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Abstract

Teramoto et al. [TAKD06] defined a new measure called the gap ratio that measures the
uniformity of a finite point set sampled from S, a bounded subset of R2. We generalize this
definition of measure over all metric spaces by appealing to covering and packing radius. The
definition of gap ratio needs only a metric unlike discrepancy, a widely used uniformity measure,
that depends on the notion of a range space and its volume. We also show some interesting
connections of gap ratio to Delaunay triangulation and discrepancy in the Euclidean plane. The
major focus of this work is on solving optimization related questions about selecting uniform
point samples from metric spaces; the uniformity being measured using gap ratio. We consider
discrete spaces like graph and set of points in the Euclidean space and continuous spaces like
the unit square and path connected spaces. We deduce lower bounds, prove hardness and
approximation hardness results. We show that a general approximation algorithm framework
gives different approximation ratios for different metric spaces based on the lower bound we
deduce. Apart from the above, we show existence of coresets for sampling uniform points from
the Euclidean space – for both the static and the streaming case. This leads to a (1 + ε)-
approximation algorithm for uniform sampling from the Euclidean space.

Keywords Discrepancy, metric space, uniformity measure, gap ratio, lower bounds, hardness,
approximation

AMS Subject Classifications 52C99, 68Q25, 68R99

1 Introduction

Teramoto et al. [TAKD06] introduced a new measure of uniformity for point samples, calling it
gap ratio, motivated by combinatorial approaches and applications in digital halftoning [Asa06,
AKOT02, AKOT03, STCT02]. They defined the problem of minimizing gap ratio in a unit hyper-
cube, in an online setting. We attempt to generalize this definition by removing the online nature
of the problem and extending the measure over all bounded metric spaces.
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Gap ratio and uniformity of point samples

1.1 Problem definition and hardness

Definition 1. Let (M, δ) be a metric space and P be a set of k points sampled from M. Define
the minimum gap as

rP := min
p,q∈P,p6=q

δ (p, q)

2

The maximum gap brings into play the interrelation between the metric space M and P (⊂M), the
set sampled from M, and is defined as

RP := sup
q∈M

δ (q, P )

where δ(q, P ) := min
p∈P

δ (q, p). The gap ratio for the point set P is defined as

GRP :=
RP
rP

.

In the rest of the paper, we would mostly not use the subscript P .
Note that the space M, as in Definition 1 can be both continuous and discrete. The mea-

sure itself makes sense over unbounded spaces as well, if, we remove the finiteness of P from the
definition. However, we restrict our study to finite sets only.

Remark 1. Let us note here that the maximum gap and the minimum gap are not the maximum
and minimum of the same parameter. The minimum gap depends only on the inter point distances
of P , while the maximum gap depends on the structure of the set P as well as M. Thus the gap
ratio can be less than 1. We will discuss lower bounds later.

In a geometric sense, the maximum gap is analogous to the minimum radius required to cover
M with equal sized balls (i.e., covering balls) around each point of P , and the minimum gap is
the maximum radius of equal sized balls around each point of P having pairwise disjoint interiors
(i.e., packing balls). In a uniformly distributed point set, we expect the covering to be thin and
the packing to be tight. So, we expect the maximum gap to be minimized and the minimum gap
to be maximized to measure uniformity. Thus the gap ratio can be a good measure of estimating
uniformity of point samples.

Using the generalized definition of gap ratio, we can pose combinatorial optimization questions
where M, for example, can be a set S of N points, and we would like to choose a subset P ⊂ S
of n points from S, such that the gap ratio is minimized. Asano [Asa08] in his work opened this
area of research, where he asked discrepancy like questions in a discrete setting. Asano opined
that the discrete version of this discrepany-like problem will make it amenable to ask combinatorial
optimization related questions. We precisely do that in this paper for different metric spaces. The
formal statement of the problem is as follows.

Definition 2 (The gap ratio problem). Given a metric space (M, δ), an integer k (k < |M| if M
is finite) and a parameter g, find a set P ⊂M such that |P | = k and GRP ≤ g.

We next discuss a theorem that shows the gap ratio problem is even hard to approximate for
general metric spaces, and this fact forms our motivation to study the gap ratio problem for different
metric spaces.
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Gap ratio and uniformity of point samples

Theorem 3. In a general metric space, it is NP-hard to approximate the gap ratio better than a
factor of 2.

Proof To show this hardness, we make a reduction from independent dominating set problem,
where the dominating set is also independent set. This problem is known to be NP-hard [GJ90].
The independent dominating set problem statement is as follows. Given a graph G and and integer
k < |V | does there exist a set D of size at most k such that D is a dominating set as well as an
independent set.

Let G = (V,E) and k be an instance of independent domination problem. We make a weighted
complete graph over V such that all edges present in G have weight 1 and all other edges have
weight 2. Now the metric spaceM is given by the vertex set of the complete graph and the metric
is defined by the edge weights.

We now show that G = (V,E) has an independent dominating set of cardinality k if and only
if there exists a sampled set P in M of k points with gap ratio 1. Let D be an independent
dominating set of G of cardinality k. Let the sampled set P inM is given by P = D. Now since D
is independent in G, any two points in P are at a distance of 2 in the metric spaceM. Thus r = 1.
Since D is a dominating set of G, every point in M has an edge of weight 1 with some point in P .
Thus R = 1. Hence, the gap ratio equals 1.

Conversely, suppose a point set P of cardinality k has been selected fromM such that the gap
ratio is 1. Note that in the metric space, the value of R is either 1 or 2 and the value of r is either
1
2 or 1. Consequently, the minimum gap ratio is 1 and the only way that can happen is if R and r
both take value 1. Now, R = 1 means the farthest point inM is at a distance of 1 from the set P .
Thus every point in M has an edge of weight 1 with some point in P or is in P . Thus P forms a
dominating set in G. Also, as r = 1, we have the closest pair in P is distance 2 apart. Thus, the
set P is an independent dominating set in G of cardinality k. �

1.2 Previous results

1.2.1 Uniformity measures

There are many measures of uniformity, most notably geometric discrepancy, which has already
been applied in numerous areas. For the sake of brevity, we shall, from now on, say discrepancy
whenever we mean geometric discrepancy.

Discrepancy measures the highest difference between the expected (by volume) sample points
in a subset with the actual number of points in the subspace. Definitions vary by restricting the
“subspace” to specific geometric objects such as half planes, rectangles, axis parallel rectangles etc.
When the domain is a d-dimensional unit cube, the lower bound on discrepancy with axis parallel

rectangles (or even with axis parallel cubes) is known to be Ω
(

log
d−1
2 n

)
for a point sample of n

points [Mat99, Theorem 6.1]. For a unit square a tight bound of Ω (log n) is known [Mat99, Theorem
6.2]. It has also been shown that the expected star-discrepancy (the axis parallel rectangles are
anchored at the origin) of N points chosen uniformly at random in a d-dimensional unit cube is

O

(√
d
N

)
[Doe14]. With half planes, the discrepancy in the unit square is Ω

(
n

1
4

)
[Mat99, Theorem

6.9]. Another variant of discrepancy, called the L2-discrepancy [Mat99, Section 6.1], is defined a
bit differently. First the following function is defined, for a sample set P of n points, on the unit
cube,

D (P,Cx) := |n · vol (Cx)− |Cx ∩ P || , where Cx = [0, x1)× . . . [0, xd) .

3



Gap ratio and uniformity of point samples

The L2-discrepancy, of the set P is

D2 (P, Cd) :=

√√√√ ∫
[0,1]d

D (P,Cx)2 dx.

The lower bound for this definition of discrepancy is also Ω
(

log
d−1
2 n

)
[Mat99, HM11, Section 6.1].

Remark 2. Discrepancy as a uniformity measure uses the notion of a range space (e.g., rectangle,
circle, hyperplane, etc.) and a volume measure over the said range space. Different kinds of range
spaces give rise to different discrepancy measures. On the other hand, gap ratio as a measure of
uniformity, uses the notion of metric only. Thus, gap ratio is solely dependent on distances. This
feature of gap ratio makes it easier to compute unlike discrepancy.

1.2.2 Gap ratio

As mentioned before the problem was originally defined in an online setting, on a unit hypercube,
wherein, the gap ratio was to be minimized at every insertion. As such all previous works on gap
ratio study the problem in an online setting.

