted bounded tree-width graph and feasibil-
ity of a system of linear equations where the underlying bipartite graph
has bounded tree-width.

Finally, we complement our upper bounds by proving L-hardness of the
problems of computing the determinant, and of powering a bounded
tree-width matrix. We also show the GapL-hardness of Iterated Matrix
Multiplication where each matrix has bounded tree-width.

1 Introduction

The determinant is a fundamental algebraic invariant of a matrix. For an n x n
matrix A the determinant is given by the expression Det(A) =>__ 5 sign(o) [[;e(n) i)
where S, is the symmetric group on n elements, ¢ is a permutation from S,, and
sign(o) is the parity of the number of inversions in ¢ (sign(o) = 1 if the number
of inversions in o is even and 0 if it is odd). Even though the summation in the
definition runs over n! many terms, there are many efficient sequential [vzGG13)
and parallel algorithms for computing the determinant.

Apart from the inherently algebraic methods to compute the determinant
there are also combinatorial algorithms (see, for instance, Mahajan and Vinay
[MV97]) which extend the definition of determinant as a signed sum of cycle
covers in the weighted adjacency matrix of a graph. [MV97] are thus able to give
another proof of the GapL-completeness of the determinant, a result first proved

* Part of the work was done on a visit to the Institute for Theoretical Computer
Science at Leibniz University Hannover

by Toda [Tod91]. For a more complete discussion on the known algorithms for
the determinant, see [MV97].

Armed with this combinatorial interpretation of the determinant and faced
with its GapL-hardness, one can ask if the determinant is any easier when the
underlying matrix represents simpler classes of graphs. Datta, Kulkarni, Limaye,
Mahajan [DKLMI0] study the complexity of the determinant and permanent,
when the underlying directed graph is planar and show that they are as hard as
the general case - GapL and #P-hard, respectively. We revisit these questions in
the context of bounded tree-width graphs.

Many NP-complete graph problems become tractable when restricted to
graphs of bounded tree-width. In an influential paper, Courcelle [Cou90] proved
that any property of graphs expressible in Monadic Second Order MSO logic can
be decided in linear time on bounded tree-width graphs. For example, Hamil-
tonicity is an MSO property and hence deciding if a bounded tree-width graph
has a Hamiltonian cycle can be done in linear time. More recently Elberfeld,
Jakoby, Tantau [EJTT0] showed that in fact, MSO properties on bounded tree-
width graphs can be decided in L.

We study the Determinant problem when the underlying directed graph has
bounded tree-width and show a Log-space upper bound. In the same vein we
also compute other linear algebraic invariants of a bounded tree-width matrix,
such as the characteristic polynomial, rank and powers of a matrix in Logspace.
Interpreting rectangular matrices as (weighted) bipartite graphs, we are also
able to show that checking for the feasibility of a system of linear equations for
such matrices arising from bounded tree-width bipartite graphs is in L. FSLE
has previously been studied for general graphs in [ABO99] where it is shown to
be complete for the first level of the Logspace counting hierarchy: &=L

We give a tight bound on the complexity of the determinant by showing
that it is L-hard via a reduction from directed reachability in paths. We also
show that it is unreasonable to attempt to extend the Logspace upper bound of
determinant and powering to Iterated Matrix Multiplication (IMM) of bounded
tree-width matrices, by showing GaplL-hardness for IMM. It is worthwhile to
contrast this with the case of general graphs, where the Determinant, IMM
and Matrix Powering are known to be inter-reducible to each other and hence
complete for GapL.

Counting spanning trees in directed graphs is easily seen to be in GapL by the
matrix tree theorem[Stal3]. Counting modulo 2 has recently been proved to be
@L-hard for planar graphs in [DKT4]. As a direct consequence of our determinant
result and the Kirchoff matrix tree theorem it follows that the problem is in L
for graphs of bounded tree-width.

The BEST theorem due to De Bruijn, Ehrenfest, Smith and Tutte gives an
exact formula for the number of Euler tours in a directed graph (see Fact |3) in
terms of the number of directed spanning trees of the graph.

1.1 Our Results and Techniques

Through out this paper, we work with matrices with entries from Q, unless
stated otherwise. We show that the following can be computed/tested in L:

1. (Main Result) The Determinant of an (n X n) matrix A whose underlying
undirected graph has bounded tree-width. As a corollary we can also com-
pute the coefficients of the characteristic polynomial of a matrix.

2. The inverse of an (n x n) matrix A whose underlying undirected graph has
bounded tree-width. As a corollary we get a Logspace algorithm to compute
the powers A of a matrix A (with rational entries) whose support is a
bounded tree-width digraph.

3. Testing if a system of rational linear equations Ax = b is feasible where A is
(a not necessarily square) matrix whose support is the biadjacency matrix
of an undirected bipartite graph of bounded tree-width.

4. The number of Spanning Trees in graphs of bounded tree-width.

5. The number of Euler tours in a bounded tree-width directed graph

We also show hardness results to complement the above easiness results:

1. Computing the determinant of a bounded tree-width matrix is L-hard which
precludes further improvement in the Logspace upper bound.

