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Abstract. Previous deterministic replay systems reduce the runtime
overhead by either relying on hardware support or by relaxing the de-
terminism requirements for replay. We propose LightPlay that fulfills
stricter determinism requirements with low overhead without requiring
hardware or OS support. LightPlay guarantees that the memory state af-
ter each instruction instance in a replay run is the same as in original run.
It reduces logging overhead using a lightweight thread local technique
that avoids synchronization between threads during the recording run.
GPUs are used to efficiently identify the memory ordering constraints
that produce the same memory states before the replay run. LightPlay
incurs low space overhead for logging as it only stores the part of log
where data races occur. During the logging run LightPlay is 20x–100x
faster than logging the total order and requires only 1% space overhead.

1 Introduction
The ability to replay a program’s execution plays an important role in developing
software. Software often fails due to bugs that are difficult to locate. To find
the root cause of the bug, developers need to reproduce the bug and observe its
manifestation. Replay systems record and reproduce program execution and this
capability has proven to be useful in debugging [8, 17, 18] and fault tolerance [4].

Many traditional replay systems [9, 5] record a multi-threaded program’s in-
put and the order of shared-memory accesses to achieve deterministic replay on
a multiprocessor system. However, logging the shared-memory accesses incurs
huge overhead since the execution of these memory accesses needs to be seri-
alized. Many techniques have been proposed to reduce the overhead of logging
and replaying shared-memory accesses on multiprocessors. Most of them require
hardware modifications to record cache coherence events [15, 6, 13, 20, 22, 14].
LEAP [7] is a software replay system that uses JAVA source code information
to reduce the locking overhead used for serializing memory accesses. To make
replay more accessible, other efforts have been directed towards reducing the
logging overhead using purely software techniques. These techniques relax the
determinism requirements so that less information needs to be recorded during
the logging phase. Many of the software replay systems [19, 12, 16, 1, 24, 21] guar-
antee external determinism or output determinism. External determinism only
ensures reproducing identical program state at certain execution points in the
replay run while output determinism just promises that the same values are sent
to output devices such as screens, networks, and disks. There are also software
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replay systems [11, 10] that target even more relaxed determinism requirements,
e.g., failure determinism. With failure determinism, they only guarantee that
the same error states are produced in replay runs. For these software replay sys-
tems, while the output replay may reproduce the same results, the root cause of
the error may not be preserved or even reproduced. Therefore, if we use a replay
run for debugging, we may not be able to find the original root cause of the bug.

Figure 1 shows a code example where

Thread 1 Thread 2
1 A = 2; 1 B = 2;
2 . . . 2 C = add(A,B);
3 A = 3; 3 print(C);

Fig. 1. Example: failures may not be
reproduced under relaxed determinism.

the failure may not be reproduced. In the
example, thread 2 collects values from all
threads, calculates the summation, and
prints the result. Consider a program run
that has the following execution order:
T1:1, T2:1, T2:2, T1:3, and T2:3, but the
output is 5 due to a bug inside function
add(). To replay this execution, an output deterministic replay system may pro-
duce an execution in which the output is still 5, but the execution order is T1:1,
T1:3, T2:1, T2:2, and T2:3. 3 plus 2, however, is 5 and thus the replay run does
not show any fault. Developers cannot find the bug using this replay run.