Teramoto et al. [TAKD06] proved a lower bound of 2bk/2c/(bk/2c+1) for the gap ratio in the one
dimensional case where k points are inserted in the interval [0, 1] and also proposed a linear time
algorithm to achieve the same. They got a gap ratio of 2 in 2-dimension using ideas of Voronoi
insertion where the new point was inserted in the centre of a maximum empty circle [dBCvKO08].
They also proposed a local search based heuristic for the problem and provided experimental results
in support.

Asano [Asa08] discretized the problem and showed a gap ratio of at most 2 where k integral
points are inserted in the interval [0, n] where n is also a positive integer and 0 < k < n. He also
showed that such a point sequence may not always exist, but a tight upper bound on the length of
the sequence for given values of k and n can be proved.

Zhang et al. [ZCC+11] focused on the discrete version of the problem and proposed an insertion
strategy that achieved a gap ratio of at most 2

√
2 in a bounded two dimensional grid. They also

showed that no online algorithm can achieve a gap ratio strictly less than 2.5 for a 3× 3 grid.

1.3 Our results

We discuss the uniformity measure gap ratio for a variety of metric spaces in this paper. For ease
of exposition we break our discussion into two broad groups., continuous metric spaces and discrete
metric spaces. We summarize our results in Table 1.

We start by discussing the motivation of the problem in Section 2 where we show some con-
nections with other uniformity measures. Section 3 focuses on continuous metric spaces, while
Section 4 deals with discrete metric spaces. In continuous metric spaces, we consider a unit square
in the Euclidean plane and path connected spaces. In discrete metric spaces, we consider connected
graphs, and a set of points in the Euclidean space. In Section 3, we start by showing lower bounds
for path connected spaces and the unit square, we then show NP-hardness for general continuous
spaces, and path connected spaces. In Section 4, we give a lower bound for connected graphs,
hardness for graphs and 3

2 -approximation hardness for graphs. This shows that sampling points
uniformly is essentially a hard problem for many metric spaces. In Section 5, we discuss a general

4
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Table 1: Our Results

Metric Space Lower Bounds Hardness Approximation

General none yes 2-approx. hard

Discrete

Graph 2
3 yes

approx. factor: 3
(connected) 3

2 -approx. hard

Euclidean - -
Coreset based

(1 + ε)-algorithm

Continuous
Path-Connected 1 yes approx. factor: 2

Unit Square 2√
3
− o (1) -

approx. factor:

in R2
√

3 + o (1)

approximation algorithm framework, which gives different approximation ratios for different metric
spaces. We also discuss a coreset based (1 + ε)-approximation algorithm for a set of points in the
Euclidean space which can also be extended to the streaming model for the same problem setting.

2 Motivation: connections to other measures of uniformity

Generating uniformly distributed points over a bounded metric space has many applications in
digital halftoning; see [Asa06, TAKD06, ZCC+11] and the references therein, numerical integra-
tion [Cha01, Mat99], computer graphics [Cha01], etc. Current techniques of meshing with well-
shaped simplices also requires uniform distribution of points over the region of interest [AT07,
Chapter 10 & 11].

For example, in the field of numerical integration uniformity of a sample in a space is measured
by discrepancy. In fact, for a sequence {x1, x2, . . .} in an interval [0, 1] and any Riemann integrable
complex valued function f : [0, 1] → C, it has been proved [KN74, Chapter 1, pages 2-3] that the
sequence is uniform in [0, 1] if and only if

lim
N→∞

1

N

N∑
n=1

f (xn) =

1∫
0

f (x) dx.

This result forms the basis of Monte Carlo approach to integration (although, it is not enough as
the notion needs to be formalised by using random sampling and developing quantitaive theory
leading to explicit upper and lower bounds on the error.) A classic result known as Koksma-
Hlawka inequality says that the error in Quasi Monte Carlo integration is directly proportional to
the discrepancy of point samples [Cha01].

An important aspect of numerically solving partial differential equations is mesh generation.
An important class of algorithms in mesh generation is Delaunay refinement algorithms, which
construct a Delaunay triangulation and refine it by inserting new vertices, chosen to eliminate
skinny or oversized elements, while always maintaining the Delaunay property of the mesh [CDS12,
Chapter 1].

5
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θ

θ

s

c

Figure 1: Delaunay triangulation and gap ratio. s ≥ r, c ≤ R; sin θ = s
c ≥ r

R = 1
g .

2.1 Connections to Delaunay triangulation

We now explore the implications of gap ratio on Delaunay triangulation. Consider a set of points,
P , in the Euclidean plane and the corresponding Delaunay graph and let ∆ be the triangle in the
Delaunay Graph with the smallest angle θ (Figure 1). Let us denote the maximum gap and the
minimum gap corresponding to this point set by R and r, respectively. Then the circumradius of
∆ is at most R and the side opposite to angle θ is at least 2r. It is easy to see that

sin θ ≥ r

R
= g−1.

Thus we can see that a lower gap ratio implies better Delaunay graph. The above would be true
in an unbounded domain, but, as mentioned earlier we will be considering bounded metric spaces.
Points of P near the boundary may form triangles with circumcentre beyond the boundary of the
domain and such triangles may have a circumradius which exceeds the maximum gap R. Voronoi
diagrams [dBCvKO08] allow us to give a guarantee as to how close these triangles must be to the
boundary. Consider the Voronoi diagram of P . For Voronoi cells which intersect the boundary
of the domain we consider the Voronoi cell to be the region within the boundary (see Figure 2).
Voronoi vertices, by definition, are the points farthest from the set P .

A ball of radius R around any point of P must cover the corresponding Voronoi cell. If not,
then part of the cell is being covered by a ball around some other cell, which would mean this part
of the cell is closer to another site, which is not possible. Thus, each point needs to cover only the
part of the domain within its corresponding cell. Triangles with circumradius greater than R must
have vertices with their Voronoi cell on the boundary, as the cirumcentre of such a triangle would
be a Voronoi vertex beyond the boundary i.e., the vertices of the triangle must be within distance
R of the boundary (some of the peripheral triangles of Figure 2 are thin and have adjacent cells,
their circumcentre is a Voronoi vertex of the unrestricted diagram). Thus all bad triangles of the
Delaunay triangulation must be within distance R of the boundary and all triangles at a distance
R away from the boundary must have minimum angle at least θ = arcsin g−1. This lower bound
also implies that no triangle has an angle greater than 180◦ − 2 arcsin g−1. These bounds mean
that even a gap ratio of 2 implies that all the triangles at a distance R away from the boundary
have angles between 30◦ and 120◦, bounds guaranteed by Chew’s algorithm [CDS12, Page 9]. A
lower gap ratio would give even better bounds on angles.

6



Gap ratio and uniformity of point samples

Figure 2: A restricted Voronoi diagram in a square. The dashed lines are the edges of the delaunay
triangulation and the solid lines inside the square form the voronoi diagram.

2.2 An intuitive idea of uniformity

Romero et al. [RBGP06] suggest characterizing a uniform point sample as having the following
properties,

Property 1 the equality with which points are spaced relative to one another in the parameter
space (are they all nominally the same distance from one another?);

Property 2 uniformity of point density over the entire domain of the parameter space (i.e., uni-
form “coverage” of the whole domain by the set of points, and not just good uniformity within
certain regions of the space); and

Property 3 isotropy (no preferential directionality) in the point placement pattern.

Remark 3. Note here that if the metric spaces are disconnected/discrete Properties 1 and 2 may
contradict each other. For example, if our space is a subset of the Euclidean plane with the induced
metric topology with two maximally connected components A and B such that min

x∈A,y∈B
d (x, y)

exceeds the diameter of each component, we can either satisfy Property 1 by sampling from only
one component or Property 2 by sampling from both the components. Thus, this characterisation
must not be considered strictly in general, but, rather it should be taken in the context of the
structure of the metric space.

Coming back to gap ratio as a measure, notice that the maximum gap answers the question,
“How far can we go in the metric space from the point sample?”. In the case of a uniform sample
one should not be able to go too far (Property 2). The minimum gap similarly answers, “Is a pair
of points too close to each other?”(Property 1). Both these quantities are independent of the axis
orientation as long as the metric itself is invariant under axis orientation, thus ensuring that the
gap ratio is invariant under rotation of the axes (Property 3).

Also note that since gap ratio only depends on a finite number of distances (a polynomial in the
point set size) computing it is also not as difficult a task as computing measures like discrepancy.

