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Abstract

In this paper we extend the work of Lisonek and Singh on construction X for

quantum error-correcting codes to finite fields of order p2 where p is prime. The results

obtained are applied to the dual of Hermitian repeated root cyclic codes to generate

new quantum error-correcting codes.

1 Introduction

Quantum error correcting codes have been introduced as an alternative to classical codes for
use in quantum communication channels. Since the landmark papers [6] and [7], this field
of research has grown rapidly. Classical codes have been used to construct good quantum
codes [1]. Recently, Lisonek and Singh [5] gave a variant of Construction X that produces
binary stabilizer quantum codes from arbitrary linear codes. In their construction, the
requirement on the duality of the linear codes was relaxed. In this paper, we extend their
work on construction X to obtain quantum error-correcting codes over finite fields of order
p2 where p is a prime number. We apply our results to the dual of Hermitian repeated root
cyclic codes to generate new quantum error-correcting codes.

The remainder of the paper is organized as follows. In Section 2, we present our main
result on the extension of the quantum construction X. Section 3 characterizes the generator
polynomial of the Hermitian dual of a repeated root cyclic code. We also give the structure
of cyclic codes of length 3ps over Fp2 as well as the structure of the dual codes. Our interest
in this class of codes comes from the importance of relaxing the condition (n, p) = 1, which
allows us to consider codes other than the simple root codes.

2 Extending Construction X for Fp

Let Fp denote the finite field with p elements and F
⋆
p = Fp\{0}. For x ∈ Fp2 we denote the

conjugate of x by x = xp. Let 〈x, y〉 =
∑n

i=1 xiyi be the Hermitian inner product. Then the
norm of x is defined as ||x|| = 〈x, x〉 =

∑n
i=1 x

p+1, and the trace of x as Tr(x) = x+x. Both
the trace and norm are mappings from Fp2 to Fp.

The following lemmas will be used later.
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Lemma 1. Let S be a subspace of Fn
p2 such that there exist x, y with 〈x, y〉 6= 0. Then for

all k ∈ Fp, there exists z ∈ S with ||z|| = k.

Proof. This is a non-constructive proof of the existence of the required element z. With the
assumption on x and y, let g(c) = ||cx+ y|| = (cx + y)p+1 be a polynomial of degree p + 1
in c. We claim that as c ranges over the elements of Fp2, the rhs will range over all elements
of Fp.

Assume now that there exists some k ∈ Fp2 such that ∀c ∈ Fp2, g(c) 6= k. For each
i ∈ Fp\k, let Si = {c ∈ Fp2; g(c) = i}. Since the polynomial g has degree p+1, g can have at
most p+1 roots in any field. Then |Si| ≤ p+1, as the polynomial g(c)−i can have at most p+1
roots, and the Si partition the set Fp2. Then |Fp2| = p2 ≤

∑

i∈Fp\k
|Si| ≤ (p+1)(p−1) = p2−1,

which is a contradiction. Hence the result follows.

Lemma 2. Let D be a subspace of Fn
p2 and assume that M is a basis for D ∩ D⊥h. Then

there exists an orthonormal set B such that M ∪B is a basis for D.

Proof. The proof given here is a generalization of the proof for the analogous case presented
in [5, Theorem 2]. Let W be a subspace of Fn

p2 such that

D = (D ∩D⊥h)⊕W, (1)

and let l = dim(W ). For each 0 ≤ i ≤ l, we can construct an orthonormal set Si that is a
basis for an i-dimensional subspace Ti of W such that

W = Ti ⊕ (T⊥h

i ∩W ). (2)

The process is iterative. Define S0 := φ and suppose that for some 0 ≤ i < l, the set Si is
an orthonormal basis for Ti such that dim(Ti) = i and (2) holds. Let x be a non-zero vector
in T⊥h ∩W . Then there exists y ∈ T⊥h ∩W such that 〈x, y〉 6= 0. If no such y exists, then
x ∈ D⊥h, which would contradict (1) because the intersection of D and D⊥h is {0}. Hence
by Lemma 1, there must exist a z ∈ T

⊥h

i ∩ W such that ||z|| = 1. Set Si+1 = Si ∪ {z}.
Clearly all the elements in Si+1 are orthogonal to each other. In addition, ||s|| = 1 for all
s ∈ Si+1.

Let Ti+1 be the subspace spanned by Si+1. As z 6∈ Ti we have that dim(Ti+1) = i+1. To
show that

W = Ti+1 ⊕ (T⊥h

i+1 ∩W ), (3)

we must first show that Ti+1 ∩ T
⊥h

i+1 ∩ W = 0. Let v ∈ Ti+1 ∩ T
⊥h

i+1 ∩ W . As v ∈ Ti+1, we

have v = u+ cz where u ∈ Ti and c ∈ Fp2. Since v ∈ T
⊥h

i+1, we have for each w ∈ Ti and each
d ∈ Fp2 that

0 = 〈u+ cz, w + dz〉 = 〈u, w〉+ d〈u, z〉+ c〈z, w〉+ cd||z|| = 〈u, w〉+ cd.