In this paper, we propose LightPlay, which is a deterministic replay system
designed to log and replay multithreaded programs that are executed in parallel
on multiprocessors. The system does not require any modification to the hard-
ware or the OS. LightPlay delivers a stricter determinism requirement - internal
determinism. We guarantee that the internal memory state after each instruction
instance in a replay run is the same as in the original run. By keeping the inter-
nal states the same, we can ensure that the root cause of the bug is unchanged
in the replay run. However, achieving internal determinism using prior software
techniques is costly. Recording either total orders [9] or load values [2] requires se-
rializing shared memory accesses, atomic execution of instrumented code, and/or
data privatization. We have developed a set of techniques to make LightPlay effi-
cient. In LightPlay, the logging overhead is reduced via use of lightweight thread
local technique which is designed to avoid additional synchronization between
threads in the recording runs. Since the thread interactions are not recorded,
it is necessary to search for an equivalent multi-threaded execution before the
replay run. To enable searching, execution is divided into timeslices and values
read and written by shared-memory accesses during each interval are roughly
recorded at runtime without serializing the accesses. In this way, we reduce the
logging time by migrate the runtime overhead from the recording run to the
replay run. To further improve the search performance, we use GPUs to perform
the search in parallel. The GPU uses recorded values for a slice to search for
an ordering of shared-memory accesses that produces the same memory state.
The ordering recovered by the GPU is then saved and used during deterministic
replay. Our experiments show that LightPlay is 20x–100x faster than logging
the total order in the logging run and requires only 1% space overhead. The
search procedure on the GPU is also shown to be efficient, causing less than 30x
slowdown for most PARSEC benchmarks.
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2 The LightPlay System

LightPlay is a deterministic replay system that records and reproduces execu-
tion of multithreaded applications. It uses a purely software logging mechanism
which, unlike other software solutions that introduce high runtime overhead, is
very light-weight. The recorded trace is composed of a set of incremental check-
points. Therefore, the replay can be begun from any point in the execution.
However, the trace captured via logging cannot be directly used to reproduce
the execution as thread interactions are not recorded in order to achieve light-
weight logging. This issue is addressed by searching for an execution that has
no observable difference from the original execution. To perform the search ef-
ficiently, we propose to exploit the massive parallelism offered by GPUs. After
finding the desired execution, it is replayed using a uniprocessor.
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Fig. 2. System overview.

Figure 2 shows the four steps of LightPlay. First, the logging of each thread
in the multithreaded application is performed independently via incremental
checkpoints. The program’s execution is divided into intervals referred to as
time slices such that they contain nearly equal numbers of checkpoints. In the
second step, the system uses GPUs to search for a correct checkpoint ordering
before replaying the execution. The search can be done offline or it can be done
online (i.e, as the program executes on the CPUs, the GPU can search for the
ordering). In step three, the system infers the thread schedule on a uniprocessor
that reproduces the execution. Checkpoint ordering sometimes does not lead to a
correct replay. If this happens, in step four, the system uses the error information
to adjust the thread schedule. The third and fourth steps are repeated until a
correct replay is achieved.

2.1 Logging
Our logging mechanism is designed to be both lightweight (i.e., it introduces lit-
tle execution time overhead) and entirely implemented in software. Traditionally,
to record a multithreaded execution without hardware support, synchronization
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points are injected for collecting: (1) ordering of shared memory accesses (i.e.,
thread schedule); and/or (2) input and output values of shared memory accesses.
This additional synchronization introduces huge runtime overhead. Our logging
mechanism collects neither the ordering nor the accurate input/output values of
shared memory accesses. Instead it records each thread independently and only
inserts lightweight incremental checkpoint sites to record the program state be-
fore and after (although not necessarily immediately before/after) shared mem-
ory accesses. We then search for an equivalent execution that produces exactly
the same values at the checkpoints when performing replay.

Thread 1 Thread 2

A = B = 0;
. . .

record B; record A;
A = B + 1; C = A + 1;
record A; record C;

. . .
record A, C;

Fig. 3. Example showing
Checkpoints.

ss = ++slice size; // get the current slice size
if ( ss == T+1 ) { // first thread reaching a new slice

wait current slice finish();
checkpointing();
slice size -= T;
notify other threads();

}
if ( ss > T+1 ) // other threads wait if the slice is full

wait();
// shared memory access here;

Fig. 4. Timeslicing code.

