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Abstract. Message Passing Interface (MPI) is the de facto standard
for programming large scale parallel programs. Static understanding of
MPI programs informs optimizations including process placement and
communication/computation overlap, and debugging. In this paper, we
present a fully context and flow sensitive, interprocedural, best-e↵ort
analysis framework to statically analyze MPI programs. We instantiate
this to determine an approximation of the point-to-point communication
graph of an MPI program. Our analysis is the first pragmatic approach to
realizing the full point-to-point communication graph without profiling –
indeed our experiments show that we are able to resolve and understand
100% of the relevant MPI call sites across the NAS Parallel Benchmarks.
In all but one case, this only requires specifying the number of processes.
To demonstrate an application, we use the analysis to determine process
placement on a Chip MultiProcessor (CMP) based cluster. The use of
a CMP-based cluster creates a two-tier system, where inter-node com-
munication can be subject to greater latencies than intra-node commu-
nication. Intelligent process placement can therefore have a significant
impact on the execution time. Using the 64 process versions of the bench-
marks, and our analysis, we see an average of 28% (7%) improvement in
communication localization over by-rank scheduling for 8-core (12-core)
CMP-based clusters, representing the maximum possible improvement.

1 Introduction

Message Passing Interface (MPI) is the de facto standard for programming large
scale parallel programs. Paradigm-aware static analysis can inform optimiza-
tions including process placement and communication/computation overlap [8],
and debugging [27]. Fortunately, message-passing lends itself e↵ectively to static
analysis, due to the explicit nature of the communication.

Previous work in MPI static analysis produced several techniques for charac-
terizing communication [5,24,25]. Common to these techniques is the matching
of send and receive statements, which while potentially enabling interprocess
dataflow analyses, can limit coverage. More importantly, the techniques are lim-
ited in their context sensitivity, from being limited to a single procedure [5,24],
to only o↵ering partial context sensitivity [25]. Therefore, the existing techniques
do not provide tools applicable to determining the full communication graph.
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In comparison to static approaches, profiling can be e↵ective [7], but is
more intrusive to workflow. As Zhai et al. [28] note, existing tools such as KO-
JAK [20], VAMPIR [21], and TAU [23] involve expensive trace collection, though
lightweight alternatives e.g., mpiP [26] do exist. The main question we address
is whether a static analysis can provide comparable insight into the MPI com-
munication graph, without requiring the program to be executed.

Tools for understanding MPI communication have several applications. For
example, one can consider the running of an MPI program on a cluster of Chip
Multiprocessors (CMP). Here, there exists a spatial scheduling problem in the
assignment of processes to processor cores. In MPI, each process is assigned
a rank, used to determine its behavior and spatial scheduling. For example,
OpenMPI [10] supports two schedules, by-rank – where processes fill every CMP
slot before moving onto the next CMP, and round-robin – where a process is
allocated on each CMP in a round-robin fashion. Without intervention, there
is no guarantee that the communication is conducive to either schedule. This
may lead to pairs of heavily communicating processes scheduled on di↵erent
nodes. Communication between nodes, using ethernet or even Infiniband, can be
subject to latencies significantly larger than in intra-node communication. This
ine�cient scheduling can cause significant performance degradation [2,19,29].
Prior analysis allows intelligent placement to alleviate this issue.

In this work, we propose a fully context and flow sensitive, interprocedural
analysis framework to statically analyze MPI programs. Our framework is essen-
tially a forward traversal examining variable definitions; but to avoid per-process
evaluation, we propose a data-structure to maintain context and flow sensitive
partially evaluated definitions. This allows process sensitive, on-demand evalu-
ation at required points. Our analysis is best-e↵ort, prioritizing coverage over
soundness; for instance we assume global variables are only modified by compile-
time visible functions. Underpinning our analysis is the observation that for a
significant class of MPI programs, the communication pattern is broadly input
independent and therefore amenable to static analysis [5,6,11,22].

We instantiate our framework to determine an approximation of the point-to-
point communication graph of an MPI program. Applying this to programs from
the NAS Parallel Benchmark Suite [4], we are able to resolve and understand
100% of the relevant MPI call sites, i.e., we are able to determine the sending
processes, destinations, and volumes for all contexts in which the calls are found.
In all but one case, this only requires specifying the number of processes.