2. Computing the iterated matrix multiplication of bounded tree-width matri-
ces is GaplL-hard which precludes attempts to extend the L-bound on pow-
ering matrices of bounded tree-width to iterated matrix multiplication.

3. Powering matrices are however L-hard which prevents attempts to further
improve the L-bound on matrix powering.

At the core of the results is our algorithm to compute the determinant by
writing down an MSO formula that evaluates to true on every valid cycle cover
of the bounded tree-width graph underlying A. The crucial point being that
the cycle covers are parameterised on the number of cycles in the cycle cover,
a quantity closely related to the sign of the cycle covers. This makes it possible
to invoke the cardinality version of Courcelle’s theorem(for Logspace) due to
[EJTI0] to compute the determinant. A more subtle point is that in order to
keep track of the number of cycles as the size of a set of vertices, we need to
pick one vertex per cycle. Picking one vertex per cycle is done by choosing the
“smallest” vertex in the cycle. In order to pick a vertex in a cycle cover, we
need to define a total order on the vertices which makes this part of the proof
technically challenging.

We use this determinant algorithm and the Kirchoff matrix tree theorem
along with the BEST theorem to count directed Euler tours.

1.2 Organization of the paper

Section [2] introduces some notation and terminology required for the rest of the
paper. In Section [3] we give a Logspace algorithm to compute the Determinant

of matrices of bounded tree-width and give some linear algebraic and graph the-
oretic applications. In Section [4] we give some L-hardness results to complement
our Logspace upperbounds. In Section [we mention some problems that remain
open.

2 Preliminaries

2.1 Background on Graph Theory

Definition 1. Given an undirected graph G = (Vg, Eq) a tree decomposition of
G is a tree T = (Vr, E7) (the vertices in Vr C 26 are called bags), such that

1. Every vertex v € Vg is present in at least one bag, i.e., Uxev, X = V.

2. If v € Vg is present in bags X;, X; € Vp, then v is present in every bag Xy,
in the unique path between X; and X; in the tree T'.

3. For every edge (u,v) € Eg, there is a bag X, € Vr such that u,v € X,.

The width of a tree decomposition is the maxxev, (| X| —1). The tree width of a
graph is the minimum width over all possible tree decomposition of the graph.

Definition 2. Given a weighted directed graph G = (V, E) by its adjacency ma-
triz [aij)i jein), @ cycle cover C of G is a set of vertea-disjoint cycles that cover the
vertices of G. Le., C = {C1,Cy,...,Cy}, where V(C;) = {ciy,--.,ci, } TV such
that (i, Ciy), (CigsCig)s «-, (Cin_ys¢i)), (cinyciy) € E(C;) C E and UE_, V(C;) =
V.

Fact 1 The weight of the cycle C; =][, ¢, wi(ai;) and the weight of the cycle
cover wi(C) = [[;c wi(Ci). The sign of the cycle cover C is (—1)ntk,

Every permutation o € S,, can be written as a union of vertex disjoint cycles.
Hence a permutation corresponds to a cycle cover of a graph on n vertices. In
this light, the determinant of an (n x n) matrix A can be seen as a signed sum
of cycle covers:

det(A4) = > sign(C)wt(C)

cycle cover C

2.2 Background on MSO-logic

Definition 3 (Monadic Second Order Logic). Let the variables V = {vy,va, ...

denote the vertices of a graph G = (V, E). Let X,Y denote subsetﬂ of V or E.
Let E(x,y) be the predicate that evaluates to 1 when there is an edge between x
and y in G. A logical formula ¢ is called an MSO-formula if it can be constructed
using the following:

! The case when quantification over subset of edges is not allowed is referred to as
MSO; which is known to be strictly less powerful than MSOs, the case when edge
set quantification is allowed. Throughtout our paper, we will work with MSO2 and
hence we will just refer to it as MSO.

-—veX

— V1 =02

— E(’Ul,’l)g)

— ¢1V o2, d1 A P2, 2P
dxo, Vo

AX o, VX

In addition, if the Gaifman gmp}ﬂ of the relation is bounded treewidth then
we can use any predicate in item 3 above. A property II of graphs is MSO-
definable, if it can be expressed as a MSO formula ¢ such that ¢ evaluates to
TRUE on a graph G if and only if G has property II.

Definition 4 (Solution Histogram). Given a graph G = (V, E) and an MSO
formula ¢(X1,...,X4) in free variables Xy, ..., Xy, where X; C V(or E), the
(i1, ...,14)-th entry of histogram(G, @) gives the number of subsets Si,...,Sq
such that |S;j| =i, for which ¢(Sh,...,Saq) is true.

We need the following results from [EJT10]:

Theorem 1 (Logspace version of Bodlaender’s theorem). For every k >
1, there is a Logspace machine that on input of any graph G of tree width at
most k outputs a width-k tree decomposition of G.

Theorem 2 (Logspace version of Courcelle’s theorem). For every k > 1
and every MSO-formula ¢, there is a Logspace machine that on input of any
logical structure A of tree width at most k decides whether A E ¢ holds.

