
PDF issue: 2024-04-24

Development of a Software Tool to
Support Traceability-Based Inspection of
SOFL Specifications

Zhang, Jinghua

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
10

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2015-03-24

(URL)
https://doi.org/10.15002/00011545

Development of a Software Tool to Support

Traceability-Based Inspection of SOFL Specifications

Jinghua Zhang

Graduate School of Computer and Information Sciences

Hosei University

E-mail: jinghua.zhang.6w@stu.hosei.ac.jp

Abstract—When developing a formal specification for a

software project using the SOFL three-step modeling approach,

it is essential to ensure the conformance relation between every

two level specifications. Inspection is an important technique to

verify the specifications. In this paper, we describe an inspection

method through building traceability for rigorously verifying the

conformance relation. The method consists of two steps: (1)

traceability establishment and (2) inspection of the target

specifications based on the built traceability. We also provide

some inspection strategies such as checklists based on SOFL

features to help the inspector find errors and keep the

consistency. Our tool provides a convenient interface to separate

components in different specifications and save their

relationships to keep the consistency. We describe the design and

implementation of our supporting tool in this thesis. A case study

to inspect the specifications of a travel plan booking system is

given to show how the proposed method can be applied in

practice.

Index Terms—SOFL, specification, traceability, inspection,

conformance.

I. INTRODUCTION

One of the primary problems in software projects is that the

requirements documented in specifications may not be

accurately and easily understood by the developers carrying out

different tasks [1]. In general, requirements specifications need

to be written by humans, and probably will be changed during

the communication between customers and designers.

Therefore, the target specifications stand a great chance to

contain errors. Eliminating the errors in the early phase of a

software project can produce a considerable positive effect on

the overall cost of the project, and the reliability of the final

software product [2]. Formal engineering methods have been

recognized as an effective and efficient approach for

developing large-scale software systems. One way to improve

the quality of specifications and therefore the quality of the

corresponding software program is to formalize specifications.

We choose Structured Object-Oriented Formal Language

(SOFL) for this purpose in this paper.

The SOFL method provides a three-step approach to

developing formal specifications. Such a development is an

evolutionary process, starting from an informal specification,

to a semi-formal one, to finally a formal specification [1]. In

the evolutionary process, the errors can be made because of

inaccurate understanding of the requirements, incorrect uses of

mathematical expressions, or wrong decisions in defining data

or functions [3]. When changes take place on one level

specification, it may require appropriate changes in the related

specifications. However, how to keep the conformance

between the specifications after the changes still remains an

unaddressed problem. Our research mainly focuses on how to

sustain the consistency between different level specifications

and eliminate errors.

According to the IEEE standard [4], the purpose of an

inspection is to detect and identify software product anomalies.

An inspection is a systematic peer examination that verifies the

software product conforms to applicable regulations, standards,

guidelines, plans, specifications, and procedures. The inspector

collects software engineering data like anomaly and effort data

by using supporting documentations such as checklists to show

what should be checked.

In this paper, we propose an inspection method through

building traceability for rigorously verifying the conformance

relation, which has been briefly presented at the Winter

Workshop 2014 in Oarai [5]. This method mainly consists of

two steps: (1) traceability establishment and (2) inspection of

the target specifications based on the built traceability. The first

step is based on the structure and syntax of SOFL three-step

specifications, corresponding items will be generated together

in the evolutionary process. The checklists will be provided to

help the inspector confirm whether to establish the traceability

between two items in different specifications or not. The

second step inspects the target specifications based on the built

traceability. Pair review is a useful way to check whether the

traceability is correct or not by comparing the textual

specifications and the Condition Data Flow Diagram (CDFD).

Our supporting tool provides a convenient interface to separate

components in different specifications and save their

relationships to keep the consistency. Based on the correct

syntax of components, our tool can get all items automatically

to check whether the target specification fits user’s

requirements or not. We present a case study of the inspection

method by describing how it is applied to inspect the

specifications of a travel plan booking system to show the

method’s feasibility, and explore some potential challenges in

using our supporting tool.