To demonstrate an application, the graph is used to optimize spatial schedul-
ing. An approximation is permissible here, as spatial scheduling does not impact
correctness in MPI programs. We use the extracted graph and a partitioning
algorithm to determine process placement on a CMP-based cluster. Using the
64 process versions of the benchmarks, we see an average of 28% (7%) improve-
ment in communication localization over by-rank scheduling for 8-core (12-core)
CMP-based clusters, representing the maximum possible improvement.

The main contributions of this work are:
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– A novel framework for the interprocedural, fully context and flow sensitive,
best-e↵ort analysis of MPI programs.

– A new data structure for maintaining partially evaluated, context and flow
sensitive variable representations for on-demand process sensitive evaluation.

– An instantiation of the framework, determining optimized process placement
for MPI programs running on CMP-based clusters.

2 Related Work

2.1 Static Analysis of MPI Programs

Several techniques have been proposed to statically analyze MPI programs. How-
ever, they have limitations that prevent their application to the problem de-
scribed. Noted by multiple sources are the SPMD semantics of MPI [5,18,25].
The SPMD semantics are important as they largely define the methods that can
be, and are, used to perform communication analysis.

MPI-CFG [24] and later MPI-ICFG [18,25] annotate control-flow graphs
(CFGs) with process sensitive traversals and communication edges between matched
send and receive statements. Backward slicing is performed on the pure CFG to
simplify expressions that indirectly reference process rank in the call parameter.
The lack of full context sensitivity prevents these works being applied to the prob-
lem described. However, they do highlight the need to use slicing to determine
process sensitive values and the need for an interprocedural approach.

Bronevetsky [5] introduces the parallel CFG (pCFG). It represents process
sensitivity by creating multiple states for each CFG node as determined by con-
ditional statements. Progress is made by each component until they reach a
communication, where they block until matched to a corresponding statement.
Communication is then modeled between sets, providing a scalable view of com-
munication. The complex matching process is limited to modeling communi-
cation across Cartesian topologies. Due to their proof requirements, wildcards
cannot be handled [5]. pCFG tuples are comparable with the data structure
proposed in this work, but as detailed in Section 3 we dispense with sets, and
with matching, achieving the data representation by di↵erent means. Most im-
portantly, pCFG is intraprocedural and therefore ine↵ective with real programs.

2.2 Profiling and Dynamic Analysis of MPI Programs

Profiling and dynamic analysis techniques have also been applied to MPI pro-
grams [20,21,23,26]. Targeting the same optimization as this work, MPIPP [7]
uses the communication graph, extracted via profiling, to optimize process place-
ment. This approach would compare unfavorably to a static approach achieving
similar coverage, given the cost of repeated executions on potentially scarce re-
sources.

Recognizing the burden of profiling, FACT [28] seeks to understand commu-
nication by only profiling a statically determined program slice. While reducing
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the cost of profiling, the authors of FACT note that the slicing may alter the
communication pattern in non-deterministic applications.

Dynamic approaches include Adaptive MPI [15,16], which provides a run-
time system, capable of automatic communication/computation overlap, load
balancing, and process migration. These techniques allow it to take advantage
of communication phases in the program. Given the cost of migration and need
for a runtime system, the methods described are required to overcome further
overhead to achieve better speedup. For programs that lack distinct temporal
phases of communication, this may not be possible.

3 Our Approach

In this section we explain the key elements of our approach in terms of design
decisions, data structures, and present an overall analysis algorithm. To motivate
our approach we examine a sample MPI program, presented as Figure 1.

3.1 General Principles

The basic aim of a static approach to approximating the point-to-point commu-
nication graph is to understand MPI Send calls (as in line 22 of our example).
There are four elements to this, the source - which processes make the call, the
destination - to which processes do they send data, the send count and the
datatype - from which the volume of bytes can be calculated.

1#include <mpi.h>
2int my_rank, comm_size, indata, outdata;
3MPI_Status stat;
4
5int main (int argc, char **argv) {
6MPI_Init (&argc, &argv);
7MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
8MPI_Comm_size (MPI_COMM_WORLD, &comm_size);
9indata = comm_size + 4;
10if (my_rank < 5)
11communicate ();
12if (my_rank < 6)
13indata = indata + my_rank;
14if (my_rank > 7)
15communicate ();
16MPI_Finalize ();
17return 0;
18}

20void communicate () {
21if (my_rank % 2 == 0 && my_rank < comm_size - 1)
22MPI_Send (&indata, 1, MPI_INT, my_rank + 1, 0,
23MPI_COMM_WORLD);
24else
25MPI_Recv (&outdata, 1, MPI_INT, MPI_ANY_SOURCE,
260, MPI_COMM_WORLD, &stat);
27indata = 0;
28}

Fig. 1. Example of a simple MPI program

As we can see from line 10, the call to communicate, which contains the
MPI Send can be conditional. On this basis we can say that an interprocedural
approach is essential, as an intraprocedural approach fails to capture the fact
that any process with a rank greater than 4 would not make the first call to
communicate and therefore not reach the MPI Send in this instance.