Theorem 3 (Cardinality version of Courcelle’s theorem). Let k > 1 and
let ¢(X1,...,X4q) be an MSO-formula on free variables X1, ..., X4. Then there
is a Logspace machine that on input of the tree decomposition of a graph G
of treewidth at most k, MSO-formula ¢ and (i1,...,iq), outputs the value of
histogram(G, ¢) at | X1| = i1,...,|X4| = iq.

3 Determinant Computation

Given a square {0, 1}-matrix A, we can view it as the bipartite adjacency matrix
of a bipartite graph H 4. The permanent of this matrix A counts the number of
perfect matchings in H 4, while the determinant counts the signed sum of perfect
matchings in H 4.

If G is a bounded treewidth graph then we can count the number of perfect
matchings in G in L[EJTI0] (see also [DDN13]). Hence the complexity of the
permanent of A, above is well understood in this case while the complexity of
computing the determinant is not clear.

2 The Gaifman graph (also called the Primal Graph) of a binary relation R C A x A
is the graph whose nodes are elements of A and an edge joins a pair of variables x,y
if (z,y) € R.

On the other hand the determinant of a {0,1}-matrix reduces (say by a
reduction gpv) to counting the number of paths in another graph (see e.g.
[MV97]). Also counting s, t-paths in a bounded treewidth graph is again in L via
[EJTI0] (see also [DDNT13]). But the problem with this approach is that that
the graph gpv (G) obtained by reducing a bounded treewidth G is not bounded
treewidth.

However, we can also view A as the adjacency matrix of a directed graph
G4. I G4 has bounded treewidth (which implies that H4 also has bounded
treewidth, see Proposition [4| in Appendix then we have a way of computing
the determinant of A. To see this, consider the following lemma:

Lemma 1. There is an MSO-formula ¢(X,Y) with free variables X,Y that take
values from the set of subsets of vertices and edges respectively, such that p(X,Y)
is true exactly when X is the set of heads of a cycle cover Y of the given graph.

Before proving this Lemma we need some preprocessing. Let G be the input
graph of bounded tree-width. We will augment G with some new vertices and
edges to yield a graph G’ again with a tree decomposition 7" of bounded tree-
width. Then we have:

Lemma 2. There exists a relation NXT on vertices of G' which satisfies the
following:

1. NXT s compatibleﬂ with the tree decomposition T’

2. NXT is a partial order on the vertices of G’

8. NXT is computable in L

4. The transitive closure NXT* is a total order when restricted to the vertices
of G

5. NXT* is expressible as an MSO-formula over the vocabulary of G' along with
NXT.

The construction of such a relation is fairly straight forward and considered
folklore in the Finite Model Theory literature (See for example Proposition V1.4
in [CF12]. Here we include an proof of Lemma [2| (obtained independently) in
the appendix for the sake of completeness.

Proof. (of Lemma [1) We write an MSO formula ¢ on free variables X,Y, such
that Y C E and X C V, such that ¢ evaluates to true on any set of heads of a
cycle cover S. The MSO predicate essentially verifies that the subgraph induced
by Y indeed forms a cycle cover of G. Our MSO formula is of the form ﬁ

H(X,Y) = (Vv € V)(Th € X)[DEG(v, Y)APATH(h,v, Y)A(NXT*(h,v)VEQ(h, v))]
where,

3 Binary relation R is said to be compatible with the tree decomposition T" of G if
the Gaifman graph of R has T” as its tree decomposition.

4 Note that since we require that for a given X,Y, every v € V has a unique h € X,
our formula is not monotone, i.e., If X C X’ are two sets of heads then if ¢(X,Y) is
true doesn’t imply ¢(X’,Y) is also true (consider vertices in X'\ X, since X' C X,
they will have two different h, h’ such that the PATH and NXT* predicates are true
contradicting uniqueness of h

1. DEG(v,Y) is the predicate that says that the in-degree and out-degree of v
(in the subgraph induced by the edges in Y) is 1.

2. PATH(z,y,Y) is the predicate that says that there is a path from z to y in
the graph induced by edges of Y.

3. EQ(h,v)=1if h=w

One can check that all the predicates above are MSO-definable.
Lemma [I] along with the Fact [T] yields:

Lemma 3. Given an (n x n) bounded treewidth matriz A with integer entries,
there is a Logspace algorithm that constructs an (m x m)(where m = poly(n))
matric B with entries from {0,1}, such that det(A) = det(B) and the treewidth
of B is the same as the treewidth of A.

Thus, using the histogram version of Courcelle’s theorem from [EJT10] and
Lemma [3] we get:

Theorem 4. The determinant of a matriz A with integer entries, which can be
viewed as the adjacency matriz of a weighted directed graph of bounded treewidth,
is in L.

Proof. Firstly, obtain the matrix B from A using Lemma [3] The histogram ver-
sion of Courcelle’s theorem as described in [EJTI10] when applied to the formula
#(X,Y) above yields the number of cycle covers of G parametrized on | X|,|Y].
But in the notation of Fact [1] above, |X| = k and |Y| = n, so we can easily
compute the determinant as the alternating sum of these counts.