We must have c = 0 or else 〈u, w〉+cd would not remain constant as d runs over the elements
of Fp2. Thus 〈u, w〉 = 0 for all w ∈ Ti, and hence u ∈ T

⊥h

i . As u ∈ Ti and Ti ∩ T
⊥h

i = 0, we

obtain that u = 0. Hence v is also 0 and Ti+1 ∩ T
⊥h

i+1 ∩W = 0.
Next we show that W = Ti+1 + (Ti+1 ∩ W ). Let w ∈ W . By assumption W = Ti +

(T⊥h

i ∩ W ), so there exist vectors x ∈ Ti and y ∈ T
⊥h

i ∩ W such that w = x + y. Now it
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is shown that W = Ti+1 + (T⊥h

i+1 ∩W ). By assumption W = Ti + (T⊥h

i

⋂

W ), so there exist
vectors x ∈ Ti and y ∈ Ti ∩W . Clearly x ∈ Ti+1 and for any u + dz ∈ Ti+1 (where u ∈ Ti

and d ∈ Fp2), we have

〈y − 〈y, z〉z, u+ dz〉 = 〈y, u〉+ d〈y, z〉 − 〈y, z〉〈z, u〉 − d〈y, z〉||z||

= d〈y, z〉 − d〈y, z〉

= 0. (4)

Thus y ∈ Ti+1 ∩W , and hence W = Ti+1 + (Ti+1 ∩W ). This completes the proof that (2)
implies (3) assuming that the vector z is chosen as described above.

Theorem 3. For an [n, k]p2 linear code C, let e = n− k− dim(C ∩C⊥h). Then there exists

a quantum code with parameters [[n+ e, 2k− n, d]]p with d ≥ min(wt(C),wt(C +C⊥h) + 1).

Proof. We start with the observation that the equation x2 + 1 = 0 always has a solution in
Fp2. This can be proven using the fact that F⋆

p2 is a cyclic group. Let β be a generator of

F
∗
p2. Then βk = −1 for some k, and it is also known that −12 = 1. Hence β2k = 1 and

p2 − 1|2k, so that k is even. Thus, β
k
2 is the required solution.

As defined previously

e = dim(C⊥h)− dim(C∩C⊥h) = dim(C + C⊥h)− dim(C).

Let s = dim(C ∩ C⊥h), and G be the matrix

G =





Ms×n 0s×e

A(n−e−2s)×n 0(n−e−2s)×e

Be×n βk/2Ie×e



 , (5)

where the size of the matrix is indicated by the subscripts, and 0 and I denote the zero
matrix and identity matrix, respectively.

For a matrix P , let r(P ) denote the set of rows of P . The matrix G is constructed such
that r(M) is a basis for C ∩ C⊥h, r(M) ∪ r(A) is a basis for C, r(M) ∪ r(B) is a basis for
C, and r(B) is an orthonormal set. The existence of such a matrix B follows from Lemma
2. Note that r(M) ∪ r(A) ∪ r(B) is a basis for C + C⊥h .

Let E be the linear code for which G is a generator matrix. Further, let S denote the
union of the first s rows of G and the last e rows of G, i.e., S is the set of rows of the matrix

S =

(

Ms×n 0s×e

Be×n βk/2Ie×e

)

. (6)

We observe that each row of S is orthogonal to each row of G because any row from the first
s rows of S represents a vector in C ∩ C⊥h, and hence is orthogonal with all codewords in
C + C⊥h, the code represented by G.

Consider a row from the last e rows in S. This row is orthogonal to the first n−e−s rows
of G because they represent the code C while the matrix B represents codewords from C⊥h.
The rows of the matrix are orthogonal. Because in the case they are different rows in the
matrix, then they are orthogonal and the βk/2I matrix part will contribute a 0. Any row z is
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self-orthogonal since from the construction ||z|| = 1 and the identity matrix will contribute
−1, giving an inner product of 0. This completes the proof of the observation. Thus, each
vector from S belongs to E⊥h, and the vectors in S are linearly independent because

dim(E⊥h) = n+ e− (n− s) = e + s = |S|.