Accepting the need for full context sensitivity, there are two basic approaches
that could be employed. One could use some form of interprocedural constant
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propagation [12], within a full interprocedural dataflow analysis [14], to deter-
mine the relevant parameter values (destination, send count and datatype). How-
ever, such an approach is not without issue. Significantly, the SPMD nature of
MPI programs means the path through the program may be process sensitive (as
seen in our example). Therefore, a constant propagation approach would require
complete evaluation of the program for each intended process to determine the
processes communicating (source) at each call site. Also, even with flow sensi-
tivity, the coverage achieved by such a rigorous approach may not be enough to
provide an approximation of the communication graph.

The alternative basic approach is a static slicing, based on a partial data
flow analysis [13], that identifies the MPI Send and then evaluates at the pro-
gram point before the call, for each of the contexts in which the call is found.
While such a technique is possible and requires potentially less computation than
the previous approach [9], it su↵ers from the same weaknesses, with regard to
strictness and full reevaluation to determine the source.

Due to these issues, we choose to follow a composite approach based largely on
a forward traversal to establish interprocedural context without backtracking.
This traversal walks through the CFG of a function, descending into a child
function when discovered. This is analogous to an ad-hoc forward traversal of
the Super CFG [3], but with cloned procedures. To avoid full reevaluation, we do
not treat process sensitive values as constants and instead leave them partially
evaluated in a data structure introduced in Section 3.3. Therefore, we progress
in a process insensitive manner, only performing process sensitive evaluation
for calls and MPI statements, using our data structure to perform on-demand
slicing. To enable broader coverage, we make the approach best-e↵ort, applying
the assumption that global variables are only modified by functions visible to the
compiler. While this renders our evaluations strictly unsound, this is required to
achieve even fractional coverage.

3.2 Context, Flow, and Process Sensitivity

Focusing on the MPI Send in our example, we see that establishing definitions
with our approach requires understanding two elements; which processes enter
the parent communicate function (context sensitivity) and of those processes,
which reach the call (flow sensitivity). Due to the SPMD semantics, process
sensitivity (which processes reach a certain program point), is derived from the
context and flow sensitivities. These are handled using two related techniques.

To understand which processes call the parent function and therefore poten-
tially make the MPI Send, we introduce the “live vector”, a boolean vector to
track which processes are live in each function as we perform the serial walk.
The length of the vector is the number of processes for which we are compiling,
initialized at the main function as all true. Requiring the number of processes
to be defined entails compiling for a specific scale of problem. However we do
not believe this is a significant imposition, given the typical workflow of scien-
tific and high-performance computing. Notably, this requirement also applies to
profiling, where a new run is needed for each change in the number of processes.
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The live vector is a simplification of the context of the call for each process.
This allows for, at a subsequent assignment or call, evaluation using the live vec-
tor and flow information, rather than repeated reevaluations within the context
of the entire program. When a call is found, we generate a live vector for that
function before descending into it. This “child live vector” is generated from the
live vector of the parent function of the call and is logically a subset of those
processes that executed the parent function. The evaluation of which processes
are live in the child live vector uses the flow sensitivity technique, described next.

Within a function, which processes make a call depends on the relevant con-
ditions. We examine the CFG in a Static Single Assignment form where the only
back edges are for loop backs, all other edges make forward progress. A relevant
condition is defined as one meeting three requirements. Firstly, the basic block
containing the condition is not post-dominated by the block containing the call.
Secondly, there are no blocks between the condition block and the call block
that post-dominate the condition block. Thirdly, there exists a path of forward
edges between the condition block and the call block.

The evaluation of relevant conditions is done with regard to their position
in the CFG and the paths that exist between them. This ensures that calls
subject to interdependent conditions, as seen in line 21 of our example, can be
evaluated correctly. The definitions for the condition and its outcome can be
process sensitive, so the evaluation of the relevant conditions must be performed
separately for each process. The method by which this and the evaluation of
MPI arguments is achieved is introduced in the next section.