The rest of this paper is organized as follows. We introduce

some basic concepts in Section II. Section III mainly discusses

Supervisor: Prof. Shaoying Liu

the possible way to build the traceability and how to inspect the

components through the traceability. We discuss the design and

implementation of our supporting tool in Section IV. In Section

V, a case study is given to show how the proposed method can

be applied in practice. Related work is introduced in Section VI.

Finally, we give conclusions and point out future research

directions in Section VII.

II. BASIC CONCEPTS

In this section, we first introduce SOFL and then some

inspection strategies, such as checklists and pair reviews for

inspecting SOFL specifications.

A. SOFL

SOFL is a formal engineering method that provides a

formal but comprehensible language for both requirements and

design specifications. A SOFL specification mainly consists of

two parts: the textual specification and the Condition Data

Flow Diagram. The textual specification is a written

documentation and mainly built by the component called

“process”. A process models a transformation from input to

output, which provides pre-condition and post-condition to

describe the functionality and constraints of transferred data.

Different processes contact with each other to handle data. A

set of processes can be defined in a “module”, which can

achieve some independent functions of the target system. At

the same time, some processes can also be decomposed into a

low level “module”, which can explain the complicated data

manipulation more clearly. By combining the generation and

decomposition of processes reasonably, we can easily achieve

the system requirements in our SOFL specification. Fig. 1

shows an example of SOFL textual specification.

The textual specification is produced based on a three-step

approach to developing formal specifications. Such a

development is an evolutionary process, starting from an

informal specification, to a semi-formal specification, then to a

formal specification. Informal specification is the first step in

SOFL method to reach user’s requirements. Although it is

difficult to define the concept of a well-organized specification,

such a specification must clearly and concisely describe the

following items:

1) the functions to be implemented in the software project;

2) the resources to be used in implementing functions;

3) the necessary constraints on both functions and

resources.

The semi-formal specification derives from the informal

specification. Its goal is to clarify and define all the functions,

resources, and constraints, and to determine the relationships

among those three parts contained in the informal specification.

The most distinct feature of a semi-formal specification is that

the format of the specification obeys the syntax of the formal

specification, but the pre- and post-conditions of all processes

in modules are defined in a natural language in an organized

manner. In the formal specification, by evolving all items from

the semi-formal specification in logical expressions, some

processes written by the natural language will be found too

complicated to transform into logical expressions. Under this s-

Fig. 1. SOFL textual specification.

Fig. 2. CDFD describing a flight plan.

ituation, we need to decompose the process into some sub

processes to keep them logical.

Another important part of SOFL is Condition Data Flow

Diagram. Different from the textual specification, the CDFD is

a directed graph that specifies how processes work together to

provide functional behaviors. The process specification mainly

focuses on the internal logical relationships and data

constraints, while the CDFD mainly represents the relation

between different processes by transferring different data. Fig.

2 shows an example of CDFD describing a flight plan.

From Fig. 2, we can see that each module generated by a

set of processes has a corresponding CDFD. A process in the

CDFD is presented as a rectangle pane and connects each other

by arrows called data flows. A data flow represents input or

output data in the textual specification. Also there is another

kind of rectangles starting with a number called data stores. A

data store is a variable holding data in rest. By using these

rectangles, data can convert into the expected situation.

B. Checklists

When inspecting specifications, we need strategies to help

inspectors check SOFL specifications easily. One strategy is

Checklist. Checklists are a well-established reading support

mechanism often used by individual inspectors for the

purposes of preparation. Checklists are based upon a series of

specific questions that are intended to focus the inspector’s

attention on common sources of defects.

The format of the checklist follows what is used by

Laitenberger and DeBaud [6] and suggested by Chernak [7].

The schema consists of two components, “where to look” and

“how to detect”. The first component is a list of potential

“problem spots” that may appear in the work product, and the

second component is a list of hints on how to identify a defect

in the case of each problem spot.

Finally, the questions are ordered to support the inspector in

achieving a thorough understanding of the specifications. As

the inspector moves through the different groups of questions

(invariant, process, etc.), he successively proceeds from a

higher-level and general perspective toward a more detailed

and fine-grained one. Each group of questions requires more

and more understanding of each item in three-step

specifications, and the final question in the evolutionary

specifications section, “does the target specification match the

corresponding specification?” will be easier to answer once all

the other questions have been applied.

