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Abstract Hadamard Z2Z4Q8-codes are Hadamard binary codes coming from a sub-
group of the direct product of Z2, Z4 and Q8 groups, where Q8 is the quaternionic
group. We characterize Hadamard Z2Z4Q8-codes as a quotient of a semidirect prod-
uct of Z2Z4-linear codes and we show that all these codes can be represented in a
standard form, from a set of generators. On the other hand, we show that there exist
Hadamard Z2Z4Q8-codes with any given pair of allowable parameters for the rank
and dimension of the kernel.
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1 Introduction

Non-linear codes with a group structure (like Z2Z4-linear codes and Z2Z4Q8-codes)
have received a great deal of attention since [4]. The codes in this paper can be
characterized as the image of a subgroup, by a suitable Gray map, of the direct
product of Z2, Z4 and Q8, the quaternionic group of order 8 [8, 2].

Hadamard matrices with a subjacent algebraic structure have been deeply stud-
ied, as well as the links with other topics in algebraic combinatorics or applications
[5]. We quote just a few papers about this subject [6, 3, 1], where we can find beauti-
ful equivalences between Hadamard groups, 2-cocyclic matrices and relative differ-
ence sets. On the other hand, from a coding theory point of view, it is desirable that
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the algebraic structures we are dealing with preserves the Hamming distance. This
is the case, for example, of the Z2Z4-linear codes which has been intensively stud-
ied during the last years [4]. More generally, the propelinear codes and, specially
those which are translation invariant, are particularly interesting because the subja-
cent group structure has the property that both, left and right product, preserve the
Hamming distance. Translation invariant propelinear codes has been characterized
as the image of a subgroup by a suitable Gray map of a direct product of Z2, Z4 and
Q8 [8].

In this paper we analyze codes that have both properties, being Hadamard and
Z2Z4Q8-codes. These codes were previously studied and classified [2] in five
shapes. The aim of this paper is to go further. First of all by giving an standard
form for a set of generators of the code, depending on the parameters, which helps
to understand of the characteristics of each shape and then by putting the focus in
an exact computation of the values of the rank and dimension of the kernel. One of
the main results of this paper is to characterize the Z2Z4Q8-codes as a quotient of
a semidirect product of Hadamard Z2Z4-linear codes. The second main result is to
construct, using the above characterization, Hadamard Z2Z4Q8-codes whose values
for the rank and dimension of the kernel are any allowable pair previously chosen.

The structure of the paper is as follows. Section 2 introduces the notation and
preliminary concepts; Section 3 shows the standard form of generators that allows
to represent any Hadamard Z2Z4Q8-code in a unique way, this section finishes with
two important theorems which characterizes a Hadamard Z2Z4Q8-code as a quo-
tient of a semidirect product of Z2Z4-linear codes (Theorems 1 and 2). Finally, in
Section 4 we give the constructions of Z2Z4Q8-codes fulfilling the requirements for
the prefixed values of the dimension of the kernel and rank. We finish the last section
with a couple of examples about the constructions and achievement of codes with
each allowable pair of values for the rank and dimension of the kernel.

2 Preliminaries

Let Z2 and Z4 denote the binary field and the ring of integers modulo 4, respectively.
Any non-empty subset of Zn

2 is called a binary code and a linear subspace of Zn
2 is

called a binary linear code or a Z2-linear code. Let wt(v) denote the Hamming
weight of a vector v ∈ Zn

2 (i.e., the number of its nonzero components), and let
d(v,u) = wt(v+u), the Hamming distance between two vectors v,u ∈ Zn

2.
Let Q8 be the quaternionic group on eight elements. The following equalities

provides a presentation and the list of elements of Q8:

Q8 =〈a,b : a4 = a2b2 = 1,bab−1 = a−1〉= {1,a,a2,a3,b,ab,a2b,a3b}.

Given three non-negative integers k1, k2 and k3, denote as G the group Zk1
2 ×

Zk2
4 ×Qk3

8 . Any element of G can be represented as a vector where the first k1 com-
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ponents belong to Z2, the next k2 components belong to Z4 and the last k3 compo-
nents belong to Q8.

We use the multiplicative notation for G and we denote by e the identity element
of the group and by u the element with all components of order two. Hence, e =
(0, k1+k2. . . ,0,1, k3. . .,1) and u = (1, k1. . .,1,2, k2. . .,2,a2, k3. . .,a2).