Corollary 1. There is a Logspace algorithm that takes as input a (nxn) bounded
treewidth matriz A, 1™, where 1 < m < n and computes the coefficient of x™ in
the characteristic polynomial (x a(x) = det(zI — A)) of A.

The characteristic polynomial of an (n x n) matrix A is the determinant of the
matrix A(z) = zI — A. We could use Theorem [to compute this quantity (since
A(z) is bounded treewidth, if A is bounded treewidth). However, Theorem
holds only for matrices with integer entries while the matrix A(x) contains entries
in the diagonal involving the indeterminate x.

We proceed as follows: In the directed graph corresponding to A, replace a
self loop on a vertex of weight — d by a gadget of weight —d in parallel with a
self loop of weight (In the event that there is no self loop on a vertex in A, add
a self loop of weight x on the vertex). Replace the weights on the other edges
according to the gadget in Lemma [3] We have added exactly n self loops, each
of weight z (for the original vertices of A).

We first consider a generalisation of the determinant of {0, 1}-matrices of
bounded tree-width viz. the determinant of matrices where the entries are from
a set whose size is a fixed universal constant and the underlying graph consisting
of the non-zero entries of A is of bounded tree-width.

Lemma 4. Let A be a matriz whose entries belong to a set S of fixed size inde-
pendent of the input or its length. If the underlying digraph with adjacency matriz
A, where Aj; = 1 iff Ajj # 0, is of bounded tree-width then the determinant of
A can be computed in L.

Proof. Let s = |S| be a universal constant, S = {c1,...,¢s} and let val; be the
predicates that partitions the edges of G according to their values i.e. val;(e)
is true iff the edge e has value ¢; € S. Our modified formula ¥ (X,Y7,...,Ys)
will contain s unquantified new edge-set variables Y7,...,Y; along with the old
vertex variable X, and is given by:

Veec E((ecY; »vali(e))A(e€Y < Vi_i(e€ V) ANp(X,Y))

Notice that we verify that the edges in the set Y; belong to the ith partition and
each eadge in Y is in one of the Y;’s. The fact that the Y;’s form a partition of
Y follows from the assumption that val;(e) is true for exactly one i € [s] for any
edge e.

To obtain the determinant we consider the histogram parameterised on the
s variables Y7,...,Y; and the heads X. For an entry indexed by z,y1,...,ys, we
multiply the entry by (—1)"**[]’_, ¢;¥' and take a sum over all entries.

In light of the Lemma above, we can compute the characteristic polynomial as
follows:

Proof. (of Corollary While counting the number of cycle covers with k cycles,
we can keep track of the number of self-loops occurring in a cycle cover. It is
easy to see that we can obtain the coefficient of z” in the characteristic polyno-
mial from the histogram outlined in Lemma [d] Hence we can also compute the
characteristic polynomial in L.

Corollary 2. There is a Logspace algorithm that takes as input a bounded treewidth
(n x n) matriz A, and computes the rank of A.

Proof. Compute the characteristic polynomial of A and use the fact that the
rank of A is a number r such that ™" is the smallest power of x wth a non-
zero coefficient.

FSLE(A,b) is the following problem: Given a system of m linear equations (with
integer coefficients, w.l.o.g) in variables z1, ..., z, and a target vector b, we want
to check if there is a feasible solution to Az = b. That is, we want to decide
if there is a setting of the variable vector z € Q™ such that, Az = b holds for
a bounded treewidth matrix A € Z™*™ (when we say a rectangular matrix is
bounded treewidth, we mean the underlying bipartite graph on (m + n) vertices
has bounded treewidth).

Corollary 3. For a bounded treewidth matriz A, x, and vector b, x1, FSLE(A,b)
is in L.

Proof. A can be interpreted as the biadjacency matrix of a bipartite graph. Now,

0 A
AT 0
(m + n). It is easy to see that B corresponds to the adjacency matrix of A.
Let row-rank(A) = column-rank(A) = r. Since A and A” have the same rank,
rank(A) + rank(AT) = 2r = rank(B). Therefore, in order to find the rank of the
rectangular matrix A, we can use the Logspace procedure for matrix rank given
by Corollary [2| Now, we know that the system of linear equations given by A,b
is feasible if and only if rank(A) = rank([A4 : b]).

consider the matrix B = — this is a matrix of dimension (m + n) x

Corollary 4. There is a Logspace algorithm that takes as input a (nxn) bounded
treewidth matriz A, 1*,17,1% and computes the k-th bit of A;jl,

Proof. The inverse of a matrix A is the matrix B = %(TM where C = (Cij)1<ij<n
is the cofactor matrix, whose (i, j)-th entry C;; = (—1)""det(A;;) is the deter-
minant of the (n — 1) x (n — 1) matrix obtained from A by deleting the i-th
row and j-th column. If we can compute C;; in L, we can compute the entries
of B via integer division which is known to be in L from [HABOQ2]. To this end,
consider the directed graph G4 represented by A. To compute det(A4;;), swap
the columns of A such that the j-th column becomes the i-th column. The graph
so obtained is of bounded treewidth (To see this, notice that the swapping op-
eration just re-routes all incoming edges of j to ¢ and those of ¢ to j. The tree
decomposition of this graph is just obtained by adding vertices (i, 7) to every bag
in the tree decomposition of G4 and also the edges rerouted to the respective
bags. This increases the treewidth by 2). Now, remove the i-th vertex in G 4 and
all edges incident to it to get a graph G A1, on (n — 1) vertices. The swapping
operation changes the determinant of A;; by a sign that is (—1)*=7 = (—1)"*J.
Computing the determinant of this modified matrix A;j yields Cj; as required.
Since Agj is obtained from A by removing a vertex and all the edges incident on
it, the treewidth of Agj is at most the treewidth of A. By Theorem {4| C;; is in
FL.