C. Pair Review

Pair review is a group way of inspecting requirements

specifications like a software development technique called

pair programming. In pair programming, two programmers

work together at a single keyboard, one is coding while the

other observes and reviews. The roles are switched at regular

intervals. Based on characters of SOFL language we mentioned

above, pair review is very helpful when inspecting the textual

specification and the corresponding CDFD. By reviewing the

textual specification, we can see whether the input and output

data in the CDFD are correct or not, and data should be stored

in the right data stores. By reviewing the CDFD, we can check

whether the set of processes in the corresponding textual

specification are generated in the right order or not. At the

same time, the types of data flow and the logical constraints

about pre- and post-condition will be confirmed in the textual

specifications.

III. BUILDING TRACEABILITY AND INSPECTION

Requirements traceability refers to the ability to describe

and follow the life of a requirement, in both forward and

backward directions. For example, from its origins, through its

development and specification, to its subsequent deployment

and use, and through all periods of on-going refinement and

iteration in any of these phases. Pinheiro and Goguen [8] think

that requirements traceability refers to the ability to define,

capture and follow the traces left by requirements on other

elements of the software development environment and the

trace left by those elements on requirements. Some traceability

definitions emphasize the use of traceability to document the

transformation of a requirement into successively concrete

design and development artifacts. Hull, Elizabeth et al. [9]

explain that in the requirements engineering field, traceability

is about understanding how high-level requirements –

objectives, goals, aims, aspirations, expectations, needs – are

transformed into low-level requirements. It is therefore primar-

ily concerned with the relationships between layers of informa-

Fig. 3. Corresponding components between informal and semi-formal

specification.

tion. From this definition, we can find that the SOFL method is

from high-level requirements included in informal specification

to low-level requirements included in formal specification. In

this process, the requirements traceability is clear in

corresponding items.

There are two steps in our inspection method through

building traceability. First, we generate the traceability

between informal and semi-formal, then semi-formal and

formal specifications. The traceability means the congruent

relationships of elements which represent the same users’

requirements in different specifications. For example, a

function in the informal specification may be correlated to a

process in the corresponding semi-formal specification. Second,

by comparing with the built traceability and CDFD, we inspect

corresponding items in different specifications together.

Because there are three specifications, we separate the

traceability into two parts to make it more clearly: (1)

traceability between informal and semi-formal specifications,

(2) traceability between semi-formal and formal specifications.

A. Building traceability between informal and semi-formal

specifications

During the first part, user’s requirements will be refined

and described more precisely. To cover as many user’s

requirements as possible, the structures in the informal

specifications are rough. They contain only three components:

functions, data resources and constraints. Because of the

partition in informal specification, the conversion to semi-

formal specification is quite flexible and mainly depends on

user’s experience. However, we can still compare

corresponding components based on structures in different

specifications as shown in Fig. 3. By making a signal between

the corresponding items – examples of components – in

different specifications, every item will get the relationship

with one or many items. We can make a checklist as shown in

Table I to build the traceability about all items clearly between

informal specification and semi-formal specification. If an item

has no traceability with other items, the item should be

removed or some items need to be added in the corresponding

specification by comparing with the same kind of items.

TABLE I. CHECKLIST ABOUT TRACEABILITY BETWEEN

THREE SPECIFICATIONS

 Component Question

Informal Specification(S1):

1 Function Is the function decomposed into sub functions

properly?

2 Is the function has the same name process in S2?

3 Data resource Is the data resource used in the corresponding

function?

4 Is the data resource evolved into the data type in S2?

5 Constraint Is the constraint associated with a function or a data
resource?

6 Does the constraint have the similar invariant in S2?

7 Is the constraint achieved in the pre- or post-

condition of a process in S2?

Semi-formal Specification(S2):

8 Constant

identifier

Is the constant identifier available and can be found

in data resources in S1?

9 Type identifier Is the type identifier needed from data resources in

S1?