Inserting optimistic checkpoints. LightPlay introduces lightweight check-
points using PIN for quick prototyping (static insertion can also be used). The
checkpoints are inserted at: (1) before/after each shared memory accesses; and
(2) after each time slice. Checkpoints are added before (after) each shared mem-
ory access to record the state of the read (written) memory location. We treat
all memory accesses other than accesses to the stacks or thread local storage as
potentially shared memory accesses. In the example given in Figure 3, we record
B & A before the two memory accesses and A & C after the accesses. The recorded
values may not equal the input and output values of the shared memory accesses
since we do not perform the original memory access and their recording atom-
ically. This optimistic approach is used for reducing overhead. In vast majority
of the cases the values will be correctly recorded and in the few cases where
they are not, step four of our approach will account for them. Checkpoints are
also inserted to record the program state at the end of each time slice to enable
ordering of the writes before the end of each time slice. We only record the state
of memory locations that have been updated. For example, in Figure 3, A & C

are recorded at the end of the time slice since they have been updated.

Timeslicing. All threads need to be synchronized at the end of each time
slice. This synchronization can be done with the use of barriers, as shown in
Figure 5(a). However, barriers may greatly slowdown the execution due to re-
sulting stalls. In addition, using hand coded barriers may cause imbalance in
time slices, that is, different time slices may have different number of shared
memory accesses, making checkpoint ordering costly for large time slices. Our
timeslicing scheme avoids using barriers and creates timeslices of equal size. At
the end of each timeslice, we use one thread to finish the timeslice and allow the
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other threads to continue until encountering new shared memory accesses (see
Figure 5(b)). Figure 4 shows the pseudo-code of our timeslicing implementation.
Code is inserted before each shared memory access to divide the execution into
time slices that contain equal number (i.e., T) of shared memory accesses. The
increment (i.e., ++) and compound assignment (i.e., -=) operators in the exam-
ple are made to be atomic using the atomic fetch-and-add instructions provided
in the x86 instruction set. This ensures if a thread grows the slice size beyond
T, it waits until the current slice is completed. This improves performance over
using barriers since a thread can continue to perform local memory accesses even
when another thread is finishing the current time slice.
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Fig. 5. Barrier vs. our slicing implementation.

Reducing overhead of logging values. Value logging can incur huge space
overhead. For example, logging the streamcluster benchmark [3] will produce
over 10GB of trace per minute. If the trace is constantly dumped onto a disk,
logging performance suffers. Therefore, instead of keeping value logs for all slices,
we only keep logs for the time slices that have data races. If there is no data
race in the slice, the slice can be replayed with any thread schedule. We only
need to store two numbers in the log file, each number indicating the number
of shared accesses performed by a thread. This optimization does not cause any
information loss since all memory accesses in the rest of the time slices can be
viewed as local memory accesses which do not require logging. This optimization
greatly reduces the trace size since most time slices usually do not have any data
race. To further improve performance, we create separate threads to check the
existence of data race in parallel with the program execution. Thus, the overhead
of data race checking is removed from the critical path of the program execution,

2.2 Checkpoint Ordering
Finding the checkpoint ordering not only reproduces the execution, but it can
also help users debug their programs because it helps in understanding of cross-
thread interactions, i.e., shared-memory dependencies. We propose to use GPUs
to accelerate the search for the correct ordering. The search is performed one
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timeslice at a time. During the search, we optimistically assume that each shared
memory access and the checkpoints around it were executed atomically. In other
words, we treat the checkpoints before and after each shared memory access as
one memory instruction, which reads the memory locations recorded before the
access and writes the locations recorded after the access. The GPU searches for
an ordering of such memory instructions that correctly produces the program
state at the end of the slice, which is recorded by the checkpoints. The resultant
ordering should satisfy the ordering in each thread in the original execution. The
detail of using GPUs for searching will be elaborated in Section 3. The search
for the ordering can be done online and offline.