7
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Figure 3: Optimal packing for 19 circles in the square1

2.3 Measures of uniformity

Ong et al. [OKO12] describe and compare three separate classes of statistical measures for the
uniformity of a point sample viz., discrepancy, point-to-point measures (coefficient of variation,
mesh ratio) and volumetric measures. The volumetric measures can only be used in continuous
spaces.

The most commonly used measure for uniformity is discrepancy. There are many variations of
discrepancy. As an example, for a sample P of n points in a d-dimensional unit hypercube we can
consider the following quantity,

D∗ (P ) := sup
x,y∈[0,1]

∣∣∣∣xy − | ([0, x]× [0, y]) ∩ P |
n

∣∣∣∣
This quantity is called the star discrepancy, where the range space is the set of axis parallel rectan-
gles anchored at (0, 0). The more uniform the point sample, the lower will be the star discrepancy.
This is the general idea of discrepancy measures, to measure the deviation from the “expected
number of points” in various sizes/placements of similar objects. The above definition only con-
siders axis parallel rectangles anchored at the origin. Computing the above expression for a given
point set takes O

(
n(d−1) log2 n

)
time and O (n) space [DG94], which is quite high and can get

higher depending on the class of objects we take the supremum over. Also, as noted by Ong et al.
[OKO12] this measure depends on the orientation of the axis and thus cannot account for property
3 of uniformity as mentioned earlier.

Another way to ensure a uniform sample is to maximize the minimum gap. This is equivalent
to packing circles of equal radius (say r) (M⊕B (0, r)) [CS03, NÖ97, NÖ99, NÖadS99], where ⊕
denotes the Minkowski sum i.e., the set obtained by adding all pairs (x, y) such that x ∈ M and
y ∈ B (0, r) , r is the minimum gap and B (0, r) is a ball of radius r around the origin. Packing
equal radius circles is a difficult problem [LR02]. This strategy does not take into account large
empty areas inside M. For example, consider the packing of 19 circles in a unit square. Figure 3
shows the known optimal packing in such a case. Note the circles at both top corners are loose and
can be moved around. However, if we attempt to minimize the maximum gap the circles would be

1Image provided by Dr. Eckard Specht
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placed in positions such that the centres are not too far from any point on the boundary of the
uncovered background region.

2.4 Relation of gap ratio to discrepancy

We consider the star discrepancy, D∗ (P ) for the following discussion. Consider a point set P of
size n in the unit square. We denote the rectangle [0, x] × [0, y] by Rxy. We consider a rectangle

Rxy such that
|Rxy∩P |

n ≥ xy. Denote |Rxy ∩ P | := k. Divide the rectangle into 2l columns and 2l

rows such that 4l < k ≤ 4l+1. Then at least two points within the rectangle fall in one cell. So,

r ≤ (diameter of cell)

2
=

√
x2 + y2

2l+1
<

√
x2 + y2

√
k

Then ∣∣∣∣xy − | ([0, x]× [0, y]) ∩ P |
n

∣∣∣∣ ≤ A(x, y) :=
x2 + y2

r2n
− xy (1)

Similarly, consider another instance of Rxy such that
|Rxy∩P |

n ≤ xy, and denote |Rxy ∩ P | := k.
Divide the rectangle into 2l columns and 2l rows such that 4l−1 ≤ k < 4l. Then at least one cell
will be empty. Then,

R ≥ (diameter of cell) =

√
x2 + y2

2l
≥
√
x2 + y2

2
√
k

Then, ∣∣∣∣xy − | ([0, x]× [0, y]) ∩ P |
n

∣∣∣∣ ≤ B(x, y) := xy − x2 + y2

4R2n
(2)

Clearly,

D∗ (P ) ≤ max

 sup
x,y∈[0,1]
|Rxy∩P |

n
≥xy

A(x, y), sup
x,y∈[0,1]
|Rxy∩P |

n
≤xy

B(x, y)

 .

A low value for gap ratio would imply a high minimum gap and thus a low upper bound on
discrepancy from inequality 1 and a low maximum gap, which would give a low upper bound
on discrepancy from inequality 2. Thus, we can see that a good gap ratio should give a good
discrepancy as well.

Star discrepancy and discrepancy with axis parallel rectangles (where we consider all axis par-
allel rectangles in the square as opposed to only anchored axis parallel rectangles), D (P ), bound
each other as D∗ (P ) ≤ D (P ) ≤ 4D∗ (P ) [KN74, Chapter 2]. Thus by bounding star discrepancy,
we can also bound axis parallel rectangle discrepancy.

Having established connections between gap ratio vis-à-vis Delaunay triangulation and discrep-
ancy, we focus on combinatorial optimization questions pertaining sampling points from metric
spaces using gap ratio as the uniformity measure.

9
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3 Continuous metric spaces

3.1 Lower bounds

Here we study the lower bounds for the gap ratio in continuous metric spaces. We first see an ex-
ample, which shows us that there does not exist a general lower bound on gap ratio for a continuous
metric space.

Given an ε > 0, let us consider two balls (say A and B) in Rd of diameter 1 with distance
between their centres being 2

ε + 1, where 0 < ε < 1. The metric space M is defined as A ∪ B and
the set P is defined by two points, one each in A and B. In this case, the distance between the two
points in P must be at least 2

ε . Hence r ≥ 1
ε and R ≤ 1. Thus the gap ratio becomes less or equal

to ε.
However, if the space is path connected we can fix a general lower bound.

Lemma 4. The lower bound on gap ratio is 1 when M is path connected.

Proof In a connected metric space (M, δ), consider a sampled point set P . Suppose the closest
pair of points x, y ∈ P is distance 2r apart. Consider disks of radius r around each point of P .
This set of disks must have pairwise disjoint interiors as x and y are the closest pair of points in
P . Consider a point z ∈ M on the boundary of the disk around x. There must be such a point,
else, we have a contradiction to path-connectedness ofM. Note that z must be at distance r from
P . Hence, R ≥ r, and the lower bound follows. �

Next we consider the metric space, [0, 1]2 ⊂ R2 as in Teramoto et al.’s problem [TAKD06]. To
prove the lower bound on gap ratio, we appeal to packing and covering. To find a possible lower
bound on the gap ratio, we would want to increase r and reduce R, as much as possible. To this
end we will use the notions of packing and covering densities.

Definition 5 (Packing and covering densities [Kup87, T8́3]). The density of a family S of sets
with respect to a set C of finite positive Lebesgue measure is defined as

d (S, C) =

∑
µ (S)

S∈S,S∩C 6=∅

µ (C)
,

where µ is the Lebesgue measure. If C is the plane, then we define the density as follows. Let C (r)
denote the disk of radius r centred at the origin. Then we have

d (S, C) = lim
r→∞

d (S, C (r)) .

If the limit on the right hand side does not exist, then we consider lower density defined by

d− (S) = lim
r→∞

inf d (S, C (r)) ,

and the upper density defined by

d+ (S) = lim
r→∞

sup d (S, C (r)) .

The packing density dp(K) of a convex body K is defined to be the least upper bound of the upper
densities of all packings of the plane with copies of K, and, analogously, the covering density dc(K)
of K is the greatest lower bound of the lower densities of all coverings of the plane with copies of
K.

10
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Lemma 6. The lower bound for gap ratio is
(

2√
3
− C√

k

)
where C = 23/2

33/4
, when k points are sampled

from M = [0, 1]2.

Proof Let 2r be the minimum pairwise distance between the point of P . Consider a circle of
radius r around each point of P . This forms a packing of k circles of radius r in a square of side
length (1 + 2r). Suppose the density of such a packing is d1. Now, we can tile the plane with such
squares packed with circles. Thus we have a packing of the plane of density d1. It is known that
the density of the densest packing of equal circles in a plane is π/

√
12 [Kup87]. Then obviously

d1 ≤ π/
√

12 as we have packed the plane with density d1. Hence,

d1 = kπr2/(1 + 2r)2 ≤ π/
√

12

and consequently we have,

r ≤
(√

k
√

12− 2

)−1

On the other hand, let R = supx∈M δ(x, P ). Clearly, circles of radius R around each point of P
cover M. Suppose the density of such a covering is D1. Now, we can tile the plane with this unit
square. Thus we have a covering of the plane with density D1. It is known that the density of the
thinnest covering of the plane by equal circle is 2π/

√
27 [Kup87]. Then obviously D1 ≥ 2π/

√
27 as

we have covered the plane with density D1. Thus we have,

D1 = kπR2/1 ≥ 2π/
√

27

giving us

R ≥
√

2/

√
k
√

27

Hence, the gap ratio is

R

r
≥
(√

k
√

12− 2

) √
2√

k
√

27
=

2√
3
− C√

k
, where C =

23/2

33/4
.