10 State variable Is the state variable defined based on the type

identifier?

11 Invariant Does the invariant have the corresponding relation

with the constraint in S1?

12 Process Is the process named by the function in S1?

13 Is the process treated as a sub function in S1?

Formal Specification(S3):

14 Constant

identifier

Is the constant identifier available and can be found

in constant identifier declarations in S2?

15 Type identifier Does the type identifier exist in S2?

16 State variable Does the state variable exist in S2?

17 Invariant Does the invariant have the same meaning of

invariants in natural language in S2?

18 Process Does the process have the same name, input data,

output data in S2?

19 Does the pre- and post-condition of the process fit

the natural expression in S2?

20 Is the process treated as a sub process and is a series

of processes equal to the process in S2?

B. Building traceability between semi-formal and formal

specifications

For the second part, structures are almost the same between

semi-formal and formal specifications. We should pay more

attention about the invariants and processes. As shown in Table

I, corresponding invariant definitions will be compared with

one another to check whether their logical meanings are the

same or not. Also we need to focus on the pre- and post-

condition of processes to make the logical expression fit the

requirements written in natural language.

After generating two parts of traceability, we can inspect all

items throughout the whole requirements specifications.

C. Inspection based on traceability

To inspect errors and defects, firstly we should provide the

standard format of all data types. We can get them from the

existing publication in [1], especially about the syntax of Set

type, Sequence type, Composite type, Product type, Map type,

Union type, Process type. The key words of these types will

influence building traceability between different specifications.

For making pair reviews by two inspectors, the textual

specification and corresponding CDFD should be inspected to-

Fig. 4. CDFD of making a hotel plan.

gether. We can inspect the traceability based on building

functional scenarios provided in [10]. Let P(Piv, Pov)[Ppre,

Ppost] denote the formal specification of an operation P, where

Piv and Pov are the sets of all input and output variables. Ppre

and Ppost are the pre-condition and post-condition of operation

P, respectively. Let Ppost=C1∧D1∨C2∧D2∨…∨Cn∧Dn,

where Ci (i∈{1, 2, ..., n}) is a guard condition and Di is a

defining condition. Then, a conjunction ~Ppre∧Ci∧Di is

called a functional scenario.

To make inspectors to check corresponding items easily,

we provide functional scenarios from CDFD as a standard to

compare with both two specifications. In this situation, define

the format (input_1, input_2,…, input_n){process_1,

process_2,…, process_n}(output_1, output_2,…, output_n) as

a functional scenario from CDFD. Fig. 4 shows a CDFD about

making a hotel plan.

In this CDFD, we can get 3 functional scenarios:
(1)(user_id, password, new_password){Login, ChangePassword}

(password_success);

(2)(user_id, password){Login}(wrong_message);

(3)(user_id, password, hotel_request){Login, MakeHotelPlan}(hotel_plan).

These three functional scenarios show three different

conditions with submitting different data. When inspecting

traceability between semi-formal and formal specification, a set

of processes with same functional scenario (1), (2), (3) will be

generated, and errors about wrong data flows should be

removed.

IV. SUPPORTING TOOL

We have built a supporting tool, called the Traceability-

based Specifications Inspection Supporting Tool (TSIST), to

support our inspection method through building traceability.

The goal of building the tool is to help inspectors check

specifications more precisely, and save the traceability

information made by them for iterative inspections. The

supporting tool is implemented using Visual Studio 2012 with

language C#. Fig. 5 gives the CDFD of TSIST functions. As

Fig. 5 shows, our tool can search key words from specifications,

divide all items, then build traceability between different items

in corresponding specifications, and finally inspect specifica-

tions by comparing traceability and CDFD. The whole process

in using TSIST summarizes into three main functions below:

(1) Searching key words and inspecting syntax errors in

three specifications;

(2) Selecting items from corresponding specifications

manually or automatically;

Fig. 5. CDFD of TSIST functions.

(3) Building traceability between corresponding items in

two specifications and saving traceability information

for comparisons and iterative inspections.