3.3 On-demand Evaluation

To evaluate the conditions and the arguments of theMPI Send as detailed above,
we implement a tree-based representation to hold the partially evaluated vari-
ables as our approach requires. Our representation provides the ability to per-
form on-demand static slicing, sensitive to a particular process, without repeated
analysis of the program. In fact, since only a fraction of the variables influence
the communication graph, most will not need evaluation.

For each assignment or �-node encountered, a new node of our representation
is created, or if the variable already exists, its node is modified. These nodes are
stored in either the global or the local hash tables allowing e�cient lookup and
discarding of out of scope definitions that are unreferenced by any in scope.

Each node is of one of eight types, representing all the cases that arise. Con-
stant - representing a number. SPMD - for definitions generated by operations
with process sensitive results, e.g., a call to MPI Comm rank. Expression -
represents an arithmetic expression and contains an operator and pointers to
nodes upon which to apply it. Many - handles repeated definitions to the same
variable, allowing context, flow, and process sensitive resolution. Builtin - re-
quired for built in functions (e.g., square root), contains an operator and pointer
to the node upon which it is to be applied. Iterator - identical to Constant, but
specially controlled for loop operations. Array - for handling array definitions,
see Section 3.4. Unknown - for when a definition is unresolvable.
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The node type used is defined by the node types of the operands of the
defining statement and whether a definition already exists. �-nodes are treated
as multiple definitions to a variable, resulting in a many node.

To better convey the operation of this data structure we present Figure 2,
which shows the state of indata by the end of the program described in Figure
1 (line 16). By the end of the program, indata has been defined multiple times,
but not all definitions apply to all processes. For this example, we assume the
program has been compiled for 12 processes.

MANY indata

lv:000000001111

CNST indata

lv:000000001111

Value: 0

MANY indata

my_rank < 6 (BB:7)

lv:111111111111

EXPR indata

my_rank < 6 (BB:7)

lv:111111111111

Operator: +

MANY indata

lv:111110000000

SPMD

lv:111111111111

RANK MPI_COMM_WORLD

my_rank

CNST indata

lv:111111111111

Value: 16

CNST

lv:111110000000

Value: 0

indata

(0)

(2)

(1)

(3)

(4)

(6)(5)

(7)

Fig. 2. The representation of indata at line 16 in Figure 1. lv represents live vector.

The first definition (line 9), is to add comm size to the constant 4. While
comm size is an SPMD value, because it is the same for all processes this ex-
pression can be reduced to a constant (marked (0) in Figure 2). Then after
descending into communicate for the first time, indata is redefined in line 27.
Since indata has already been defined, as well as creating a new constant def-
inition (marked (1)), a many (marked (2)), copying the live vector of the new
definition is also created, as the new definition does not apply to all processes.
Definition (2) is now the current definition stored in the hashtable. Were indata
to be evaluated at this point, processes with a rank of less than 5 would take
the right branch (to the newer definition) and evaluate indata as 0, whereas all
others would use the previous definition.

Upon returning to the parent function, indata is redefined again (line 13).
This time as its previous definition plus the rank of the process. Since the com-
ponents are not both of type constant, an expression is created (marked (4)).
This expression will combine the evaluation of the child many (marked (2))
with the rank for MPI COMM WORLD for the particular process (an SPMD
marked (3)). Again because this variable has been defined before, a many
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(marked (5)) is created, linking the old and new definitions. Note that we do not
need to copy the old definition, merely including it in the new definition with ap-
propriate pointers is su�cient. Note also that this new definition is subject to a
condition, the details of which are also associated with both the expression and
the many. The association of conditional information allows for di↵erentiation
between multiple definitions where the live vector is the same, i.e., the di↵er-
ence is intraprocedural. Finally, the program descends again into communicate,
creating another definition (marked (6)) and many (marked (7)).

3.4 Special Cases

There are a few special cases that merit further explanation:

Arrays - Viewing elements as individual variables, there is a complication
where the index of an array lookup or definition is process sensitive. Operat-
ing on the assumption that only a small fraction of elements will actually be
required, e�ciency demands avoiding process sensitive evaluation unless neces-
sary. Therefore, an array is given a single entry in the hash table (type array),
that maintains a storage order vector of definitions to that array. A lookup with
an index that is process sensitive returns an array with a pointer to this vec-
tor, its length at the time of lookup, and the unevaluated index. Evaluating an
element then requires evaluating the index and progressing back through the
vector from the length at time of lookup, comparing (and potentially evaluat-
ing) indices until a match is found. If the matched node doesn’t evaluate for this
process, then taking a best e↵ort approach, the process continues. This ensures
that the latest usable definition is found first and elides the issue of definitions
applying to di↵erent elements for di↵erent processes.