Hence S is a basis for E⊥h. Since S is a subset of G by construction, it follows that E⊥h ⊆ E.
Let x be a non-zero vector in E and due to the vertical block structure of G, we can

write x = (x1|x2) where x1 ∈ F
n
p2 and x2 ∈ F

e
p2. Thus x is a linear combination of rows

of G. If none of the last e rows of G are contained in this linear combination with a non-
zero coefficient, then x1 ∈ C\0, and so wt(x) = wt(x1) ≥ wt(C). If some of the last e

rows of G are in this linear combination with a non-zero coefficient, then x1 ∈ C + C⊥h

and wt(x) = wt(x1) + wt(x2) ≥ wt(C + C⊥h) + 1. Thus E is an [n + e, k + e, d]p2 code
with d ≥ min(wt(C),wt(C + C⊥h) + 1) and E⊥h ⊆ E. The code E satisfies the required
conditions, and thus the proof is complete.

Many constructions of quantum codes use self-orthogonal codes [2, 3], which corresponds
to the case when e = 0. The results of the next section are required to construct the quantum
codes in subsequent sections. Note that many of the results in the next section can easily
be generalized to constacyclic codes.

3 The Hermitian Dual of Repeated Roots Cyclic Codes

Let p is a prime number and C be a cyclic code of length n over the finite field Fp2. Then C is

given by the principal ideal g(x) in
Fp2[x]

〈xn − 1〉
, and so g(x) is called the generator polynomial

for C. When the length n divides p, C is called a repeated root cyclic code.
In this section, we obtain the generator polynomial of the Hermitian dual of a repeated

root cyclic code. We also give the structure of the cyclic codes of length 3ps over Fp2 as
well as the structure of the dual code. Our interest in this class of codes comes from the
importance of relaxing the condition (n, p) = 1, which allows us to consider codes other than
simple root codes.

Let f(x) = a0+a1x+. . .+arx
r be a polynomial in Fq2[x], and f(x) = a0+a1x+. . .+arx

r.
The polynomial inverse of f is denoted by f ⋆(x) = xrf(x−1) = ar + ar−1x + . . . + a0x

r, so
then f⊥(x) = ar + ar−1x+ . . .+ a0x

r.
The following properties can easily be verified.

Lemma 4. Let f(x) and g(x) be polynomials over Fpm. Then

1. conjugation is additive: f(x) + g(x) = f(x) + g(x);

2. conjugation is multiplicative: f(x)g(x) = f(x) g(x);

3. polynomial inversion is additive if the polynomials have the same degree:

(f(x) + g(x))⋆ = f(x)⋆ + g(x)⋆;

4. polynomial inversion is multiplicative: (f(x)g(x))⋆ = f(x)⋆ g(x)⋆;
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5. inversion and conjugation commute with each other: (f(x)⋆) = (f(x))⋆; and

6. both operations are self-inverses: (f(x)⋆)⋆ = f(x) and f(x) = f(x).

Lemma 5. Let a(x) = a0+a1x+. . .+an−1x
n−1 and b(x) = b0+b1x+. . .+bn−1x

n−1 be polyno-

mials in
Fp2[x]

xn − 1
. Then a(x)b(x) = 0 in

Fp2[x]

xn − 1
if and only if (a0, a1, . . . , an−1) is orthogonal

to (bn−1, bn−2, . . . , b0) and all its cyclic shifts. That is 〈a, b⋆〉 = 0 ⇐⇒ a(x)b(x)⊥ = 0.

Proof. It well known (see for example [4]), that if a(x) = a0 + a1x + . . . + an−1x
n−1 and

b(x) = b0 + b1x + . . . + bn−1x
n−1 are polynomials in

Fp2[x]

xn − 1
, then a(x)b(x) = 0 in

F [x]

xn − 1
if

and only if (a0, a1, . . . , an−1) is orthogonal to (bn−1, bn−2, . . . , b0) and all its cyclic shifts. Hence

by applying this fact to a(x) and b(x) and noting that b(x) = b(x), the result follows.

We now use Lemma 5 to derive an expression for the Hermitian dual of a cyclic code.
Let S ⊆ R and let the annihilator be ann(S) = {g ∈ R|fg = 0, ∀f ∈ S}. Then ann(S) is
also an ideal of the ring and hence is generated by a polynomial.

Lemma 6. If g(x) generates the code C, then C⊥h = ann(g(x)
⋆
).

Proof. Assume that g(x) generates the code C. Then each codeword in C has the form
a(x) = g(x)c(x). Let a codeword b(x) lie in the Hermitian dual C⊥h. Then by Lemma 5 we
have that

a(x)b⊥(x) = 0,

and by Lemma 4, this is equivalent to

b(x)(g(x)
⋆
) = 0. (7)

Then by (7), we have that for a codeword b(x), b(x) ∈ C⊥h ⇐⇒ b(x) ∈ ann(g(x)
⋆
), which

completes the proof.

Lemma 7. Assume that C = 〈g(x)〉 is a cyclic code of length n over Fp2 with generator

polynomial g(x). Define h(x) = xn−1
g(x)

. Then we have that C⊥h = 〈h⊥(x)〉.