�

Remark 4. Teramoto et al. [TAKD06] had obtained a gap ratio of 2 in the online version, whereas,
the lower bound for the problem is asymptotically 2√

3
= 1.1547.

3.2 Hardness

3.2.1 General NP-hardness

In this section, we show that the gap ratio problem is hard for continuous metric space. To show this
hardness, we reduce from the problem of system of distant representatives in unit disks [FKP05].
We first define the problem.

Definition 7 (S (q, l)-DR, [FKP05]). Given a parameter q > 0 and a family F = {Fi|i ∈ I, Fi ⊆
X} of subsets of X, a mapping f : I → X is called a System of q-Distant Representatives (shortly
an Sq-DR) if

11
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(1) f(i) ∈ Fi for all i ∈ I and

(2) distance between f(i) and f(j) is at least q, for i, j ∈ I and i 6= j.

When the family F is a set of unit diameter disks with centres that are at least l distance apart, we
denote the mapping by S (q, l)-DR.

Fiala et al. [FKP05] proved that S(1, l)-DR is NP-hard. For the general version S (q, l)-DR,
we give a proof sketch using Fiala et al.’s technique. Note that for q ≤ l, the centres of the disks
suffice as our representatives. So assume that q > l.

Before, we go to the hardness proof we must first view the problem from a different perspective.
As mentioned in [FKP05], the problem S (q, l)-DR is equivalent to considering disks of diameter
q + 1 around the centres of the unit disks and asking whether we can fit disjoint disks of diameter
q, one each inside the disks of diameter q + 1. We call the smaller disks representatives.

Instance of Planar 3-SAT For this hardness proof, we use a reduction from planar 3-SAT
problem, which is known to be NP-hard [Kra94]. Let Φ be a CNF formula, where each variable has
one positive and two negative occurrences and each clause consists of two or three literals. Let GΦ

be the bipartite graph of vertex set V ∪C, where V is the variable set and C is the clause set and
the edge set is defined by E = {xc |x or x̄ occurs in clause c}. By the definition of planar 3-SAT
problem, GΦ is planar.

Gadgets required for reduction Let us now discuss the gadgets, shown in Figure 4, we
use to form the corresponding S (q, l)-DR. In the figure, the small disks are auxiliary disks of unit
diameter, the darkly shaded disks are sample representatives (diameter q) of the big disks (diameter
q + 1), which are not shaded.

Reserved area The four big disks (diameter q + 1), which are not shaded, in Figure 4(a) allow
an S (q, l)-DR only with the four lightly shaded disks (diameter q) as representatives. This
arrangement forms the reserved area which is part of the variable and connector gadgets to
restrict some of the big disks to having only two possible representatives. All the lightly
shaded disks in Figure 4 are a part of the reserved area. For simplicity, we only show part of
the reserved area (two representatives) in those gadgets.

Variable Gadget The variable gadget, shown in Figure 4(b), consists of two big disks (diameter
q+1), at least distance l apart, and auxiliary disks corresponding to the number of occurrences
of the variable. Since we are taking an instance such that each variable has one positive and
two negative occurrences, we shall use gadgets with only one auxiliary disk P1 on one of the
big disks and two auxiliary disks N1 and N2 on the other. The reserved area is placed on
two sides of the gadgets so that each of the disks has only two possible representatives as
shown in Figure 4(b).

Clause Gadget The clause gadget, shown in Figure 4(c), consists of two big disks,at least distance
l apart, for a clause of three literals and one big disk for a clause of two literals. There is one
auxiliary disk for each literal, which are placed so that any arbitrary representatives for the
big disk must intersect at least one auxiliary disk.

12
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Connector Gadget The connector gadget, shown in Figure 4(d), consists of a chain of big disks,
at least distance l apart. There is one auxiliary disk on each end of the chain, which is a part
of a clause gadget or a variable gadget. We use the reserved area, as we did in the variable
gadget to restrict two of the big disks to having only two possible representatives.

Using the gadgets, we form the S (q, l)-DR instance from a planar embedding of the graph GΦ

as follows.

The Reduction The variables are replaced by variable gadgets with three auxiliary disks
P1, N1 and N2 such that their centres have points from Z2 in the direction of the edges towards the
gadgets representing the clauses involving this variable (one positive and two negative occurrences).
The clause gadgets are placed similarly, on the location of, and replacing, the vertices representing
clauses. The edges are replaced with connector gadgets so that one of its auxiliary disks is identified
by one of the variable gadgets and the other by one of the clause gadget’s auxiliary disks. This
forms an instance of S (q, l)-DR problem.

We restate a generalized version of Fiala et al.’s [FKP05] result below.

(a) Reserved area

P1

P2

N1

N1

(b) Variable gadget

L1 L2

L3

L1 L2

(c) Clause Gadget (d) Connector Gadget

Figure 4: The Gadgets for reduction of planat 3-SAT to S (q, l)-DR

13
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Theorem 8. S (q, l)-DR is NP-hard for q > l on the Euclidean plane.

Proof Suppose, a solution of S (q, l)-DR exists. Note that any arbitrary placement of represen-
tatives in the clause gadgets must intersect at least one of the auxiliary disks. We interpret this as
the clause being satisfied by that particular literal. Note that whenever a solution of S (q, l)-DR
exists, at least one of the two auxiliary disks in the connector gadgets must intersect one of the
representative disks. Also, the representative of the last disk on the other end of the connector
associated to the intersected auxiliary disk (L1, L2 or L3) must engulf the auxiliary disk of that
disk (due to the reserve area limiting the kind of representatives allowed). Thus if a clause gadget
representative has selected a literal with positive occurrence in it, then the auxiliary disk P1 must
be engulfed by the representative of a connector gadget. Thus, if a solution of S (q, l)-DR exists,
a representative of the disks in the variable gadget cannot intersect P1. Now, we assign a variable
x := True, if, in the corresponding variable gadget, the auxiliary disk P1 is not intersected by the
representatives of the variable gadget for x, otherwise we set x := False.

Conversely, given a solution of planar 3-SAT instance, we can construct a solution of S (q, l)-DR
by using the above rule.

Hence, S (q, l)-DR is NP-hard. �

Next we show that the above holds even for a constrained version of the problem.

Lemma 9. S (q, l)-DR-1 is NP-complete for q > l, where S (q, l)-DR-1 denotes S (q, l)-DR with
one representative point constrained to lie on the boundary of one of the disks.

Proof Clearly, a solution to S (q, l)-DR-1 is a solution to S (q, l)-DR. Conversely, a solution of
S (q, l)-DR can be translated until one point hits the boundary to obtain a solution to S (q, l)-DR-1.

It is easy to see that S (q, l)-DR-1 is in NP, as any claimed solution can be checked by using a
Voronoi diagram in polynomial time. Hence, it is NP-complete for q > l. �

We now use the above result to prove the hardness of the gap ratio problem

Theorem 10. Let M be a continuous metric space and q > 2. It is NP-hard to find a finite set
P ⊂M of cardinality k such that GRP ≤ 2

q .

Proof We show that if there is a polynomial algorithm to find a finite set P ⊂M of cardinality k
such that the gap ratio of P is at most 2

q for some q > 2, then there is also a polynomial algorithm
for S (q, l)-DR-1.

Consider an instance of S (q, l)-DR-1, a family F = {F1, F2, . . . , Fk} of k disks of unit diameter
such that their centres are at least distance l apart, where q > l > 2 (even with this restriction the
proof of Theorem 8 goes through).

We run the algorithm for the gap ratio problem k times, each time on a separate instance. The
instance for the i-th iteration would have the disks {Fj | j 6= i} and a circle of unit diameter with its
centre being the same as the centre of Fi. The following claim, whose proof follows later completes
the proof.

Claim 11. If a single iteration of the above process results “yes”, then we have a solution to the
S (q, l)-DR-1 instance.

Since S (q, l)-DR-1 is NP-hard, the gap ratio problem must also be NP-hard. �
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Proof of Claim 11 Suppose that the gap ratio of a given point set is at most 2
q for the ith instance.