We call Gray map the function Φ :

Φ : Zk1
2 ×Zk2

4 ×Qk3
8 −→ Zk1+2k2+4k3

2 ,

acting componentwise in such a way that over the binary part is the identity, over the
quaternary part acts as the usual Gray map, so 0→ (00), 1→ (01), 2→ (11), 3→
(10) and over the quaternionic part acts in the following way [2]: 1→ (0,0,0,0),
b→ (0,1,1,0), a→ (0,1,0,1), ab→ (1,1,0,0), a2→ (1,1,1,1), a2b→ (1,0,0,1),
a3→ (1,0,1,0), a3b→ (0,0,1,1).

Note that Φ(e) is the all-zeros vector and Φ(u) is the all-ones vector.
Let C be a subgroup of Zk1

2 ×Zk2
4 ×Qk3

8 . Binary codes C = Φ(C ) are called
Z2Z4Q8-codes. In the specific case k3 = 0, code C is called Z2Z4-linear. In this last
case, note that C is isomorphic to = Zγ

2×Zδ
4 ⊂ Zk1

2 ×Zk2
4 . We will say that C is of

type 2γ 4δ [4].
We are interested in Hadamard binary codes C = Φ(C ) where C is a subgroup

of G = Zk1
2 ×Zk2

4 ×Qk3
8 of length n = 2m. All through the paper we are assuming it.

The kernel of a binary code C of length n is K(C) = {z ∈ Zn
2 : C+ z = C}. The

dimension of K(C) is denoted by k(C) or simply k. The rank of a binary code C is
the dimension of the linear span of C. It is denoted by r(C) or simply r.

A Hadamard matrix of order n is a matrix of size n× n with entries ±1, such
that HHT = nI. Any two rows (columns) of a Hadamard matrix agree in precisely
n/2 components. If n > 2 then any three rows (columns) agree in precisely n/4
components. Thus, if n > 2 and there is a Hadamard matrix of order n then n is
multiple of 4.

Two Hadamard matrices are equivalent if one can be obtained from the other
by permuting rows and/or columns and multiplying rows and/or columns by −1.
With the last operations we can change the first row and column of H into +1’s
and we obtain an equivalent Hadamard matrix which is called normalized. If +1’s
are replaced by 0’s and −1’s by 1’s, the initial Hadamard matrix is changed into a
(binary) Hadamard matrix and, from now on, we will refer to it when we deal with
Hadamard matrices. The binary code consisting of the rows of a (binary) Hadamard
matrix and their complements is called a (binary) Hadamard code, which is of length
n, with 2n codewords, and minimum distance n/2.

Let C = Φ(C ) be a Hadamard Z2Z4Q8-code of length 2m. Set |T (C )| = 2σ ,
|Z(C )/T (C )| = 2δ and |C /Z(C )| = 2ρ , where T (C ) is the subgroup of elements
of order two, Z(C ) is the center of C . Hadamard Z2Z4Q8-codes were studied in [2]
and classified in five different shapes based on the parameters σ ,δ ,ρ .

There are two important tools that has been used in the technical proofs of the
statements throughout this paper, the commutator and the swapper.
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Two elements a and b of C commutes if and only if ab = ba. As an extension
of this concept, the commutator of a and b is defined as the element [a,b] such that
ab = [a,b]ba. Note that all commutators belong to T (C ) and any element of T (C )
commutes with all elements of C .

We say that two elements a and b of C swap if and only if Φ(ab) =Φ(a)+Φ(b).
As an extension of this concept, define the swapper of a and b as the element (a : b)
such that Φ((a : b)ab) = Φ(a)+Φ(b). Note that all swappers belong to T (G ) but
they can be out of C . In other words, for any element a of C we have Φ(a) ∈ K(C)
if and only if (a : b) ∈ C , for every b ∈ C . Moreover, the linear span of C can be
seen as Φ(〈C ∪S(C )〉), where 〈C ∪S(C )〉 is the group generated by C and S(C ),
the set of swappers of the elements in C .

3 The standard form for the generator set of a Hadamard
Z2Z4Q8-code

In this section, starting from a given a Z2Z4Q8-code we construct a standard gener-
ator set, which allow to characterize it.

Proposition 1. Let C be a subgroup of Zk1
2 ×Zk2

4 ×Qk3
8 such that C = Φ(C ) is a

Hadamard code. We can always construct a standard set of generators {x1, . . . ,xσ ;
r1, . . . ,rτ ; s1,sυ } of C such that:

• The elements xi are of order two and generate T (C ).
• The elements ri are of order four and commute with each other, [ri,r j] = e for

every 1≤ i, j ≤ τ . When u ∈ 〈r1 . . .rτ〉 we will take u = r2
1 and we have r2

1 = u 6∈
〈r2

2...r
2
τ 〉.