Proof. From Lemma 6 it is known that C⊥h = ann(g(x)⊥). Thus, we must show that
ann(g⊥(x)) = 〈h⊥(x)〉. One way containment is easy since 〈h⊥(x)〉 ⊆ ann(g⊥(x)), which is
true because h⊥(x)g⊥(x) = (h(x)g(x))⊥ = (xn − 1)⊥ = 0 by Lemma 4. For containment the

other way, we observe that since ann(g⊥(x)) is an ideal of the polynomial ring
Fp2 [x]

xn − 1
, it is

generated by a polynomial, say b⊥(x). Then b⊥(x)g⊥(x) = xn − 1 = λ(xn − 1)⊥ (because
b(x) is the smallest polynomial, so it is an equality). Hence b(x)g(x) = xn − 1, so it must be
that b(x) = h(x) since both are unitary polynomials. This completes the proof.

Theorem 8. Let p > 3 be a prime. Then

1. there exists ω ∈ Fp2 such that ω3 = 1 and the factorization of x3ps − 1 into irreducible

factors over Fp2[x] is

x3ps − 1 = (x− 1)p
s

(x− ω)p
s

(x− ω2)p
s

;
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2. the cyclic codes of length 3ps are always of the form

〈(x− 1)i(x− ω)j(x− ω2)k〉,

where 0 ≤ i, j, k ≤ ps, and the code has p2(3p
s−i−j−k) codewords; and

3. the Hermitian dual of the codes have the form

C⊥h =

{

〈(x− 1)p
s−i(x− ω)p

s−j(x− ω2)p
s−k〉 if p ≡ 1 mod 3,

〈(x− 1)p
s−i(x− ω2)p

s−j(x− ω)p
s−k〉 if p ≡ 2 mod 3.

(8)

Proof. 1. Since p is a prime number, p 6= 0 mod 3, and p2 − 1 = (p+1)(p− 1), so either
p + 1 = 0 mod 3 or p − 1 = 0 mod 3. Therefore an element of order 3 exists in
Fp2. Let this element be ω, so then (x − 1)(x − ω)(x − ω2) = x3 − 1. In a field of
characteristic p, it is known that xn − 1 = (xm − 1)p if n = mp. Therefore we have
that x3ps − 1 = (x3 − 1)p

s

= ((x− 1)(x− ω)(x− ω2))p
s

.

2. From the previous part we know that the irreducible factors are (x − 1), (x − ω) and
(x − ω2), each of multiplicity ps. As the generator polynomial divides x3ps − 1, the
statement follows.

3. We know from Lemma 7 that
C⊥h = 〈h⊥(x)〉,

hence

C⊥h = 〈
(x− 1)p

s

(x− ω)p
s

(x− ω2)p
s

(x− 1)i(x− ω)j(x− ω2)k
〉⋆

= 〈(x− 1)ps−i(x− ω)ps−j(x− ω2)ps−k〉⋆

= 〈[(x− 1)ps−i]⋆[(x− ω)ps−j ]⋆[(x− ω2)ps−k]⋆〉

= 〈[−(x− 1)ps−i][−ω(x− ω−1)ps−j]⋆[−ω2(x− ω−2)ps−k]⋆〉

Since, (x− 1)⋆ = −x+ 1 = −(x− 1), (x− ω)⋆ = −ωx+ 1 = −ω(x− ω2)

= 〈[(x− 1)ps−i][(x− ω2)ps−j ][(x− ω)ps−k]〉

= 〈[(x− 1)p
s−i][(x− ω2)p

s−j ][(x− ω)p
s−k]〉

= 〈[(x− 1)p
s−i][(x− ω2p)p

s−j][(x− ωp)p
s−k]〉

=

{

〈(x− 1)p
s−i(x− ω2)p

s−j(x− ω)p
s−k〉 if p ≡ 1 mod 3,

〈(x− 1)p
s−i(x− ω)p

s−j(x− ω2)p
s−k〉 if p ≡ 2 mod 3.

(9)

Since ωp = ω if p ≡ 1 mod 3, and ωp = ω2 if p ≡ 2 mod 3. (10)

This completes the proof.
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4 Extension to Simple Root Cyclic Codes

This section considers cyclic codes of length n over Fp2 such that (p, n) = 1. In this case, a
cyclic code can be represented by its defining set Z. If m has order p2 modulo n, then Fp2m

is the splitting field of xn − 1 containing a primitive nth root of unity. Consider a primitive
root β. Then {k|g(βk) = 0, 0 ≤ k < n} is a defining set of C. Note that this set depends on
the choice of β. We can make a canonical choice for β by fixing a primitive element α of Fqm

and letting β = α
qm−1

n . Let this elements be α as defined by the PrimitiveElement function
in Magma.