If it so happens that two points are within the same disk, then r ≤ 1
2 . Thus for the gap ratio to

fall below 2
q , we need

R ≤ 2r

q
≤ 1/q < 1

But considering the number of points that we are choosing, we must have an empty disk, which
would contain a point x such that

R ≥ d(P, x) ≥ l − 1

2
> 1

giving us a contradiction. Thus, we have that each disk contains exactly one point from P . Since,
l > 2 and Fi is a circle, R = 1. Thus, we get r = 1

GR ≥
q
2 , making the closest pair to be at least a

distance q apart. �

3.2.2 Path connected spaces

Next, we show that it is NP-hard to find k points in a path connected space such that GR = 1.
We first prove that in a path connected space it is NP-Hard to find k points such that R = r = 3

2 .
Later we extend the result for all positive real values of r. To this end, we need the concept of a
variation of domination problem, called efficient domination problem. A subset D ⊆ V is called
an efficient dominating set of G = (V,E) if |NG[v] ∩ D| = 1 for every v ∈ V , where NG[v] =
{v}∪{x | vx ∈ E}. An efficient dominating set is also known as independent perfect dominating set
[BBHS96]. Given a graph G = (V,E) and a positive integer k, the efficient domination problem
is to find an efficient dominating set of cardinality at most k. Note that the efficient domination
problem is NP-complete [CCL96].

(a) ε-paths at each vertex (b) The graph and the metric space. The open
ended lines are the ε-paths

Figure 5: Converting a graph to a path connected space

Theorem 12. It is NP-hard to find a set P of k points in a path connected space M such that
RP = rP = 3

2 .

Proof Let us consider an instance of the efficient domination problem, an undirected graph
G (V,E), and a parameter k. From this graph we form a metric space (M, δ) as follows. In M,

15
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each edge of E corresponds to a unit length path. We place at each vertex of V an ε-path, where
0 < ε < 1

4 , which is merely an ε long curve protruding from the vertex as shown in Figure 5a. The
vertices merely become points on a path formed by consecutive edges as shown in Figure 5b. If
there are edge-crossings, we do not consider the crossing to be an intersection but rather consider
it as an embedding in R3. This ensures that different paths only intersect at vertices of the graph
(this makes sure that there is direct correspondence between the path lengths in the graph and the
path lengths of the metric space). The distance, δ, between two points in this space is defined by
the length of the shortest curve joining the two points.

We show that finding a set P of k points in M such that RP = rP = 3
2 is equivalent to finding

an efficient dominating set of size k in G, using a series of claims.

Claim 13. D ⊂ V is an efficient dominating set in G if and only if the corresponding set (i.e.,
each vertex of D is a point in P and vice versa) P ⊂M has RP = rP = 3

2 .

Conversely, given a set P ′ of k points inM such that RP ′ = rP ′ = 3
2 , we want to find an efficient

dominating set in G. If P ′ ⊂ V , then we are done as P ′ is an efficient dominating set in G (from
the proof of Claim 13). Otherwise, if P ′ 6⊂ V , then from P ′ we construct another set P ⊂ V such
that RP = rP = 3

2 . We form P by appropriately moving points of P ′ to the corresponding to V .
We do this by the arguments presented below.

Claim 14. P ′ ⊂ V or P ′ ∩ V = ∅.
By Claim 14, if P ′ 6⊂ V , then P ′ ∩ V = ∅. Note that in this case P ′ cannot have midpoints of

the graph edges as between any two midpoints at distance 3 from each other, there is a vertex with
an ε-path which is distance 3

2 from both points. Thus the other end of this ε-path must be at a
distance 3

2 + ε from both points contradicting the fact that RP ′ = 3
2 . Thus each point in P ′ must

have a closest vertex. We form the set P by moving each point of P ′ to its closest vertex.

Claim 15. RP = rP = 3
2 .

By Claim 15, without loss of generality, we can assume that the sampled set is a subset of V .
Using ideas we present in the proof of Claim 13, it is easy to see that, if we can find a set P of k
points in M such that RP = rP = 3

2 , then we can find an efficient dominating set of k vertices in
G.

Hence, it is NP-hard to find a set P of k points in a path connected space such that RP = rP = 3
2 .
�

We now prove the claims.

Proof of Claim 13 Let D be an efficient dominating set of G of cardinality k. Set the sampled
set P = D. Again, note that, there cannot be a pair of vertices x and y in D such that δ(x, y) < 3.
This is because, if there exists a pair of vertices x, y ∈ D with δ(x, y) ≤ 2, then there exists a
vertex v ∈ V such that x, y ∈ NG[v] ∩D. Since, D is a dominating set, if a closest pair of vertices
x, y ∈ D has δ(x, y) ≥ 4, there exists a vertex v ∈ V such that NG[v] ∩D = ∅. Hence, rP = 3/2
and balls of radius 3

2 cover M i.e RP = 3
2 .

Conversely, let P be the sampled set having k points with gap ratio RP = rp = 3
2 such that P is

a set corresponding to a set D of vertices. Then each vertex in V is dominated by D or is a vertex
in D. And as the minimum pairwise distance is 3 no two points dominate the same vertex (as they
would be at a distance 2 from each other. Thus D must be an efficient dominating set. �
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yx x1 x2
x3q

Figure 6: Possible positions of p in proof of Claim 14

Proof of Claim 14 In the proof, a path from x to y, means the geodesic path. Suppose that
P ′ ∩ V 6= ∅ and P ′ ∩ V c 6= ∅. Let x, y ∈ P ′ be the closest pair such that x ∈ V and y /∈ V . Then
obviously δ (x, y) > 3 as the minimum distance can be 3 and the only points at distance 3 from x
must belong to V . Call the first three vertices after x on the path from x to y as x1, x2 and x3.
Consider a ball of radius 3

2 centred at x2. It must contain some point of P ′ as RP ′ = 3
2 . Let us call

this point z. Thus δ (z, x2) ≤ 3
2 . Then

δ (z, y) ≤ δ (z, x2) + δ (x2, y) ≤ 3

2
+ δ (x2, y) < 2 + (x2, y) = δ (x, y)

If z is a vertex then this is a clear contradiction, but if it is not a vertex then

δ (x, z) ≤ δ (x, x2) + δ (x2, z) ≤ 2 +
3

2
= 3.5

Thus δ (x, y) ≤ 3.5 (because y must be closer than z to x) and δ (x2, y) ≤ 3
2 as shown in Figure 6.

Consider the point at a distance 3
2 from x on the path from x to y. A ball of radius 3

2 centred at
this point contains x but not y as δ (x, y) > 3. Between this point and x2 on the path from x to y
there must be a point q such that a ball of radius 3

2 around q contains neither x nor y. Again the
ball must contain at least one point p ∈ P ′ (see Figure 6) .

p is on an edge of x1: Then δ (x, p) < 3 which is a contradiction.

p is on an edge of a neighbour of x2 other than x1 and x3: Then we have

δ (p, q) = δ (p, x2) + δ (x2, q) ≤
3

2

i.e., δ (p, x2) < 3
2 . Thus,

δ (p, y) ≤ δ (p, x2) + δ (x2, y) < 3

which is a contradiction.

p is on an edge of x3: Then δ (p, y) < 3 which is a contradiction.

Thus such a point q cannot exist. Then it means such a pair x and y cannot exist either. Hence
we have P ′ ⊂ V or P ′ ∩ V = ∅.

This proves the claim. �
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x

(a)

x

(b)

x

1− k

1− k k

k

u v

(c)

Figure 7: (a) Case 1: x is a vertex, (b) Case 2: x is on an ε-path. We have taken the ball from case
1 and the brackets denote the boundary of the ball in this case, (c) Case 3: x is on a full edge

Proof of Claim 15 We have rP ′ = 3
2 .