Loops - Again we take a best e↵ort approach, assuming that every loop
executes at least once, unless previous forward jumps prove this assumption
false. At the end of analyzing a basic block, the successor edges are checked
and if one is a back edge (i.e., the block is a loop latch or unconditional loop),
then the relevant conditions are resolved without respect to a specific process.
This determines whether the conditions have been met or whether we should
loop. This means that when an iterator cannot be resolved as the same for
all processes, the contents of the loop will have been seen to execute once, with
further iterations left unknown. These loops are marked so that calls inside them
are known to be subject to a multiplier. For more complex loops with additional
exits, these are marked during an initial scan and evaluated as they are reached.

The choice to only resolve loops with a process insensitive number of itera-
tions does potentially limit the power of the analysis. However, it is in keeping
with our decision to analyze serially. Parallelizing for the analysis of basic blocks
and functions inside a loop would complicate the analysis to the point where it
would be equivalent to analyzing the program for each process individually. As
we see in Section 4, this decision does not have a negative impact on our results
with the programs tested.
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Parameters - Both pass-by-value and pass-by-reference parameters are han-
dled. In the case of pass-by-value, a copy of the relevant definition is created to
prevent modifications a↵ecting the existing definition.

3.5 Overall Algorithm

Combining the elements described, we produce an algorithm for the analysis of
MPI programs, presented as Listing 1.1. The only specialization of this frame-
work required to create an analysis of point-to-point communication, is the gen-
eration of graph edges based on the evaluation of MPI Send statements. This is
achieved by evaluating the MPI Send, in the same manner as other functions,
to determine for which processes graph edges need to be generated. Then for
each of these processes, the relevant parameters (send count, datatype, and
destination), are subjected to process sensitive evaluation.

1 global_defs = ;
2
3 walker (function, live_vector, param_defs) {
4 local_defs = ;
5 for basic block in function
6 for statement in basic block
7 if is_assignment (statement)
8 [ record to global_defs or local_defs as appropriate
9 else if is_call (statement)

10 child_live_vector = live_vector
11 for live_process in live_vector
12 [ evaluate relevant conditions to this call, in the context of each process, marking false in the
13 [ child_live_vector if the process won’t make the call or the conditions are unresolvable
14 if is_mpi (call)
15 [ evaluate as appropriate
16 else if has_visible_body (call)
17 [ Generate parameter definitions based on the variables passed to the child function
18 walker (call, child_live_vector, child_param_defs)
19 [ If loop back block or additional exit, analyze conditions and adjust current basic block as appropriate
20 }

Listing 1.1. Algorithm for process and context sensitive traversal

3.6 Scalability

Scaling the number of processes results in a worst case O(n) growth in the
number of evaluations. This is due to the worst case being where all evaluations
are process sensitive, with the number of evaluations increasing in line with the
number of processes. A caveat to this is if the length of the execution path
changes with the number of processes. Specifically, if the length of the execution
path is broadly determined by the number of processes then the scalability would
be program specific and unquantifiable in a general sense. However, in such a
situation one would often expect to see better scalability than the stated worst
case, as a fixed problem size is divided between more processes, reducing the
length of the execution path.

To improve upon the worst case, process sensitive and insensitive evaluation
results are stored for each node. This includes all nodes evaluated in the process



10 Andrew J. McPherson, Vijay Nagarajan, Marcelo Cintra

of evaluating the requested node. These results are then attached to the relevant
nodes. This means that reevaluation simply returns the stored result. While
storage of these results requires additional memory, it prevents reevaluation of
potentially deep and complex trees. Since we find only a fraction of nodes need
evaluating, this does not pose a great memory issue. As we will show in Section
4.4, we achieve far better than the worst case for all the benchmarks.

3.7 Limitations

There are a few limitations to the technique, some are fundamental to the static
analysis of MPI, others particular to our design.

Pointers - The use of pointers in a statically unprovable way, with particular
reference to function pointers, can lead the analysis to miss certain definitions.
Again we prioritize coverage over soundness, neglecting the potential impact of
statically unresolved pointer usage.