For n and m as above and a ∈ {0, . . . , n− 1}, the set {aqj mod n|0 ≤ j < m} is called
a cyclotomic coset modulo n. It is well known that a defining set of a cyclic code of length
n is the union of cyclotomic cosets modulo n. Let Zn denote the set of integers modulo n.
Clearly defining sets can be considered as subsets of Zn. For S ⊂ Zn, denote S = Zn\S and
−qS = {−qs mod n|s ∈ S}.

We now prove the following lemma.

Lemma 9. If C is a linear cyclic code with defining set Z, then dim(C⊥h)−dim(C∩C⊥h) =
|Z ∩ −pZ|.

Proof. Let C be a linear cyclic code of length n, and
∏

k∈Z(x−βk) be the generator polyno-
mial for C. Then from Lemma 7 the generator polynomial for C⊥h is

∏

k∈−pZ(x− βk), and

the generator polynomial for C ∩ C⊥h is
∏

k∈Z∩−pZ(x− βk), which gives that

dim(C⊥h)−dim(C∩C⊥h) = n−|−pZ|−(n−|Z∪−pZ|) = |Z∪−pZ|−|−pZ| = |Z∩−pZ|.

Theorem 10. Assume n be divisible by p2−1 and let C be an [n, k]4 cyclic code with defining

set Z such that (Z ∩ −pZ) ⊆ T = { nk
p2−1

|k ∈ {1, . . . , p2 − 1}}. If e = |Z ∩ −pZ|, then there

exists an [[n+e, 2k−n+e, d]]p quantum code with d ≥ min{wt(C),wt(Cu)+1,wt(C+C⊥h)+2}
where the minimum is taken over the cyclic codes Cu with defining set Z\{u} for each

u ∈ Z ∩ −pZ.

Proof. The proof requires a modification to the proof of Theorem 3, in particular the set of
orthonormal vectors used is changed. First we observe that each of the elements in T is a
cyclotomic coset and contains only one element. Let q = p2 − 1, n = (p2 − 1)l = ql, and ω

be a p2 − 1-th root of unity. Consider the polynomials

bt(x) =
xn − 1

x− ωt
=

l−1
∑

i=0

(xqi+q−1 + ωtxqi+q−2 + . . .+ ω(q−1)txqi).

For convenience, we let {bi|i ∈ 0, 1, . . . , l} also denote the corresponding codewords. This is
an orthonormal set because

〈bu, bv〉 = q

l−1
∑

i=0

(ωi(u+vp)) = q
∑

i = 0l−1(ωi(u−v)) =

{

0 u 6= v

ql u = v
.

7



To mitigate the ql factor, we can multiply each element by a constant. Thus, to add the
rows for B to the matrix, we add U = {bt|

tn
q
∈ Z ∩ −pZ}.

To prove the claim about the distance, we have 3 cases: no row from B is a linear
combination, exactly one row from U is a linear combination with a non-zero coefficient,
and at least two rows are a combination. The proof of the first and the last cases is the
same as in the proof of Theorem 3. For the second case, let bt be the row with non-zero
coefficient. Then the code generated would be span(C, bt), which is precisely the cyclic code
with defining set Z\{ tn

3
}. This completes the proof.

5 Examples of Codes Generated

In this section, a comprehensive table of codes generated is presented. Many of these codes
have parameters better than the best known quantum codes.

New Codes Generator Polynomial Best Known Binary
QECC

[[33, 31, 2]]3 x13 + α5 ∗ x12 + α7 ∗ x11 + α2 ∗ x10 + 2 ∗ x9 +
2 ∗ x8 + α3 ∗ x7 + α6 ∗ x6 + 2 ∗ x5 + α3 ∗ x4 +
α3 ∗ x3 + α6 ∗ x2 + α2

[[33, 31, 1]]2

[[35, 33, 2]]3 x+ 1 [[35, 33, 1]]2
[[39, 37, 2]]3 x+ 2 [[39, 37, 1]]2
[[40, 26, 5]]3 x7+α∗x6+α∗x5+α6∗x4+x3+α7∗x2+α5∗x+α [[40, 26, 4]]2
[[40, 24, 6]]3 x8 + α3 ∗ x7 + α ∗ x6 + α7 ∗ x5 + 2 ∗ x4 + x3 +

α2 ∗ x2 + α ∗ x+ α2

[[40, 24, 5]]2

[[41, 39, 2]]3 x+ 1 [[41, 39, 1]]2
[[41, 9, 11]]3 x16 + α5 ∗ x15 + α5 ∗ x14 + α ∗ x13 + α6 ∗ x12 +