A. Searching key words

TSIST provides the function to search key words in the

specification documentation. When a key word is entered in

the search column, our tool will match the key word in the

target specification and find out all eligible elements. In this

way, the user can check the syntax of target items quickly.

B. Selecting items automatically

To build traceability between two specifications, the

inspector should get all items in textual specifications first.

Obviously, we provide the manual way to add items directly.

Based on the standard format of items, the inspector can also

traverse the specification to get all items of the same

component (such as Function, Data resource, Process).

To make the component “process” as an example. Setting

the targetComponent = “process”, endFlag = “(”, breakFlag

= “;”, when reading the specifications from the beginning, the

scanner gets the targetComponent, it will repeatedly read the

next character until finding the key word endFlag. By using

this way, the inspector can get names of all processes easily.

From the structure and syntax of the component “process”, we

can find when we get the breakFlag before meeting the

endFlag, it means the process ends with the syntax

“end_process;” then the scanner will skip and try to find the

next targetComponent. By changing endFlag, we can get input

data, output data, pre- and post-condition of the target process

respectively.

C. Building traceability

After generating all items in specifications, TSIST provide

an interface to select corresponding items to build traceability

between two specifications as shown in Fig. 6. At the same

time, the traceability between informal and semi-formal

specification and the traceability between semi-formal and

formal specifications can be generated together to keep the

consistency through the whole requirements specifications.

Compared with the checklists, the inspectors can build

traceability by using our inspection supporting tool, the

traceability between corresponding specifications can be saved

and removed in iterative inspections. Through building

traceability, the pair reviews based on the textual specification

and CDFD will help inspectors check specifications and detect

defects more precisely.

Fig. 6. Interface of TSIST.

V. CASE STUDY

We have conducted a case study applying our inspection

method to the inspection of the specifications of a travel plan

booking system (TPBS). The purpose of this case study is to

show how our inspection method works through building

traceability, to learn about its performance in terms of usability

and capability of finding errors, and to investigate how the

inspection method can be well supported by TSIST.

A. Background

TPBS specifications describe a travel plan booking system,

which allows the customer to search travel information, design

his personal travel plan, and book target services (flights,

hotels, etc.). TPBS mainly includes four functions:

(1) designing the tour plan;

(2) reserving flights;

(3) making bus arrangement;

(4) booking hotels.

Fig. 7 shows the textual specifications and CDFD of TPBS.

From the informal specification to semi-formal specification,

the functions of TPBS (such as Update_User_Profile, Reserve_

for_Hotel) are listed in details, showing how the input and out-

put data flow between different processes. Data resources (such

as Tour_Plan_Information, Bus_Plan_Information) will be ch-

ecked to fit the types in the semi-formal specification. And

constraints are used to show the range of data in the process.

From the semi-formal specification to formal specification, the

natural language used in pre- and post-condition evolves into

logical expressions.

B. Building traceability

As shown in Fig. 6, we can get all items such as “Process”

in the target specification. Based on the checklist shown in

Table I, we decide where to build traceability between

corresponding items. For example, in Fig. 6, we build the

traceability between the process {ReserveForFlight} in the

semi-formal specification and a set of the processes {MakeFli-

ghtPlan, OrganizeFlightContract, ConfirmFlightContract} in

the formal specification because they realize the same

functions. Table II gives the number of items and traceability

in corresponding specifications. From this table, we can know

every item has the traceability with others and the item in the

Fig. 7. CDFD of TPBS.

TABLE II. NUMBER OF ITEMS AND TRACEABILITY

 Component Number

Informal Specification:

1 Function 11

2 Data resource 9

3 Constraint 3

Traceability between informal
to semi-formal specification

23

Semi-formal Specification:

4 Constant identifier 2

5 Type identifier 29

6 State variable 10

7 Invariant 3

8 Process 11

Traceability between semi-
formal to formal specification

55

Formal Specification:

9 Constant identifier 2

10 Type identifier 29

11 State variable 10

12 Invariant 3

13 Process 24

high level may trace to a set of items in the more formal

specification because they are more precise and smaller.