Corollary 5. There is a Logspace algorithm that on input an (n X n) bounded
treewidth matriz A, 1™,1%,17, 1% gives the k-th bit of (i, j)-th entry of A™.

Proof. Consider A’ = (I —tA)~! where [is the (n x n) identity matrix and ¢ is a
small constant to be chosen later. Notice that A’ = (I —tA)~" =37t/ A7. By
choosing t as a suitably small power of 2 (say 277 = ¢ such that 2P > ||A]|) and
computing A’ to a suitable accuracy, we can read the (i, j)-th entry of A™ off the
appropriate bit positions of the (4, 7)-th entry of A’. So, in essence the problem
of powering bounded treewidth matrix A reduces to the problem of computing
the inverse of a related matrix which is known to be in L via Corollary [

3.1 Spanning Trees and Directed Euler Tours

Fact 2 The number of arborescences of a digraph equals any cofactor of its
Laplacian.

where the Laplacian of a directed graph G is D — A where D is the diagonal
matrix with the D;; being the out-degree of vertex i and A is the adjacency
matrix of the underlying undirected graph. The BEST Theorem states:

Fact 3 ([AEBRT|[TS41]) The number of Euler Tours in a directed Eulerian
graph K 1is exactly:
t(K) T (deg(v) - 1)!
veV
where t(K) is the number of arborescences in K rooted at an arbitrary vertex of
K and deg(v) is the indegree as well as the outdegree of the vertex v.

We combine Facts [2] and [Bwith Theorem [] to compute the number of directed
Euler Tours in a directed Eulerian graph in L.
Use the Kirchoff Matrix Tree theorem[Stal3] and Fact

Corollary 6. Counting arborescences and directed Euler Tours in a directed
Eulerian graph G (where the underlying undirected graph is bounded treewidth)
is in L.

4 Hardness Results

We show a couple of hardness results to complement our Logspace upper bounds.

Proposition 1 (Hardness of Bounded Treewidth Determinant). For all
constant k > 1, computing the determinant of an (n x n) matriz A whose un-
derlying undirected graph has treewidth at most k is L-hard.

Proof. We reduce the problem ORD of deciding for a directed path P and two
vertices s,t € V(P) if there is a path from s to ¢ (known to be L-complete via
[Ete97]) to computing the determinant of bounded treewidth matrices (Note
that P is a path and hence it has treewidth 1). Our reduction is as follows:
Given a directed path P with source a, sink b and distinguished vertices s and
t, we construct a new graph P’ as follows: Add edges (a,s'), (s',1), (¢, 5), (s,a)
and (b,t") and remove edges (s',s), (t,t') where s’ and t' are vertices in P such
that (s, s), (¢t,t') € E(P) (See Figure|[1]).

We claim that there is a directed path between s and ¢ if and only if the
determinant of the adjacency matrix of P’ is zero. If there is a directed path
from s to t in P, then there are two cycle covers in P’ : (a,s')(s,t)(t',b), with
three cycles and (a, ', t, s), (t',b), with two cycles. Using Fact [1} the signed sum
of these cycle covers is (—1)"*3 + (—1)"*2 = 0, which is the determinant of P’.

In the case that P has a directed path from ¢ to s (see Figure, then there is
one cycle namely (a,t,s’,b,t', s). We argue as follows: The edges (¢, s), (s,b), (b,t'), (',)
are in the cycle cover since they are the only incoming edges to s, b,t’, s’ respec-
tively. So (t,s,b,t',s") is a part of any cycle cover of the graph. This forces one
to pick the edge (s',a) and hence we have one cycle in the cycle cover for P’.

Fig. 1. s occurs before t

Fig. 2. t occurs before s

Proposition 2 (Hardness of Bounded Treewidth Matrix Powering).
Matriz Powering is L-hard under disjunctive truth table reductions.

Proof. (of Proposition We reduce ORD to matrix powering. Given an directed
path P on n vertices and distinguished vertices s and ¢, we argue as follows: There
is a directed path between s and ¢, then it must be of length ¢ for an unique
i € [n]. Consider the matrix (I + Ap)™: s and t are connected by a path if and
only if (I + Ap)¢, # 0. This is because (I + Ap)%, gives the walks from s to ¢,
and if at all there is a path from s to ¢, then there is definitely a walk of length
at most n between them. Checking if this entry is zero can be done by a DNF
which takes as input the bits of (I + Ap)¢,.