Suppose rP <
3
2 . Now note that we are moving our points to the closest vertex to get P . Suppose

we obtain the pair of vertices u, v ∈ P from x, y ∈ P ′ such that δ (u, v) < 3 i.e., δ (u, v) ≤ 2. Then
δ (u, x) < 0.5 and δ (y, v) < 0.5. Thus,

δ (x, y) ≤ δ (u, x) + δ (u, v) + δ (y, v) < 0.5 + 2 + 0.5 = 3

This is a contradiction.
Suppose rP > 3

2 . Suppose we obtain the pair of vertices u, v ∈ P from x, y ∈ P ′ such that
δ (u, v) > 3 i.e., δ (u, v) ≥ 4. Then δ (u, x) < 0.5 and δ (y, v) < 0.5.Thus,

δ (u, v) ≤ δ (u, x) + δ (x, y) + δ (y, v) < 0.5 + 3 + 0.5 = 4

Again, we have contradiction.
Thus we have rP = 3

2 .
We must have RP ≥ 3

2 by Lemma 4.
Suppose we have RP >

3
2 . Then there is a point x such that a ball of radius 3

2 doesn’t contain
any point of P . But it must contain a point of P ′. Again let us consider cases.

1) x is a vertex: Then the ball around x must contain only full edges and edges of length
half (see Figure 7(a)). It also contains a point (say y) of P ′. The closest vertex of any
such point must be inside this ball. This gives us a contradiction.

2) x is on an ε-path : This case is similar to the previous case as the ball in this case would
clearly be a subset of the ball in the previous case (see Figure 7(b)).

3) x is on a full edge : In this case it is important to note that every point in the ball
around x lies on a path (geodesic) that goes through x and lies completely within the
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ball. Each path is of length 3 or less and x is at the centre of the path (see Figure7(c)).
Let v be the nearest vertex of x and u be the other vertex of the edge on which x lies.
Thus all neighbours of v are in the ball.Thus each path of length 3 inside the ball is
formed by one edge of length l (where l = 1

2 − δ (x, v)), two edges of length 1 (including
uv) and one edge of length 1 − l (see Figure 7). Note that edges of length 1 − l are
incident on u and edges of length l are incident on neighbours v (excluding u).Let us say
a point y ∈ P ′ lies in this ball (without loss of generality we may assume that y is on
a full edge as an ε-path cannot intersect with the ball without the corresponding vertex
being in the ball). Thus if y lies on one of the edges of length 1 its closest vertex will
be u, v or a neighbour of v all of which are in the ball. If y lies on one of the edges of
length l then its closest vertex will be a neighbour of v which is in the ball. So assume
y lies on an the edge of length 1− l. Thus if y is within distance 1

2 of u then the closest
vertex for y is u which is also a contradiction. Thus let us assume that y is more than
distance 1

2 of u.

Then there is a point w between x and v such that a ball of radius 3
2 has y on its

boundary. Again this ball will contain paths of length at most 3. And the paths of
length 3 can be characterized by one edge of length l1 (l1 = 1

2 − δ (w, v)), two edges
of length 1 (including uv) and one edge of length 1 − l1. The edges of length 1 − l1
are subsets of the edges of length 1 − l (the difference is δ (w, x) ). Now if the only
point in P ′ on the boundary of this ball is y then between w and v we must have a
point such that a ball of radius 3

2 centred around it does not intersect P ′ at all which
is not possible. Hence there must be another point p ∈ P ′ at distance of 3 from y such
that x,w and v are on the path from y to p (because δ (w, p) = 3

2 and as mentioned
earlier there are only two such kind of points and if p is on an edge of length 1− l1 then
δ (y, p) = 2 (1− l1) < 3). Then p is on an edge of length l1 in which case the closest
vertex to p is a neighbour of v which was in the ball around x. Thus again we have a
contradiction.

This proves the claim. �

In the above reduction, taking the edge lengths to be 2x
3 instead of 1 and 2xε

3 -paths instead of
ε-paths we have that it is NP-hard to find a set of k points in a path connected space such that
RP = rP = 3

2 × 2x
3 = x. Since this can be done for any positive x, the following theorem follows as

a corollary to Theorem 12.

Theorem 16. It is NP-hard to find a set of k points in a path connected space such that gap ratio
is 1.

4 Discrete Metric Space

4.1 Graph

4.1.1 Lower Bounds

Here we study the lower bounds for the gap ratio problem in discrete metric spaces. We start by
giving an example which demonstrates the lack of a general lower bound for discrete metric spaces.
Given any ε > 0, we construct an example of a discrete metric space and a sampled set admitting
a gap ratio ε.
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Figure 8: Lower bound for the discrete case. Filled in vertices form the set P . M = V [Kn]∪V [Km]

Consider the complete graph Kn for some n ∈ N with each edge having unit weight and the
complete graph Km for some m ∈ N with each edge having weight ε

2 . Let V [G] denote the vertex
set of the graph G. Now suppose that the metric space (M, δ) is V [Kn]∪V [Km] with the metric δ
being the edge weights when there are edges between vertices of V [Kn]∪V [Km] and∞, otherwise.
Let the sampled set P = V [Kn] ∪ {v} for some v ∈ V [Km]. We have minq∈P δ(p, q) = ε

2 for all
p ∈M \ P . Thus, R = ε

2 . By the definition of P , r = 1
2 . Thus, GR = R

r = ε.
First we prove the lower bound of gap ratio on a metric space M which is the vertex set V of

an undirected connected graph G = (V,E). The distance between a pair of vertices is the length
of the shortest path between them.

Lemma 17. Gap ratio has a lower bound of 2
3 when the metric space M is a connected undirected

graph. The bound is achieved only when R = 1 and r = 3
2 .

Proof Suppose a set of vertices P ⊂M is sampled. Let a closest pair of vertices in P be distance
q apart. Thus, r = q

2 . Now between these two vertices, there is a path of q − 1 vertices in M\ P .
Among these q− 1 vertices, the vertex farthest from P is at a distance

⌊ q
2

⌋
from P . Thus, R ≥

⌊ q
2

⌋
and

GR =
R

r
≥ 2

q

⌊q
2

⌋
Note that, when q = 1, clearly we have a gap ratio greater or equal to 2. Now, we analyse this
expression for even and odd values of q. If q is even,

GR ≥ 2

q

⌊q
2

⌋
=

2

q

q

2
= 1

and if q is odd and q ≥ 3,

GR ≥ q − 1

q

Since this function is monotonically increasing, GR ≥ 2
3 , and the equality only occurs for q = 3.

Thus, the gap ratio GR = 2
3 implies q = 3, which means r = 3

2 . Therefore, R = GR × r = 1.
Hence, GR = 2

3 only when R = 1 and r = 3
2 . �

20



Gap ratio and uniformity of point samples

G1M

ǫ

Figure 9: Illustration of the reduction in Theorem 19

4.1.2 Hardness

In this section, we show that the problem of finding minimum gap ratio is NP-complete even for
graph metric space.

Theorem 18. In graph metric space, gap ratio problem is NP-complete.

Proof First note that, the gap ratio problem in graph metric space is in NP. To prove the
hardness, we use a reduction from efficient domination problem, to the gap ratio problem. Given
an instance of efficient domination problem G = (V,E) and k, set M = V as the metric space and
the shortest path distance between two vertices as the metric δ. Claim 13 proves the theorem.

�

4.1.3 Approximation Hardness

Here we use the hardness of path connected space from Section 3.2.2 to show that the gap-ratio
problem is APX-hard on the graph metric.

Theorem 19. In an unweighted graph, it is NP-hard to approximate the gap ratio better than a
factor of 3

2 .

Proof In Section 3.2, we reduced the problem of finding a set of k points in a graph such that
the gap ratio is 2

3 to the problem of finding a set of k points in a path-connected space such that
the gap ratio is 1. We use this hardness of gap ratio being 1 on instances similar to the one created
in the reduction to prove 3

2 approximation hardness on graphs.
Our starting instance is a space formed by joining integer length curves at their ends (so that

points that divide these curves into unit length curves form a connected graph with the unit length
curves as edges). Also for some 0 < ε < 1

4 we join curves of length ε (at one end) at points such that
the integer length curves are divided into unit length curves. Let us call this path connected space
M. Note that M is similar to the path connected space formed in Section 3.2, but, the general
shape of the space may vary. The reduction is illustrated in Figure 9. The metric on this space is
defined by the length of the shortest path between pairs of points. We form the graph G = (V,E)
by putting vertices at the place where the ε-length curves are joined to the integer length curves.
The ε-length protrusions are discarded and the unit length curves between the vertices form the
edge set.
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Claim 20. There exists a polynomial time algorithm to find P ⊂ M such that |P | = k and
RP = rP = 2t+1

2 for some t ∈ {1, 2, ..., } if and only if there exists a polynomial time algorithm to
find a set of k vertices in G such that the gap ratio of the set is strictly less than 1.