Recursive Functions - We take no account of recursive functions, which
could lead to non-termination of the algorithm. Subject to the previous caveat,
recursiveness can be determined by an analysis of the call graph or as the algo-
rithm runs. The simple solution would be to not pursue placement if recursion
is detected, but it is perhaps possible to allow some limited forms.

Incomplete Communication Graphs - If the complete communication
graph cannot be resolved, it could produce performance degradation if placement
or other optimizations are pursued. However, as we see in Section 4.2, certain
forms of incompleteness can be successfully overcome. Automatically dealing
with incompleteness in the general case remains an open problem.

4 Results

The primary goal of our experiments is to evaluate the e�cacy of our framework
in understanding communication in MPI programs. To this end, we evaluate our
coverage – in terms of the percentage of sends we are able to fully understand.
Next we investigate the improvements in communication localization that are
available from better process placement, guided by our analysis. This is followed
by an evaluation of the performance improvements available from improved pro-
cess placement. Finally, we explore the scalability of the technique.

We implemented our framework in GCC 4.7.0 [1], to leverage the new in-
terprocedural analysis framework, particularly Link Time Optimization. Ex-
periments were performed using the 64 process versions of the NAS Parallel
Benchmarks 3.3 [4], compiling for the Class A problem size. We tested all NAS
programs that use point-to-point communication (BT, CG, IS, LU, MG and SP).

Spatial scheduling is considered as a graph partitioning problem. To this end
we applied the k-way variant of the Kernighan-Lin algorithm [17]. It aims to
assign vertices (processes) to buckets (CMPs) as to minimize the total weight of
non-local edges. As the algorithm is hill-climbing, it is applied to 1,000 random
starting positions, and the naive schedules, to avoid local maxima.
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4.1 Coverage Results

Table 1. Coverage results and comparison with profiling for NAS Class A problems
using 64 MPI processes.

Profiling Analysis
No. Call Sites No. Bytes No. Call Sites Correct No. Bytes

BT 12 8906903040 12 58007040 + n(44244480)
CG 10 1492271104 10 1492271104
IS 1 252 1 252
LU 12 3411115904 12 41035904 + n(13480320)
MG 12 315818496 123 104700416 + n(52779520)3

SP 12 13819352064 12 48190464 + n(34427904)

We quantify coverage by two metrics: the number of MPI (I)Send call sites
that we can correctly understand, and the the total number of bytes communi-
cated. An MPI (I)Send is said to be understood correctly if we can identify the
calling process, the destination process, and the volume of data communicated
in all the circumstances under which the call is encountered – as seen in Figure
1, the same call site can be encountered in multiple contexts. In addition to this,
each of the sends can repeat an arbitrary number of times, necessitating that
the analysis resolves relevant loop iterators. To quantify this, we measure the
total number of bytes communicated.

The coverage our analysis provides is shown in Table 1, with profiling results
for comparison. With the exception of MG, each MPI (I)Send call site is being
automatically and correctly evaluated in all contexts for all processes. This means
that our analysis is correctly identifying the calling processes, the destination
and the volume of data for every MPI (I)Send.

In CG and IS the number of bytes communicated also matches the profile
run. For these programs, the relevant loops could be statically resolved by our
framework. However, in BT, LU, MG and SP an unknown multiplier n exists.
This occurs when the iteration count of a loop containing send calls cannot be
statically determined; in the case of the four benchmarks a↵ected, the iteration
count is input dependent. As will be seen in the following section, this has no
impact on the schedule, and hence the communication localization.

In contrast, simple analysis of MG fails to determine the point-to-point
communication graph. Our analysis correctly determines the sending processes
(source) and the datatype, for each call site. However, the destination, send
count, and number of iterations are input dependent. In the case of MG, the
destination and send count depend on four input variables (nx,ny,nz,and lt).
If these variables, which determine the problem scale, are specified, then our
analysis is able to correctly evaluate each call site. With programs such as MG
where the input is partially specified, one could specify the whole input (includ-
ing the number of iterations), but this is not necessary.
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The case of MG highlights the issue of input dependency and how it can
blunt the blind application of static analysis. For programs where the commu-
nication pattern is input dependent, analyses of the form proposed in this work
will never be able to successfully operate in an automatic manner. However, by
supplying input characteristics (as would be required for profiling), it is possible
to determine the same communication graph that profiling tools such as mpiP
observe. Crucially, unlike profiling, this is without requiring execution of the
program. For the following sections, we will assume that the four required input
variables have been specified for MG, with results as shown in Table 1.