Proposition 3 (Hardness of Bounded Treewidth IMM). Given a se-
quence of bounded treewidth matrices with rational entries My, My, ..., M, and
14,191 as input, computing the k-th bit of (i, j)-th entry of [];—, M; is GapL-
hard.

Proof. (of Proposition [3)) We reduce integer matrix powering to iterated matrix
multiplication of bounded treewidth graphs. Given an (n x n) matrix A with
n-bit entries, and 1™, 1% 17 the matrix powering problem is to find the (i, j)-th
entry of A™. From the underlying digraph G4 = (V = {v1,va,...,0,}, E), we
construct a sequence of bounded treewidth matrices as follows: We construct two
gadgets V; and V,, — Both are graphs on 2n? vertices divided in to n? partitions
where each partition is a copy of V' (such that there are no edges between vertices
in the partition): U = U 1 U; and L = U ; L; where each L; = U; = V. We also
have the edges between:

1. v; € Uj and v; € Uj+1
2. v; € Lj and v; € Lj+1

for all ¢ € [n],j € [n — 1].The edges are basically an identity perfect matching
between U; and U;41 and also L; and L;;1. Now we add edges in V; and V),
according to edges present in G4: If (v;,v1),..., (u,v,) are edges in G4 out of
vertex v;, then

1. In V;, we add an edge between v; € L; to v1,...,v, € Ui11.
2. In V,, we add an edge between v; € U; to v;,,...,vi,. € Litq

We now construct a walk gadget WV using alternating copies of the vertex gadgets
V; and V,,. To raise A to the m-th power, construct: Vi, ..., V,, where V; =V,
Vs =V, and so on. Connect V; and V;11 by the following edges:

1. v; € U, and v; € Uy, Vi € [n].
2. v; € L, and v; € L1,Vi € [n].

where L,,, U, € Vjand Ly, Uy € Vjy4 for j € [m—1]. Additionally if (v, vk,), . . ., (Vn, vk,)
are edges out of vy, then add those corresponding edges between L,, € V; and

Ui € Vi1 if V; is a V) gadget. Otherwise V; is a V,, gadget and hence add the
corresponding edges between U,, € V; and Ly € V;,. It is easy to see that there

is a bijection between walks of length m in G4 and paths of length m in W. The

gadget W that results is of constant treewidth.

5 Open Problems

What is the complexity of other linear algebraic invariants such as minimal
polynomial of a bounded tree-width matrix? What is the complexity of counting
Euler Tours in undirected tours in bounded treewidth graphs? On general graphs,
this problem is known to be #P-complete[BW05|. See [CCM12JCCM13] for some
recent progress on this problem.

References

ABO09. Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

ABO99. Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of
matrix rank and feasible systems of linear equations. Computational Com-
plezity, 8(2):99-126, 1999.

AEBS87. T. Aardenne-Ehrenfest and N.G. Bruijn. Circuits and trees in oriented
linear graphs. In Ira Gessel and Gian-Carlo Rota, editors, Classic Papers
in Combinatorics, Modern Birkhuser Classics, pages 149-163. Birkhuser
Boston, 1987.

Ber84. Stuart J. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Inf. Process. Lett., 18(3):147-150, 1984.

BWO5. Graham Brightwell and Peter Winkler. Counting eulerian circuits is# p-
complete. In ALENEX/ANALCO, pages 259-262. Citeseer, 2005.

CCM12. Prasad Chebolu, Mary Cryan, and Russell Martin. Exact counting of euler
tours for generalized series-parallel graphs. J. Discrete Algorithms, 10:110—
122, 2012.

CCM13.

CF12.

CM87.

Cou90.

DDN13.

DK14.

DKLM10.

EJT10.

Ete97.

HABO2.

MV97.

Stal3.

Tod91.

TS41.

Val79.

vzGG13.

Prasad Chebolu, Mary Cryan, and Russell Martin. Exact counting of euler
tours for graphs of bounded treewidth. CoRR, abs/1310.0185, 2013.

Yijia Chen and Jorg Flum. On the ordered conjecture. In Proceedings of the
2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science,
pages 225-234. IEEE Computer Society, 2012.

Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic
logarithmic space. J. Algorithms, 8(3):385-394, 1987.

Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Information and computation, 85(1):12-75, 1990.
Bireswar Das, Samir Datta, and Prajakta Nimbhorkar. Log-space algo-
rithms for paths and matchings in k-trees. Theory Comput. Syst., 53(4):669—
689, 2013.

Samir Datta and Raghav Kulkarni. Space complexity of optimization prob-
lems in planar graphs. In TAMC, pages 300-311, 2014.

Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Pla-
narity, determinants, permanents, and (unique) matchings. TOCT, 1(3),
2010.

Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of
the theorems of bodlaender and courcelle. In FOCS, pages 143-152, 2010.
Kousha Etessami. Counting quantifiers, successor relations, and logarithmic
space. J. Comput. Syst. Sci., 54(3):400-411, 1997.

W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65:695-716, 2002.

Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms,
and complexity. Chicago J. Theor. Comput. Sci., 1997, 1997.