• The cardinal υ of the set {s1,sυ} is in {0,1,2} and when υ = 2 we have s2
1 =

u 6= s2
2, and [s1,s2] = e. Moreover, when r2

1 = s2
1 = u then [r1,s1] = u.

• Any element c ∈ C can be written in a unique way as

c =
σ

∏
i=1

xai
i

τ

∏
j=1

r
b j
j

υ

∏
k=1

sck
k , where ai,b j,ck ∈ {0,1}.

The next theorem shows that a subgroup C , such that φ(C ) is a Hadamard
Z2Z4Q8-code, has an abelian maximal subgroup A which is normal in C and C /A
is an abelian group of order 2a, for a ∈ {0,1,2}.

Theorem 1. Let C be a subgroup of Zk1
2 × Zk2

4 ×Qk3
8 such that φ(C ) = C is a

Hadamard Z2Z4Q8-code. Then C has an abelian maximal subgroup A which is
normal in C and |C /A | ∈ {1,2,4}. Futher, C may be expressed as a quotient of a
semidirect product of A .

The next result characterizes the maximal abelian subgroup A and, since Hada-
mard Z2Z4-linear codes are well known [7], it will make possible the construction
of all Hadamard Z2Z4Q8-codes.
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Theorem 2. Let C be a subgroup of Zk1
2 × Zk2

4 ×Qk3
8 such that φ(C ) = C is a

Hadamard Z2Z4Q8-code and A the abelian maximal subgroup in C . Then φ(A )
can be described as a duplication of a Hadamard Z2Z4-linear code when υ = 1 or
as a quadruplication of a Hadamard Z4-linear code, if υ = 2.

Depending on the values of the parameters σ ,τ,υ the Hadamard Z2Z4Q8-codes
are classified in several shapes, as we can see in Table 1. In fact there are two big
classes of Hadamard Z2Z4Q8-codes. Despite all codes contains the all one vector
u, there are codes where there exist an element r1 such that r2

1 = u (codes of shape
1∗, 2, 4∗ and 5) and there are codes where u is not the square of any other element
(codes of shape 1, 3 and 4). We will define the new parameter τ = τ−1 in the first
case (r2

1 = u) and τ = τ in the second case (r2
1 6= u). The existence conditions for

Hadamard Z2Z4Q8-codes easily come from Theorem 2 and [7], where it was stated
the existence conditions for Hadamard Z2Z4-linear codes.

Table 1 summarizes what we have done in this section.

Table 1 Existence conditions and parameters k1,k2,k3 depending on the shape of Hadamard
Z2Z4Q8-codes of length n = 2m, where m = σ +τ +υ−1. For all starred shapes r2

1 = u,τ = τ−1
and for all non-starred shapes r2

1 6= u,τ = τ .

Zk1
2 ×Zk2

4 ×Qk3
8

shape k1 k2 k3 C existence

1∗ 0 2σ+τ−2 0 A ∀τ ≤ bm+1
2 c;

σ = m− τ +1
1 2σ−1 (2τ −1)2σ−2 0 A ∀τ ≤ bm

2 c;
σ = m− τ +1

2 0 0 2σ+τ−2 A oZ4
/
(u,s2

1) ∀τ ≤ bm
2 c;

σ = m− τ

3 0 2σ−1 (2τ −1)2σ−2 A oZ4
/
(u,s2

1) ∀τ ≤ bm−1
2 c;

σ = m− τ

4 2σ−1 0 2σ−3 A oZ4
/
(r2

1,s
2
1) m even; τ = 1;

σ = m
2 +1

4∗ 0 2σ 2σ−1 A oZ4
/
(r2,s2

1) m even; τ = 2;
σ = m

2 −1
5 0 0 2σ+1 A o (Z4×Z4)

/
(r2

1,s
2
1)(r

2
2,s

2
2) τ = 2;

σ = m−3

4 Construction of Hadamard Z2Z4Q8-codes

In this section we deal with the construction of Hadamard Z2Z4Q8-codes with any
allowable pair of values for the rank and the dimension of the kernel. We do not
include all the constructions but, as a summary, we include Theorem 3, where it is
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described what are the allowable parameters for the dimension of the kernel and,
for each one of these values, it is said what is the range of values for the rank. For
each one of the possible pair of allowable values for the dimension of the kernel and
rank, we construct a Hadamard Z2Z4Q8-code fulfilling it. As an illustration of the
constructions we include two examples at the end of the section.