α2 ∗ x11 + 2 ∗ x9 + α7 ∗ x7 + 2 ∗ x6 + α3 ∗ x5 +
2 ∗ x4 + α6 ∗ x3 + α7 ∗ x2 + α7

[[41, 9, 8]]2

[[41, 19, 8]]3 x11 + α ∗ x10 + α ∗ x9 + α5 ∗ x8 + 2 ∗ x7 + α3 ∗
x6 + α2 ∗ x5 + α3 ∗ x4 + x2 + α2 ∗ x+ 2

[[41, 19, 6]]2

[[40, 20, 7]]3 x10 + α6 ∗ x9 +α7 ∗ x6 +α3 ∗ x5 + 2 ∗ x4 + α3 ∗
x3 + α ∗ x+ α2

[[40, 20, 6]]2

[[41, 25, 6]]3 x8 +α6 ∗ x7 +α7 ∗ x6+ x4+α5 ∗x3 +α3 ∗ x2 +
2 ∗ x+ α7

[[41, 25, 4]]2

[[40, 10, 10]]3 x15+α6 ∗x14+x13+α5 ∗x12+α2 ∗x11+x10+
α3 ∗ x9 + α5 ∗ x8 + x7 + 2 ∗ x6 + α7 ∗ x5 + α7 ∗
x4 + x3 + α ∗ x2 + α5 ∗ x+ α5

[[40, 10, 8]]2

[[40, 16, 8]]3 x12 + α3 ∗ x11 + α3 ∗ x10 + x9 + α5 ∗ x8 + α5 ∗
x7+α5 ∗x6+α5 ∗x5+2 ∗x4 +x3+α6 ∗x+α2

[[40, 16, 6]]2

[[41, 13, 9]]3 x14+2∗x13+α∗x12+2∗x10+α2∗x9+x8+α5∗x7+
α5∗x6+x5+α3∗x4+α6∗x3+2∗x2+α3∗x+α5

[[41, 13, 7]]2

[[41, 21, 7]]3 x10 + α7 ∗ x9 +α6 ∗ x7 +α6 ∗ x6 + 2 ∗ x5 + α7 ∗
x4 + x3 + α3 ∗ x+ α5

[[41, 21, 6]]2

[[41, 27, 5]]3 x7 + 2 ∗ x6 + α3 ∗ x5 + α7 ∗ x4 + α7 ∗ x3 + 2 ∗
x2 + α3 ∗ x+ α2

[[41, 27, 4]]2
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[[33, 31, 2]]3 x+ 1 [[33, 31, 1]]2
[[40, 26, 5]]3 x7+α∗x6+α∗x5+α6∗x4+x3+α7∗x2+α5∗x+α [[40, 26, 4]]2
[[40, 24, 6]]3 x8 + α3 ∗ x7 + α ∗ x6 + α7 ∗ x5 + 2 ∗ x4 + x3 +

α2 ∗ x2 + α ∗ x+ α2

[[40, 24, 5]]2

[[41, 39, 2]]3 x+ 1 [[41, 39, 1]]2
[[41, 9, 11]]3 x16 + α5 ∗ x15 + α5 ∗ x14 + α ∗ x13 + α6 ∗ x12 +

α2 ∗ x11 + 2 ∗ x9 + α7 ∗ x7 + 2 ∗ x6 + α3 ∗ x5 +
2 ∗ x4 + α6 ∗ x3 + α7 ∗ x2 + α7

[[41, 9, 8]]2

[[41, 19, 8]]3 x11 + α ∗ x10 + α ∗ x9 + α5 ∗ x8 + 2 ∗ x7 + α3 ∗
x6 + α2 ∗ x5 + α3 ∗ x4 + x2 + α2 ∗ x+ 2

[[41, 19, 6]]2

[[40, 20, 7]]3 x10 + α6 ∗ x9 +α7 ∗ x6 +α3 ∗ x5 + 2 ∗ x4 + α3 ∗
x3 + α ∗ x+ α2

[[40, 20, 6]]2

[[41, 25, 6]]3 x8 +α6 ∗ x7 +α7 ∗ x6+ x4+α5 ∗x3 +α3 ∗ x2 +
2 ∗ x+ α7

[[41, 25, 4]]2

[[40, 10, 10]]3 x15+α6 ∗x14+x13+α5 ∗x12+α2 ∗x11+x10+
α3 ∗ x9 + α5 ∗ x8 + x7 + 2 ∗ x6 + α7 ∗ x5 + α7 ∗
x4 + x3 + α ∗ x2 + α5 ∗ x+ α5

[[40, 10, 8]]2

[[40, 16, 8]]3 x12 + α3 ∗ x11 + α3 ∗ x10 + x9 + α5 ∗ x8 + α5 ∗
x7+α5 ∗x6+α5 ∗x5+2 ∗x4 +x3+α6 ∗x+α2