During the above search we optimistically assume that shared memory access
and the checkpoints around it were executed atomically. However, this is not the
case because we do not enforce atomicity during the logging phase. As a result,
we might not be able to find a correct ordering in some cases or the ordering
found may not lead to a correct replay. However, this situation is rare and when
it does arise, it is handled by fixing the replay as described later in Section 2.4.

2.3 Replay

foreach checkpoint pair (x, y) in sorted checkpoint list {
i = the memory instruction associated (x, y);
perform i;
if the output values match y {

// succeed
update the memory;

} else {
// replay fails
return error;

}
}

Fig. 6. Pseudo-code for replaying.

Once we obtain the checkpoint ordering, we can reproduce the execution of
the time slice on a uniprocessor (see Figure 6). Recall that we treat the check-
points before and after each shared memory access as one memory instruction in
the searching. Therefore, each element of sorted checkpoint list is a check-
point pair. During replay, we enumerate the checkpoint pairs according to the
ordering and execute the memory instructions associated with the checkpoint
pairs. If the output values match the recorded program state after the instruc-
tion, we have successfully replayed the instruction and go to the next pair of
checkpoints. Otherwise, the replay has failed and our system will try to fix the
replay as described in the next section. If all instructions are replayed success-
fully, then we have correctly reproduced program behavior via an equivalent
execution. The original and equivalent executions produce the same program
state at the end of each time slice. In each thread, the two executions reach the
checkpoints in the same order and produce the same values. Compared to previ-
ous software-based replay systems such as DoublePlay [19], the determinism we
achieve is more strict since they achieve external determinism (i.e., the orders of
system calls and program states at the end of each timeslice are identical).
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function fix ordering(checkpoint pair(x, y)){
i = the associated memory instruction;
foreach checkpoint pair (s, t) after (x, y){
j = instrn associated with (s, t);
if ( t updates the location in x and
j can be moved before i ) {
perform i using the values in t;
if output values matches {

move (s, j, t) before i;
return Succ;

}
}

}
foreach checkpoint pair (s, t) {
j = instruction associated with (s, t);
if ( t matches y and
j can be moved after i ) {
move (s, j, t) after i;
return;

}
}
return Fail; }

Fig. 7. Fixing the instruction ordering in
the presence of mismatched output values.

foreach ordering in ordering list {
i = first memory instrn in instr list;
while (i in instr list) {

do {
if i not in ordering {

find checkpoint pair (x, y)
associated with i;

insert i after x in ordering;
} else {

move i to the next position
in ordering;

}
} while (i break the def-use chain

in ordering and
i is before y);

if (i inserted successfully)
i = next instrn in instr list;

else
i = previous instrn in instr list;

}
if (all instrns inserted successfully)

return ordering;
}

Fig. 8. Searching instruction ordering
when no checkpoint ordering is found.

2.4 Fixing the Ordering

Since we do not enforce the atomic execution of each shared memory access and
its checkpoints, we may not be able to correctly reproduce the execution in the
previous steps. There are two types of errors that might occur: (1) a checkpoint
ordering can be found but the output values of a replayed instruction do not
match the values stored in the subsequent checkpoint; and (2) no checkpoint
ordering can be found. Next we describe how to fix the replay in each case.

Figure 7 shows the algorithm for fixing the memory access ordering when
the first case described above arises. There could be two reason behind this:
(1) another thread updates the input memory locations immediately before the
misreplayed instruction; and/or (2) another thread overwrites the output mem-
ory locations immediately after the misplayed instruction. In the first case, we
examine all subsequent memory instructions to see if they write to the input
memory location. If another instruction does and can be moved before the mis-
replayed instruction without breaking the existing def-use chain, we try moving
it before the misreplayed instruction. If the new output values matches, we then
get the correct ordering. Similarly for the second case, we can try moving an-
other instruction immediately after the misreplayed instruction. If the ordering
cannot be fixed, the method presented next handles the situation in which no
checkpoint ordering can be found.