Let C a Hadamard Z2Z4Q8-code of length 2m; let T (C ) be the subgroup of ele-
ments in C of order two; let A (C )= 〈x1, . . . ,xσ ,r1, . . . ,rτ〉 and let R(C ) be defined
by {

R(C ) = 〈x1...xσ ,r2...rτ〉; if r2
1 = u

R(C ) = A (C ); if r2
1 6= u

Theorem 3. Let C a Hadamard Z2Z4Q8-code of length 2m and |T (C )| = 2σ ;
|C /A (C )|= 2υ ; |A (C )/T (C )|= 2τ ; |R(C )/T (C )|= 2τ ; |C /T (C )|= 2τ+υ and
m+ 1 = σ + τ +υ . Then the rank r and the dimension of the kernel k of C satisfy
the following conditions.

1. The values of the dimension of the kernel are 1 6= m+1−k ∈ {0,4,τ−1,τ,τ +
1}. The specific case m+1−k = 0 is obtained in codes where τ ≤ 1 or in codes
of shape 5. The specific case m+1− k = 4 is obtained in codes of shape 5.

2. a) If m+1− k = 0 then r− (m+1) = 0,
b) If m+1− k = 4 and υ = 2 then r− (m+1) = 2,
c) If m+1− k = τ−1≥ 2 then r− (m+1) =

(
τ−1

2

)
,

d) If m+1− k = τ ≥ 2 then r− (m+1) =
(

τ

2

)
,

e) If m+1− k = τ +1 and τ <= 1 then r− (m+1) = τ .
f) If m+1−k = τ +1 and τ = τ−1≥ 2 then r−(m+1)∈ {

(
τ−1

2

)
, . . .

(
τ

2

)
+1}.

g) If m+1− k = τ +1 and τ = τ ≥ 2 then r− (m+1) ∈ {
(

τ

2

)
+1, . . .

(
τ+1

2

)
}.

Example 1. The following example shows constructions of codes of length n= 2m =
26 = 64, with τ = 3≥ τ = 2≥ 2,υ = 1 and σ = 3. The resulting codes are of shape
2 and, before the Gray map, subgroups of Q16

8 .

r1 = (a a a a a a a a a a a a a a a a)
r2 = (a a a3 a3 a a a3 a3 1 1 a2 a2 1 1 a2 a2)
r3 = (a a3 a a3 1 a2 1 a2 a a3 a a3 1 a2 1 a2)

The codes with all possible pairs of values rank,dimension of the kernel are gen-
erated by r1,r2,r3 and s1. We show the vector s1 and the values of the pair rank,
dimension of the kernel.

s1 = (b b b b b b b b b b b b b b b b) (k,r) = (5,8)
s1 = (b b b ab b b b ab b b b ab b b b ab) (k,r) = (3,11)
s1 = (b b b b b b b b b b b ab b b b ab) (k,r) = (3,10)
s1 = (b b b b b b b b b b b b b b b ab (k,r) = (3,9)
s1 = (b b b b b b b b b b b b ab ab ab ab) (k,r) = (3,8)

Example 2. The following example shows constructions of codes of length 64, with
τ = τ = 2, υ = 1 and σ = 4. The resulting codes are of shape 3 and, before the Gray
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map, subgroups of Z8
4Q12

8 . All possible pairs of rank and dimension of the kernel
are presented.

Take the following vectors in Z8
4Q16

8 :

r1 = (0 2 0 2 0 2 0 2 1 a2 a a a a 1 a2 a a a a)
r2 = (0 0 2 2 0 0 2 2 a a 1 a2 a a3 a a 1 a2 a a3)

The codes with all possible pairs of values rank, dimension of the kernel are gener-
ated by r1,r2 and s1. We show the vector s1 and the values of the pair rank, dimen-
sion of the kernel.

s1 = (1 1 1 1 1 1 1 1 b b b b b b b b b b b b) (k,r) = (5,8)
s1 = (1 1 1 1 1 1 1 1 b ab b ab b ab b ab b ab b ab) (k,r) = (4,10)
s1 = (1 1 1 1 1 1 1 1 b ab b b b b b ab b b b b) (k,r) = (4,9)
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