4.2 Communication Localization

In this section, we evaluate the communication localized by applying the par-
titioning algorithm to the communication graph generated by our analysis. We
compare our localization with four other policies. Round-robin and by-rank, the
two default scheduling policies; random which shows the arithmetic mean of
10,000 random partitionings; and profiling in which the same partitioning algo-
rithm is applied to the communication graph generated by profiling.

As described in the previous section, four of the programs (BT, LU, MG and
SP) have an unknown multiplier in the approximation extracted by analysis. To
see the impact of this, communication graphs for each of these benchmarks were
generated using values of n from 0 to 1,000. Partitioning these graphs yielded
the same (benchmark specific) spatial schedules for all non-negative values of n.
Therefore we can say that the optimal spatial schedules for these programs are
insensitive to n (the only di↵erence in coverage between profiling and analysis).

Figure 3 shows partitioning results for the NAS benchmarks on 8-core and
12-core per node machines. One can see from these results that of the naive
partitioning options by-rank is the most consistently e↵ective at localizing com-
munication, better than round-robin as has previously been used as a baseline [7].
In fact we see that random is more e↵ective than round-robin for these programs.
Confirming our coverage results from the previous section, and our assertion of
the null impact of the unknown multipliers, we see that our analysis localization
results match the profiling localization results for each of the programs tested,
as the same schedules are generated.

At 8-core per node we see improvement in 4 out of the 6 benchmarks. On
average 4 we see 28% improvement over by-rank. We also see that round-robin
performs equivalently to by-rank in 3 cases (BT, LU and SP), in the others it
performs worse. For 12-core per node systems we see improvement in 5 out of the
6 benchmarks. On average we see 7% improvement over by-rank. Again round-
robin significantly underperforms other strategies. In fact in 4 cases it fails to
localize any communication.

As Figure 3 shows, it is not always possible to improve upon the best naive
scheduling (by-rank). This occurs when the program is written with this schedul-

3 Requires partial input specification, see Section 4.1
4 Geometric mean is used for all normalized results.
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Fig. 3. Percentage of point-to-point communication localized to a CMP.

ing in mind and the underlying parallel algorithm being implemented is con-
ducive to it. However as the results show, analysis of the communication graph
and intelligent scheduling can increase the localization of communication.

4.3 Performance Results

While our main focus is on developing an accurate static analysis that matches
the results of profiling, we performed a number of experiments to confirm the
impact of improved spatial scheduling observed by others [7]. We used a gigabit
ethernet linked shared use cluster which has both 8-core and 12-core nodes avail-
able. We found that the impact of improved spatial scheduling was greater on
the 12-core nodes. In this configuration, the best result was with CG, where the
improved spatial scheduling resulted in 18% (8%) execution time reduction over
round-robin (by-rank). On average, across all benchmarks, the improved schedule
resulted in 5% (2%) execution time reduction over round-robin (by-rank).

4.4 Scalability Results

To confirm our assertions in Section 3.6, we compiled the benchmarks for di↵er-
ent numbers of processes. Figure 4 presents the results by comparing the total
number of nodes of the data structure evaluated during each compilation. Note
that a reevaluation returning a stored result still adds 1 to total count.

As Figure 4 shows, we achieve notably better than the O(n) worst case. This
demonstrates the e↵ectiveness of the optimizations described in Section 3.6. With
particular reference to IS and MG, we can also see the impact of the reduction
in work per process, manifesting as a reduction in the number of evaluations, as
the process specific program simplifies. Overall the scalability results are positive
for all programs, with significant improvement over the worst case.

5 Conclusions

In this work we proposed a novel framework for the interprocedural, fully con-
text and flow sensitive, best-e↵ort analysis of MPI programs. This framework
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leverages a new data structure for maintaining partially evaluated, context sen-
sitive variable representations for on-demand process sensitive evaluation. We
instantiated this framework to provide a static method for determining optimal
process placement for MPI programs running on CMP-based clusters.

Our analysis is able to resolve and understand 100% of the relevant MPI
call sites across the benchmarks considered. In all but one case, this only re-
quires specifying the number of processes. Using the 64 process versions of the
benchmarks we see an average of 28% (7%) improvement in communication local-
ization over by-rank scheduling for 8-core (12-core) CMP-based clusters, which
represents the maximum possible improvement.
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