When no checkpoint ordering can be found, we relax the condition for order-
ing searching by treating each checkpoint as an independent memory instruction.
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If the checkpoint is set before a memory access, it is considered a read. Other-
wise it is considered a write. We then send the new set of memory instructions
to the GPU for searching ordering. Because in the new search we give up the
assumption that a memory access and its associated checkpoints are executed
atomically, the position of each memory access in the resultant ordering may
not be inferred directly. Figure 8 shows the algorithm to search the ordering
of all shared memory accesses given the ordering of checkpoints. The algorithm
tries to insert each memory access into positions between the two associated
checkpoints until a correct ordering of the shared memory accesses is found.

2.5 Minimal Constraints Construction

Our search algorithm on the GPU is designed to find all correct orders of shared
memory accesses. With the information, we are able to identify a minimal set
of memory ordering constraints, which can help programmers understand the
bug and enable fast parallel replay. We use a simple efficient method to extract
minimal constraints between memory instructions by knowing all correct possible
orderings for them in a timeslice. Instruction ordering within each thread applies
the first set of constraints to the memory instructions. We also consider one of all
correct permutations as the reference correct ordering. The sufficient condition
for two memory instructions from different threads to be dependent upon each
other is that they access the same memory region and at least one of them
writes. For pairs of memory instructions that satisfy this condition, if in all the
correct orderings the same pattern is observed, we introduce this pattern as
the constraint. Otherwise, we introduce the constraint between two instructions
using the reference correct ordering.

3 Searching for Ordering via GPUs
We use GPUs for searching the correct checkpoint ordering since the massive
parallelism of GPUs is a good fit for searching. The step in Section 2.2 requires
that we find the ordering of checkpoint pairs. We begin by treating the check-
points before and after each shared memory access as one memory instruction.
We need to find an ordering of such memory instructions that correctly produces
the program state at the end of the slice. Besides, the resultant ordering should
satisfy the ordering in each thread during the original execution. The step in
Section 2.4 requires that we find the ordering of individual checkpoints but all
the rest remains the same. Therefore the problem we need to solve on the GPU
is, how to identify the correct ordering of a set of memory instructions given:
(1) the input/output values; (2) the final program state; and (3) the instruction
ordering within each thread. To perform searching, we first transfer the data
regarding the time slice to the device memory and then each GPU thread works
on a different ordering to see if that ordering works for the slice. Because of the
massive parallelism available on the GPU, this step is done more efficiently on
the GPU. Finally the correct ordering found is transferred to the host.

3.1 Ordering Search

The following three-step procedure is performed on each GPU thread to find
correct ordering of memory instructions. Given a time slice, we first generate all
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permutations of the memory instructions on the GPU and each GPU thread is
assigned one permutation. Second, the thread emulates the memory instructions
using the ordering indicated by the permutation. Finally, we verify the program
state with recorded state. The details of this procedure are given next.

Generating the permutation. A unique permutation of the memory in-
structions in a given slice is created according to the GPU thread ID. When
the algorithm creates the unique permutation, it respects the instruction or-
dering within each thread. In other words, our algorithm guarantees that the
instruction orderings in the generated permutations match the recorded local
instruction orderings. In this way, we eliminate most incorrect permutations of
instructions in the generation step, which increases available GPU resources for
each permutation, allowing handling of bigger slices with more instructions.

The slice information is stored in three arrays: instr list, cpu tid list, and
thread size. Array instr list stores the instruction IDs. In a time slice, instructions
are sorted by their thread IDs and numbered from 1 (as shown in Figure 9(a)).
Array cpu tid list contains the thread ID of each instruction and thread size keeps
the number of instructions in each thread. The number of possible permutations
is stored in perm count, which is initially set by the following equation where T
is the number of threads and slice size is the number of instructions in the slice.

perm count =
slice size!∏T

i=0(thread sizei!)