Richard P Stanley. Algebraic Combinatorics. Springer-Verlag New York,
2013.

S. Toda. Counting problems computationally equivalent to the determinant.
Technical Report CSIM 91-07, Dept of Comp Sc & Information Mathemat-
ics, Univ of Electro-Communications, Chofu-shi, Tokyo, 1991.

WT Tutte and CAB Smith. On unicursal paths in a network of degree 4.
The American Mathematical Monthly, 48(4):233-237, 1941.

Leslie G Valiant. The complexity of computing the permanent. Theoretical
computer science, 8(2):189-201, 1979.

Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Algebra
(3. ed.). Cambridge University Press, 2013.

Acknowledgement

We would like to thank Abhishek Bhrushundi, Arne Meier, Rohith Varma and
Heribert Vollmer for illuminating discussions regarding this paper. Special thanks
are due to Johannes Kobler and Sebastian Kuhnert who were involved in the
initial discussions on the proof of Theorems [] [6} to Stefan Mengel for proof
reading the paper and finding a gap in a previous “proof” of Theorem [&} and to
Raghav Kulkarni for suggesting proof strategies for Corollary [f] and Lemma [3}
and to Sebastian Kuhnert for the proof of Proposition [2] Thanks are also due to
anonymous referees for pointing out errors in a previous version of the paper, for
greatly simplifying the proof of Corollary [3| and for pointing out the reference
[CF12]. This research is partially funded by a grant from the Infosys Foundation.

A Background

A.1 Background on Complexity Classes

For all the standard complexity classes, we refer the reader to [AB09]. We define
some non-standard complexity classes that we refer to here:

Let f = (fn)n>0 where f, : {0,1}" — Z be a family of integer valued func-
tions. f is in the complexity class GapL if and only if there is a nondeterministic
logspace machine M such that for every z, f(x) equals the difference between
the number of accepting and rejecting paths of M on input x.

C=L is the class of languages L for which there exists a GaplL functions f

that evaluates to zero on precisely those x € L. The class LCZL consists of all
languages decidable by a logspace machine at the base with oracle access to a
C=L-complete language. The AC? hierarchy over C=L is built as an AC circuit
with gates which can make queries to a C=L oracle and is known to collapse to

LCZL. For more information on the subtleties of implementing this hierarchy,
see [ABO99].

B Split Graph and the Biadjacency matrix

We will often find it convenient to interpret an arbitrary matrix A € Q,x, as
representing both a weighted directed graph G 4 and the weighted biadjacency
matrix of an undirected bipartite graph H 4. We will exploit this duality between
these two interpretations of a matrix to compute linear algebraic invariants.

Let Hy = (RUC, E) be the bipartite graph on 2n vertices where A;; repre-
sents an edge between the i € R to j € C of the appropriate weight. When we
say H 4 has bounded treewidth, we mean that the underlying undirected graph
has bounded treewidth. If we consider A to represent a digraph G4 on n vertices,
we can construct the split graph of G 4 namely Split(G 4) — for each vertex v of
G 4, we create vy, and vyy. If there is an edge between u and v in G 4, then we
add an edge in Split(G4) between uyy,: and v;,. For all vertices v, we add an
edge (Vin, Vout). SPlit(G4) is an undirected graph on 2n vertices. We have the
following easy proposition:

Proposition 4. G4 has bounded treewidth, iff Split(G 4) has bounded treewidth.

Proof. We can construct the tree decomposition of Split(G 4) from that of G4 by
introducing one new vertex for every vertex in the bag. This almost doubles the
treewidth. The other directions follows from the fact that G4 can be obtained
as minor of Split(Ga).

C Omitted Proofs from Section 3

C.1 Proof of Lemma [2]

Proof. We first define the graph G’ in which we add three vertices by, by, b, for
every bag B in the tree decomposition of G. We will use the following running

example, let A be a parent bag in the tree decomposition with left child B
and right child C'. The scheme we propose adds vertices a;, ag, a,, b;, bg, b, and
c, ¢o, Cr, With ay, ag, ar, b, c; € A, ay, by, b9,b. € B and a.., ¢, co, ¢, € C.

We put an edge between every bag vertex b € V(G')\ V(G) and every vertex
v sharing a bag with b. Clearly this is a valid tree decomposition of tree-width
which is at most 7 greater than that of G.

We now traverse the tree 7" using an Euler Traversal (see [CM8T7]). Every
internal bag of the the tree is visited thrice in an Euler traversal - first when the
traversal visits the bag the first time, second after exploring its left child, and
finally third when it is done exploring its right child. For a bag B in the tree
decomposition, if by, by, b, are the vertices added, the vertices are visited in the
following order in the Euler traversal of the tree: First b; is visited, after which
the left child of B is explored. Following this, the traversal returns to B via by,
after which the right child of B is explored. Finally we visit B again via b, and
proceed to B’s sibling via B’s parent.

Define NXTpyq to be the following ordering of the bag vertices: a; < b; <
bop < b < ag < ¢ <cy < e <ap In the case when b has children, they are
explored between b; and by (left child) and by and b, (right child).