This gives us that it is NP-hard to find a set with gap ratio less than 1 in graphs, i.e it is
NP-hard to find an algorithm which approximates gap ratio within a factor better than 3

2 .
Note here that if we could have proven Claim 20 for |P | = k and RP = rP = t

2 for some
t ∈ {2, 3, ..., }, then we wouldn’t need to say strictly less than 1 in the statement. �

We now prove Claim 20.

Proof of Claim 20 Suppose we have a set of k vertices in G with gap ratio strictly less than 1.
Let q be the minimum distance of a pair of points in this set. Then by proof of Lemma 17, we have
gap ratio is at least 2

q b
q
2c and r = q

2 . Now unless R = b q2c, we have gap ratio greater than 1. If q is
even, then the gap ratio will be at least 1. Hence, q must be odd. Thus, the corresponding point
set (viz., P ) in M has RP = rP = q

2 .
Conversely, let P ⊂ M, such that |P | = k, and RP = rP = 2t+1

2 for some k ∈ {1, 2, ..., }.
Then using the ideas in Theorem 12 one can verify that the points can be shifted to vertices the
graph vertices to get a gap ratio of 2t

2t+1 < 1 in the G. �

5 Approximation Algorithms

In this section we give a general approximation scheme and a (1 + ε) approximation algorithm for
the case whem M is a finite set of points in the Euclidean metric space.

5.1 Farthest point algorithm

Gonzalez’s [Gon85] farthest point insertion method (with a slightly tweaked initiation) for k-centre
(Algorithm 1) seems a natural generalisation of Teramoto et al.’s [TAKD06] Voronoi insertion
method. Indeed it gives an upper bound of 2 over any metric space. The following is an outline of
the algorithm.

Algorithm 1 Pseudocode of Farthest-point-insertion(M, k)

1: Input: metric space (M, δ) and k; // M = {p1, . . . , pn}
2: Initialize: find q1, q2 ∈M with δ(q1, q2) = diam(M) and S2 = {q1, q2};
3: for i = 2 to k − 1 do
4: qi+1 ← argmaxpj∈M δ(pj , Si); // qi+1 is the point farthest from Si in M
5: Si+1 ← Si ∪ {qi+1};
6: end for
7: Output: Sk and GRSk

=
RSk
rSk

;

We now analyse the algorithm. Without loss of generality, let P = {p1, . . . , pk} be the set with
optimal gap ratio, and let GR = α.

Lemma 21. In Algorithm 1, RSi ≤ RSi−1 for each i ∈ {2, . . . , k} and the gap ratio GRSi is at
most 2 after each iteration.
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Figure 10: The cross points denote the set P and the hollow points denotes the set Si

Proof We prove this by induction on i. Clearly RS2 ≤ RS1 as that is how q2 is chosen. Suppose
for some t, RSj ≤ RSj−1 for j = 2, . . . , t. Now by our scheme, qt+1 is chosen at a distance Rt from
qt. Thus, there exists a point x at a distance RSt+1 from qt+1. Hence, by definition of RSi , we have

RSt+1 = δ (x, qt+1) ≤ δ (x, St) ≤ RSt

Note that at each insertion, we have chosen qi at a distance of RSi−1 from Si−1. So, rSi =
RSi−1

2 .
Thus, for all i ∈ {2, . . . , k}, we get

GRSi =
RSi

rSi

= 2× RSi

RSi−1

≤ 2.

�

Remark 5. It is important to note here that when we mention discrete settings we mean the space
M itself is discrete. Zhang et al.’s [ZCC+11] result on bounded two dimensional grids (especially
a 3× 3 grid) computes the maximum gap over the continuous space of the square. Hence, Zhang’s
result that no online algorithm can achieve a gap ratio strictly less than 2.5 for a 3× 3 grid, does
not contradict this lemma.

Theorem 22. Farthest point insertion gives the following approximation guarantees:

(i) if α ≥ 1, then the approximation ratio is 2
α ≤ 2,

(ii) if 2
3 ≤ α < 1, the approximation ratio is 2

α ≤ 3,

(iii) if α < 2
3 , the approximation ratio is 4

2−α < 3.

Proof Case (i) and (ii) follow directly from Lemma 21.
We deal with Case (iii). Let us define closed balls centred at pi’s as follows: Bi = {x ∈ M :

δ(pi, x) ≤ rP } and B′i = {x ∈M : δ(pi, x) ≤ αrP }. We need the following claim.
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Claim 23. For all i ∈ {2, . . . , k}, 2rSi ≥ (2− α)rP .

From the proof of Claim 23, we have for all j ∈ {1, . . . , k}, |B′j ∩ Sk| = 1. Thus, we have
RSk

≤ 2αrP , since B′j cover M. Combining this with the fact that 2rSk
≥ (2 − α)rP (Claim 23),

we have GRSk
≤ 4α

2−α and consequently

GRSk

GRP
≤ 4

2− α < 3.

�

We now prove Claim 23.

Proof of Claim 23 Note that B′j ’s cover whole of P . The case of i = 2 follows from the fact that
2rS2 = diam (M). Assume the result is true for some i ≥ 2. We will show it is true for Si+1, if
i ≤ k − 1, by contradiction. Suppose qi+1 falls into a ball B′j that contains qt, for some t ≤ i. This
would imply,

2rSi+1 ≤ δ(qt, qi+1) ≤ 2αrP

Note that as α < 2/3, we have 2αrP < (2 − α)rP . But since, i ≤ k − 1, there exists pt′ such that
B′t′ is empty. That implies we could have selected pt′ , instead of qi+1, to get

2rSi+1 = min{2rSi , δ(pt′ , Si)} ≥ (2− α)rP

Note that the last inequality follows from the fact that 2rSi ≥ (2 − α)rP (by induction) and
δ(pt′ , Si) ≥ (2− α)rP .

Now that we know qi+1 falls into a separate ball B′j , it is easy to see that

2rSi+1 ≥ min{2rSi , δ(pj , Si)} ≥ (2− α)rP

�

From the results in section 3.1, we have the following corollary to Theorem 22.

Corollary 24. The approximation algorithm gives an approximation ratio of

(i) 2 when the metric space is continuous, compact and path connected,

(ii) ρ (k), when the metric space is restricted to a unit square in the Euclidean plane, where

ρ (k) =
4√27
√
k

4√3
√
k−
√

2
=
√

3 +O
(

1√
k

)
, and

(iii) 3 when the metric space is restricted to graph metric space.

Remark 6 (Time complexity). 1. In the initialization step of Algorithm 1, we need to find two
points q1, q2 ∈ M such that δ(q1, q2) = diam(M). Given the distance matrix for the metric
space (M, δ), points q1 and q2 can be computed in time complexity O(n2). When the points
come from Euclidean space Rd and δ = L2-norm one can do better. For the case of d = 2, 3
Ramos [Ram01] showed that q1, q2 can be computed in time complexity O(n log n). For
the general case of points in R2 and δ = L2-norm, Chan [Cha06] showed that one can get

ε-approximation of the diameter of the point set in time complexity O
(
n+ 1

εd−3/2

)
.

2. Given the distance matrix for (M, δ), Gonzalez’s [Gon85] farthest point insertion method
can be implemented in O(nk) time complexity. Feder and Greene [FG88] showed that when
the points come from Euclidean space Rd, where d is a constant, and δ = Lp-norm, then the
farthest point procedure can be implemented in time complexity O (n log k).
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5.2 Existence of coresets for Euclidean space

Next we discuss a (1 + ε)- approximation algorithm when the space M is a set of n points in the
Euclidean space. Our approach here to obtain a coreset, which we define below. We need some
notations also.

For a metric space (M, δ) and a set P ⊂M we denote the gap ratio of P in M by GRMP and
the maximum gap of P in M by RMP .

Definition 25. A subspace C of M, is called a (k, ε)-coreset of M if for every set P ⊂ C of k
points we have GRMP ≤ (1 + ε)GRCP .

Note that the minimum gap is a property only of the set P and the metric of M. Thus,
GRMP ≤ (1 + ε)GRCP is equivalent to RMP ≤ (1 + ε)RCP .

We now proceed towards the algorithm.

5.2.1 Static points

Algorithm 2 takes a set of points in the Euclidean space as the input and returns a subset of it
which has a gap ratio within a (1 + ε)-factor of the optimal gap ratio.