[[40, 16, 6]]2

[[41, 13, 9]]3 x14+2∗x13+α∗x12+2∗x10+α2∗x9+x8+α5∗x7+
α5∗x6+x5+α3∗x4+α6∗x3+2∗x2+α3∗x+α5

[[41, 13, 7]]2

[[41, 21, 7]]3 x10 + α7 ∗ x9 +α6 ∗ x7 +α6 ∗ x6 + 2 ∗ x5 + α7 ∗
x4 + x3 + α3 ∗ x+ α5

[[41, 21, 6]]2

[[41, 27, 5]]3 x7 + 2 ∗ x6 + α3 ∗ x5 + α7 ∗ x4 + α7 ∗ x3 + 2 ∗
x2 + α3 ∗ x+ α2

[[41, 27, 4]]2

[[41, 9, 11]]5 x16 + α ∗ x15 + α23 ∗ x14 + α3 ∗ x13 + 4 ∗ x12 +
α15 ∗ x11 + 3 ∗ x10 + α10 ∗ x8 + α3 ∗ x7 + α14 ∗
x5 + α8 ∗ x4 + α19 ∗ x3 + 4 ∗ x2 + α17 ∗ x+ α8

[[41, 9, 8]]2

[[40, 2, 12]]5 x19+α20 ∗x18+α22 ∗x17+α10 ∗x16+α3 ∗x15+
α20 ∗x14+α21 ∗x13+α22 ∗x12+α20 ∗x11+α8 ∗
x10+3 ∗x9+α22 ∗x8+4 ∗x7+α11 ∗x6+α23 ∗
x5 + α22 ∗ x4 + α8 ∗ x3 + α5 ∗ x2 + α9 ∗ x+ α4

[[40, 2, 10]]2

[[41, 5, 12]]5 x18 + α15 ∗ x17 + α19 ∗ x16 + α23 ∗ x15 + α13 ∗
x14 +α5 ∗x13 +α7 ∗x12+x11 +α17 ∗x10+α3 ∗
x9 + α19 ∗ x8 + α19 ∗ x7 + α5 ∗ x6 + α11 ∗ x5 +
α8 ∗ x4 + α ∗ x3 + α10 ∗ x2 + α5 ∗ x+ 1

[[41, 5, 9]]2

[[40, 6, 11]]5 x17+α10 ∗x16+α4 ∗x15+α22 ∗x14+α9 ∗x13+
α ∗ x12 +3 ∗ x11 +4 ∗ x10 +α5 ∗ x9 +α16 ∗ x8 +
α19 ∗x7 +α22 ∗x6 +α9 ∗x5 +α4 ∗x4 +4 ∗ x3 +
α17 ∗ x2 + α16 ∗ x+ 4

[[40, 6, 8]]2

[[39, 15, 9]]5 x12+2∗x11+α5∗x10+α16∗x9+α3∗x8+α3∗x7+
α13∗x6+α15∗x5+α22∗x4+x3+α9∗x2+2∗x+α16

[[39, 15, 7]]2

[[39, 23, 5]]5 x8 +α21 ∗ x7+3 ∗ x6 +α ∗ x5 +α16 ∗x4 +α17 ∗
x3 + α2 ∗ x2 + α21 ∗ x+ α16

[[39, 23, 4]]2
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[[40, 22, 6]]5 x9+α7 ∗x8+α8 ∗x7+α2 ∗x6+α21 ∗x5+α9 ∗
x4 + α14 ∗ x3 + α20 ∗ x2 + α19 ∗ x+ 4

[[40, 22, 5]]2

[[41, 21, 7]]5 x10 + α3 ∗ x9 + x8 + α10 ∗ x7 + α2 ∗ x6 + α22 ∗
x5 + α23 ∗ x4 + α ∗ x3 + α22 ∗ x2 + α15 ∗ x+ 1

[[41, 21, 6]]2

[[39, 11, 10]]5 x14 + α15 ∗ x12 + α21 ∗ x11 + α16 ∗ x10 + α16 ∗
x9 + 4 ∗ x8 + α3 ∗ x7 + 4 ∗ x5 + 4 ∗ x4 + α22 ∗
x3 + α19 ∗ x2 + α9 ∗ x+ α8

[[39, 11, 8]]2

[[39, 19, 7]]5 x10 +α14 ∗ x8 +α14 ∗ x7 +α4 ∗ x6 +α ∗ x5 +4 ∗
x4 + α8 ∗ x3 + α3 ∗ x2 + α14 ∗ x+ α8

[[39, 19, 5]]2

[[40, 18, 8]]5 x11+x10+α13∗x9+α17∗x8+2∗x7+α14∗x6+
α17 ∗x5+3∗x4+α15 ∗x3+α21 ∗x2+α23 ∗x+4