Next we extend the relation NXTpq, to a relation NXT; on pairs which
include vertices of G. For every vertex v occurring in bag A if v does not belong
to the left child B of A but belongs to the right child C' then add the tuple
ag < v to NXT; else we just add a; < v. Symmetrically, we add v < ag or v < a,
depending on whether v belongs to the left child B but not to the right child C,
or not. If it does not belong to either child, we add the tuples b, < v and v < ¢.

Now consider the transitive closure NXT] of NXT;. This may well not be a
total order on the vertices of G’. But we have the following;:

Claim. Bag vertices are totally ordered under NXTj. If two vertices of G are
incomparable under NXT7, then there must exist a common bag to which both
must belong.

Proof. That bag vertices are totally ordered follows from the definition of Euler
traversal of a tree. To see the other part of the claim let u,v € V(G) be unordered
by NXT7. Let the least common ancestor (LCA) bag of all the bags to which u
belong be @ and the LCA bag of all bags containing v be R and further P is
the LCA bag of @, R. From the assumption that u, v do not belong to the same
bag not all three P, @, R can be the same, in particular @), R are distinct. If P
is distinct from @, R then from NXT] we know that: ¢, < pg < 7 (assuming,
wlog that @ is a left descendant and R a right descendant of P). Also, u < g,
(or possibly even u < qo < ¢) and r; < v (or even r; < rg < v) are present
in NXT;. Thus u < v is present in NXT7]. This leaves the case when P = Q

® Alternately, following scheme also works: Add all the 6 bag vertices(by, bo, b and
ci, co, ¢r) of the children to the parent bag A. Symmetrically, add the bag vertices
al, ao, ar to both B and C. Note that this is a local operation and it increases the
treewidth of every bag by atmost 9: 6 from the children and 3 from the parent. The
final graph G’ obtained this way has treewidth at most 12 more than G.

(the other case, P = R, is symmetric). Let P’ be the bag containing « which is
nearest along the tree to R. Without (much) loss of generality suppose R is a
descendant of the left child of P’. Let R’ be the left child of P’ (R’ may be the
same as R). From the fact that R is the highest bag containing v, we know that
v < 7. Because u does not occur in either child of P’ we have that . < u. Now
7, is either the same as 7. (if R = R’) or r,. < r/. (if R is a proper descendant of
R’). In either case we get v < w in the transitive closure of NXT]. Other cases
are similar.

We can find NXT7] in L by using [EJT10]. From this we find pairs u,v € V(G)
which are incomparable under NXT]. Next we order any unordered w,v in L by
their binary values and add these tuples (i.e. one of u < v and v < u for every
unordered u, v) to NXT; to yield NXT. Notice that the vertices of G are totally
ordered under NXT* and because of the claim above NXT is compatible with
the tree decomposition T”

C.2 Proof of Lemma [3]

Proof. We replace each edge (u,v) in G4 by a series-parallel graph with edge
weights from {0, 1} such that the sum of weights of all paths between u and v
exactly equals the weight of (u,v) and the construction doesn’t alter the sign of
the cycle cover in which (u,v) is present.

We use a construction similar to [Val79] — If the weight of the edge (u,v) is an
n-bit integer w = w,wp_1 ... w1, we create a gadget of weight 27 for each w; and
add edges (u, s;) and (¢;,v). We add self loops on all the vertices in this gadget
except u and v. We also ensure that all paths between u and v are of equal length
(say 1). If n’ is the number of new vertices added, then a cycle cover of G will
consist of the original cycles in G 4 along with the n’ —[self loops that result from
the series-parallel graph now representing (u,v). Since the sign of a monomial
in the determinant is decided by the number of cycles (equivalently the number
of heads in a cycle cover) corresponding to the permutation of the monomial, if
we can ensure that n’ — [is always even, then the sign of the cycle cover will be
(=1)* = (=1)"' =1k = (—1)¥. This is easily taken care of by replacing v by a
new vertex v’, removing all the edges (;, v), introducing edges (¢;,v’) and (v', v).

It remains to show that from the tree decomposition of G 4, we can obtain
a tree decomposition of G in L. This is easily accomplished as follows: For an
edge (u,v) in G4, find the highest bag b in the tree where it occurs and add
a new bag by, as a child to b which just contains v and v and the edge (u,v).
Attach the tree decomposition of the series-parallel graph gadget corresponding
to (u,v) in Gp as a child of b,,. It is easy to verify that what results is still a
tree decomposition — Every edge in B is present in some bag. If (u, v) is present
in bags b; and bs, it is present in all the bags in the unique path between b,
and b in the tree. Here one has to argue two cases: If (u,v) is an edge in the
series-parallel gadget, then it is only present in the bags corresponding to the
tree decomposition of the series parallel graph (children of b,,). Else (u,v) must
have been an edge in G 4. In this case, after appending the tree decomposition

of the series-parallel graph to by, it still stays a tree decomposition. The size of
any bag in this decomposition is max(k,2) (since any series-parallel graph has
treewidth at most 2).

	Bounded Treewidth and Space-efficient Linear Algebra
	Nikhil Balaji & Samir Datta