Lets assume

ε <
1

2
, ε1 =

ε

3 + 2ε
and ε2 =

ε1RP1

2
√
d
,

where P1 is the output of Algorithm 2.
For analysing the algorithm we first define the following quantities

ROPT := min
P⊂M,
|P |=k

max
q∈M

δ(q, P ) and rOPT := max
P⊂M,
|P |=k

min
p,q∈P,
p 6=q

δ(p, q)

2
.

Algorithm 2 Pseudocode of (1 + ε)-Algorithm

1: Input: Set M of n points and k;
2: P1 ← Farthest-point-insertion(M, k)
3: Initialize: Grid G with each cell having side length ε2 and C ← {};
4: for cell G in G do
5: qG is one point randomly chosen from G ∩M;
6: C ← C ∪ {qG};
7: end for
8: for M ⊂ C such that |M | = k do
9: if GRM < GRP or P is not defined then

10: P ←M
11: end if
12: end for
13: Output: P and GRP = RP

rP
;

To see that C is a coreset we must note that

RMP ≤ RCP +
√
dε2 = RCP + ε1RP1/2 ≤ RCP + ε1ROPT ≤ RCP + ε1R

M
P
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i.e., (1− ε1)RMP ≤ RCP or

RMP ≤
(
1 + ε′

)
RCP where ε′ =

ε1
1− ε1

.

We try to bound the time complexity by estimating the number of grid cells needed to cover
M.

Lemma 26. In Algorithm 2, at most N := O(kd 1
ε1
ed) cells cover M.

Proof Consider, Pcov ⊂M of size k, such that ROPT = maxq∈M δ (q, Pcov). Now, we know that
balls of radiusROPT around the points of Pcov coverM. Each of these balls intersectO(d2ROPT

ε2
ed) =

O(d 1
ε1
ed) grid cells. Thus, N := O(kd 1

ε1
ed) cells cover M. �

The above lemma shows that the time complexity of a brute force calculation of gap ratio over S
will be

O
(
Nk (k log k + (n− k) k)

)
,

where O(k log k) is required to compute r and O(k(n−k)) is required to compute R in each iteration;
all other steps in Algorithm 2 are polynomial in n and k. Note that the time is not polynomial in
k. We are now ready to prove the main theorem for this section.

Theorem 27. In Algorithm 2 we have, GRP ≤ (1 + ε) ·GROPT .

Proof Consider the set P ∗ of k points in M, which gives the minimum gap ratio, α, in M. Let
r := rP ∗ . We have RP1 ≤ 2ROPT from [Gon85]. For each pi in P ∗, there exists a point qi in S,
such that δ (qi, pi) ≤

√
dε2, because

√
dε2 is the diameter of each grid cell. From the definition of

ε2, we have

δ (qi, pi) ≤
ε1RP1

2
≤ ε1ROPT ≤ ε1RP ∗ = ε1αr

Also note that α ≤ 2, as the farthest point method itself will yield gap ratio at most 2. Thus,
we have δ (qi, pi) ≤ r (as ε1 <

1
2), i.e., i 6= j implies qi 6= qj . Let P2 := {q1, q2, . . . , qk} be a set

of such k distinct points in S. Let us compute the gap ratio of P2. Triangle inequality gives us
RP2 ≤ (1 + ε1)αr and rP2 ≥ (1− ε1α) r. Then the gap ratio of P2 is at most

(1 + ε1)α

(1− ε1α)
≤ (1 + ε1)α

(1− 2ε1)
= (1 + ε)α.

Also by definition, the gap ratio of P is less than the gap ratio of P2. Thus, we have that gap ratio
of P in S is at most (1 + ε)α. �

5.2.2 Streaming

In a one-pass streaming model [HM04, ASHV04, AMS96, Mut05], that we consider, the data can be
read only once and the data is read only, the volume of the data is hude compared to the memory
of the storage and typically a sublinear sized sketch of the data is stored. The uniform sample that
is to be drawn from the data is drawn from the sketch. In our case, the coreset serves as the sketch.

Algorithm 2 works mainly because of the fact that the covering radius is bounded within a
constant factor of ROPT by the farthest point insertion algorithm. In the streaming case, the
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doubling algorithm [CCFM97] for k-centre has the same property. We propose Algorithm 3 on the
basis of the doubling algorithm. We assume

ε <
1

8
, ε1 =

ε

2 + ε
, ε2 =

ε3RT

2
√
d

where, ε3 =
ε1

4(3 + 2ε1)
.

Algorithm 3 Pseudocode of (1 + ε)-Algorithm (Streaming case)

1: Input: Set M of n points and k;
2: T ← {first k distinct points}
3: R←smallest interpoint distance in T
4: Initialize: Grid G with each cell having side length ε2 and S ← {};
5: for cell G in G do
6: qG is one point randomly chosen from G ∩M;
7: S ← S ∪ {qG};
8: end for
9: repeat

10: while |T | ≤ k do
11: Get new point x;
12: if δ (x, T ) > 2R then
13: T ← T ∪ {x};
14: end if
15: end while
16: T ′ ← {} and S′ ← {};
17: while ∃z ∈ T such that δ (z, T ′) > 2R do
18: T ′ ← T ′ ∪ {z};
19: R← 2R;
20: end while
21: Update grid side-length accordingly (merge neighbouring pairs of columns and rows)
22: for cell G in G do
23: qG is one point randomly chosen from G ∩M;
24: S′ ← S′ ∪ {qG};
25: end for
26: S ← S′

27: until forever

At Step 11 of Algorithm 3 side-length of the grid cells is always ε2 and RT ≤ 8ROPT [CCFM97].
Thus, by the same arguments as in Lemma 26, at most N := O(kd 1

ε1
ed) cells cover M at Step 11

of Algorithm 3 as well.
To see that S (from Algorithm 3) is a coreset note that for any subset V of S

RMV ≤ RSV +
ε3R

M
T

2
≤ RSV + 4ε3ROPT

Thus we have,

RMV − ε1RMV ≤ RMV − 4ε3R
M
V ≤ RMV − 4ε3ROPT ≤ RSV
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This implies (1− ε1)GRMV ≤ GRSV , and therefore

GRMV ≤
(
1 + ε′

)
GRSV where ε′ =

ε1
(1− ε1)

. (3)

Theorem 28. Let S be a set obtained from Algorithm 3 and Q ⊂ S be the set in S with the least
gap ratio we have, GRQ ≤ (1 + ε) ·GROPT .

Proof Consider the set P ∗ of k points in M, which gives the minimum gap ratio, α, in M. Let
r := rP ∗ . We have RT ≤ 8ROPT from [CCFM97]. For each pi in P ∗, there exists a point qi in S,
such that

δ (qi, pi) ≤
√
dε2

because
√
dε2 is the diameter of each grid cell. From the definition of ε2, we have δ (qi, pi) ≤ ε3RT

2 ≤
4ε3ROPT ≤ 4ε3RP ∗ = 4ε3αr. Also note that α ≤ 2, as the farthest point method itself will yield
gap ratio at most 2. Thus, we have δ (qi, pi) ≤ r (as ε3 < 1

8), i.e., i 6= j implies qi 6= qj . Let
Q := {q1, q2, . . . , qk} be a set of such k distinct points in S.

Let us compute the gap ratio of Q with respect to S. Triangle inequality gives us RSQ ≤
(1 + 4ε3)αr and rq ≥ (1− 4ε3α) r. Then,

GRSQ ≤
(1 + 4ε3)α

(1− 4ε3α)
≤ (1 + ε3)α

(1− 8ε1)
= (1 + ε1)α

From Equation 3 we have
(1− ε1)GRMQ ≤ (1 + ε1)α

which implies
GRMQ ≤ (1 + ε)α

�

6 Conclusion

In this work, we generalize the definition of gap ratio given by Teramoto et al. [TAKD06], for
general metric spaces. We show non-existence of a general lower bound. On the other side, we
show constant lower bounds for gap ratio for connected undirected graphs and metric space of
unit squares in the Euclidean plane. We also show that the problem is NP-hard for discrete and
continuous metric spaces. We also design relevant approximation algorithms and show existence
of coresets for the Euclidean space. Our solutions show connections of picking uniform samples
with clustering, packing and covering. The tightness of the lower bound for unit square is still an
open question. Also the problem of sampling uniformly from a set of points in motion is also an
interesting question.
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