[[40, 18, 6]]2

[[31, 13, 6]]5 x9+3∗x8+x6+x5+4∗x4+x3+3∗x2+x+4 [[31, 13, 5]]2
[[32, 0, 11]]5 x16+3∗x15+2∗x14+x13+x11+2∗x10+x9+

x8 + 4 ∗ x7 + x6 + x5 + 3 ∗ x4 + 2 ∗ x3 + x+ 1
[[32, 0, 10]]2

[[31, 7, 8]]5 x12+4 ∗x11+4 ∗x10+2 ∗x9+4 ∗x8+2 ∗x7+
x6 + 3 ∗ x5 + x4 + x3 + 2 ∗ x+ 1

[[31, 7, 7]]2

[[32, 12, 7]]5 x10 + 3 ∗ x7 + x6 + x5 + x4 + 3 ∗ x2 + 4 ∗ x+ 1 [[32, 12, 6]]2
[[31, 25, 3]]5 x3 + x2 + 3 ∗ x+ 4 [[31, 25, 2]]2
[[32, 18, 5]]5 x7 + 3 ∗ x5 + 3 ∗ x3 + 4 ∗ x2 + 4 [[32, 18, 4]]2
[[32, 6, 9]]5 x13 + 2 ∗ x11 + x10 + x9 + 4 ∗ x8 + 3 ∗ x6 + 2 ∗

x5 + 4 ∗ x3 + 4 ∗ x2 + 4 ∗ x+ 4
[[32, 6, 8]]2

[[33, 31, 2]]5 x+ 4 [[33, 31, 1]]2
[[35, 33, 2]]5 x+ 4 [[35, 33, 1]]2
[[37, 35, 2]]5 x+ α16 [[37, 35, 1]]2
[[37, 35, 2]]5 x+ α16 [[37, 35, 1]]2
[[25, 23, 2]]5 x+ α16 [[25, 23, 1]]2
[[24, 20, 3]]5 x2 + α8 ∗ x+ α17 [[24, 20, 2]]2
[[25, 21, 3]]5 x2 + α13 ∗ x+ α17 [[25, 21, 2]]2
[[24, 18, 4]]5 x3 + α10 ∗ x2 + α16 ∗ x+ 3 [[24, 18, 2]]2
[[25, 19, 4]]5 x3 + α19 ∗ x2 + α10 ∗ x+ α21 [[25, 19, 2]]2
[[25, 17, 5]]5 x4 + α7 ∗ x3 + 4 ∗ x2 + α16 ∗ x+ 3 [[25, 17, 3]]2
[[33, 31, 2]]5 x+ 4 [[33, 31, 1]]2
[[32, 0, 13]]7 x16 +2 ∗x15 +3 ∗x14 +4 ∗ x12 + x11 +4 ∗ x10 +

x9 + 5 ∗ x8 + 4 ∗ x7 + 6 ∗ x6 + 5 ∗ x5 + 2 ∗ x4 +
3 ∗ x3 + 3 ∗ x2 + 4 ∗ x+ 1

[[32, 0, 10]]2

[[31, 1, 12]]7 x15+3∗x14+6∗x13+6∗x12+3∗x11+4∗x10+x9+
2∗x8+4∗x6+3∗x5+x4+3∗x3+6∗x2+2∗x+6

[[31, 1, 11]]2

[[33, 21, 5]]7 x6 + α42 ∗ x5 + α33 ∗ x4 + α20 ∗ x3 + α30 ∗ x2 +
α6 ∗ x+ α15

[[33, 21, 4]]2

[[33, 31, 2]]7 x+ 6 [[33, 31, 1]]2
Table 1: Comparison of the codes obtained using Theo-
rem 3 presented here and the best known binary QECC
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6 Codes Generated from Repeated Root Cylic Codes

Codes of length 3ps on field of size p2.

Codes Codes Codes
[[15, 9, 2]]25 [[15, 7, 3]]25 [[16, 6, 4]]25
[[75, 69, 2]]25 [[75, 59, 3]]25 [[75, 49, 4]]25
[[82, 26, 5]]25
[[375, 369, 2]]25 [[375, 319, 3]]25 [[375, 269, 4]]25
[[21, 15, 2]]49 [[21, 13, 3]]49 [[21, 11, 4]]49
[[21, 7, 5]]49 [[22, 8, 5]]49 [[21, 5, 6]]49
[[23, 1, 7]]49
[[147, 141, 2]]49 [[147, 127, 3]]49 [[147, 113, 4]]49
[[147, 85, 5]]49 [[147, 71, 6]]49

Table 2: Quantum codes obtained from repeated root
cyclic codes using Theorem 8
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