C. Inspection

After building traceability, we can check corresponding

items such as the process {ReserveForFlight} and the set of

processes {MakeFlightPlan, OrganizeFlightContract, Confirm-

FlightContract} together in the textual specifications. They will

be checked whether they are equal not only in the syntax

domain but also in the logical domain. Pair Review based on

textual documentations and CDFD helps inspectors understand

requirements easily and find errors through data flows. The

incorrect data or missing processes in TPBS can be corrected in

our supporting tool. The traceability through three specifica-

tions is saved for the iterative inspection.

VI. RELATED WORK

Many publications have affirmed that the requirements

traceability plays an essential role in software inspection.

Pinherio, Goguen et al. [8] introduced a cited tool called

TOOR to trace requirements considering both technical and

social factors. TOOR can link requirements to design

documents, specifications, code, and other artifacts in the life

cycle through user-definable relations that are meaningful for

the kind of connection being made by using both browsing and

regular-expression search.

Patricio Letelier [11] presented a traceability metamodel

integrating textual specifications with standard UML specifica-

tions, using the UML context itself. The metamodel offers a

core framework for types of entities and types of traceability

links that can be adapted to a particular UML project.

Additionally, a configuration process for requirements traceab-

ility based on the corresponding UML profile was sketched.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an inspection method through

building traceability for rigorously verifying the conformance

relationship. Inspection strategies such as Checklist and Pair

review are used to help the inspectors build traceability and

check textual specifications and CDFD together for finding

errors.

Our supporting tool can divide all items based on the

component types, build traceability and check specifications

through traceability and CDFD. We present a case study

applying our inspection method to inspect the specifications of

a travel plan booking system, to show the method’s feasibility

and capability of finding errors, and to investigate how the

inspection method can be well supported by our tool.

In the future, we will improve our supporting tool to make

it more user-friendly and support more ways of building trace-

ability and inspecting specifications.

ACKNOWLEDGMENT

I extend my most sincere thanks to my supervisor, Prof.

Shaoying Liu, who gives careful guidance and endless support

from the topic selection to the thesis final completion. His

serious and responsible spirits encourage me to work hard with

high motivation.

REFERENCES

[1] Shaoying Liu, Formal Engineering for Industrial Software Development

Using the SOFL Method. : Springer-Verlag, 2004.

[2] B. W. Boehm, Software Engineering Economics. : Prentice Hall, 1981.
[3] Shaoying Liu, John McDermid, and Yuting Chen, “A Rigorous Method

for Inspection of Model-Based Formal Specifications”, IEEE

Transactions on Reliability, vol. 59, no. 4, pp. 667-684, Dec. 2010.
[4] IEEE, 1028-2008 IEEE Standard for Software Reviews and Audits,

IEEE Computer Society, 2008.

[5] Jinghua Zhang, Shaoying Liu, “Inspection of SOFL Specifications
through Building Traceability”, Winter Workshop 2014 in Oarai, 2014.

[6] Laitenberger, Oliver, and Jean-Marc DeBaud, “An Encompassing Life
Cycle Centric Survey of Software Inspection”, Journal of Systems and

Software, vol. 50, no. 1, pp. 5-31, Jan. 2000.

[7] Yuri Chernak, “A Statistical Approach to the Inspection Checklist
Formal Synthesis and Improvement”, IEEE Transactions on Software

Engineering, vol. 22, no. 12, pp. 866-874, Dec. 1996.

[8] Pinheiro, Francisco AC, and Joseph A. Goguen, “An Object-Oriented
Tool for Tracing Requirements”, IEEE Software, pp. 52-64, Mar. 1996.

[9] Hull, Elizabeth, Ken Jackson, and Jeremy Dick, Requirements

Engineering. : Springer, 2005.
[10] Mo Li, Shaoying Liu, “Automated Functional Scenario-Based Formal

Specification Animation”, in Proceedings of the 19th Asia-Pacific

Software Engineering Conference, IEEE CS press, pp. 107-115, 2012.
[11] Patricio Letelier, “A Framework for Requirements Traceability in UML-

based Projects”, 1st International Workshop on Traceability in

Emerging Forms of Software Engineering, 2002.