Figure 9(a) shows a recorded slice with two threads. In the example, thread
1 contains three instructions numbered from 1 to 3 and thread 2 contains two
instructions numbered 4 and 5. Figure 10 gives all the permutations generated
by our algorithm. We can see that all permutations match the recorded local
instruction orders. Figure 10 shows the step-by-step procedure of generating
a permutation on GPU thread 4 using our algorithm. Each step removes an
instruction from thread 1 or 2 and assigns it to my perm. The procedure ends
when all instructions are assigned to my perm.

One possible way to create all permutations is to create them on the CPU
once and then transfer them to the GPU. In this way, aside from the initial
workload for moving the permutation table, the number of memory accesses on
the GPU increases enormously, degrading the performance. In our approach,
each thread creates its own permutation by using its own registers and shared
memory and therefore no time is wasted on memory accesses.

Emulating the instructions. The given memory instructions are emulated
in the GPU memory. Figure 11 shows how the instructions are emulated. Exe-
cution of each instruction is emulated on an array of registers assigned to the
thread. Memory instructions are verified one by one. If the instruction is a write,
the emulation array (EmuMeM) will be updated using the recorded value. If the
instruction is a read, the emulation array is searched for the corresponding value.
For each read, we check if the values gotten from the emulation array matches the
recorded values. If not, this permutation is wrong and the thread will be killed.
At the end, a final memory state is created based on the ordering corresponding
to the permutation.
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CPU Thread 1 CPU Thread 2
I1→I2→I3 I4→I5

(a) A recorded slice with two CPU threads.

GPU Thread ID Permutation

0 I1→I2→I3→I4→I5
1 I1→I2→I4→I3→I5
2 I1→I2→I4→I5→I3
3 I1→I4→I2→I3→I5
4 I1→I4→I2→I5→I3
5 I1→I4→I5→I2→I3
6 I4→I1→I2→I3→I5
7 I4→I1→I2→I5→I3
8 I4→I1→I5→I2→I3
9 I4→I5→I1→I2→I3

(b) Generated permutation on each GPU thread.

Fig. 9. Example of generated permutations.

Iteration Thread 0 Thread 1 rank perm count instr list cpu tid list my perm

Init. I1→I2→I3 I4→I5 4 10 {1,2,3,4,5} {0,0,0,1,1} {}
#0 I2→I3 I4→I5 4 6 {2,3,4,5} {0,0,1,1} {I1}
#1 I2→I3 I5 1 3 {2,3,5} {0,0,1} {I1,I4}
#2 I3 I5 1 2 {3,5} {0,1} {I1,I4,I2}
#3 I3 φ 0 1 {3} {0} {I1,I4,I2,I5}
#4 φ φ 0 0 {} {} {I1,I4,I2,I5,I3}

Fig. 10. Permutation generation on GPU thread 4.

Verifying the final state. Finally the contents of emulation array are com-
pared with the recorded final state of the time slice. If they do not match, the
permutation does not work and the thread is killed. If there is a match, the
permutation indicates a correct order of shared memory accesses is transferred
back to the CPU.

3.2 Optimizations

Slice refinement. To reduce the search space, we apply two levels of refinements
to a slice. In the first level of refinement, we remove the local memory accesses
from the slice. The second level of refinement splits a big slice into smaller ones
to further reduce the searching overhead.

Data transfer. To improve the data transfer performance, multiple CUDA
streams should be used. Instead of one, multiple time slices of instructions are
processed in parallel with multiple streams. By enqueueing operations of multi-
ple streams in a breadth-first manner, data transfer and searching (i.e., kernel)
are performed concurrently. Overlapping of host-device data transfer and kernel
execution accelerates the GPU algorithm by improving the throughput. For fast
copying of results back to the CPU, we use the host zero-copy memory to hold
them. Since the result is accessed just once during the kernel call, using zero-
copy method instead of copying the data from the GPU global memory to the
CPU memory greatly improves the performance. Since each GPU thread ID in-
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Fig. 11. Flowchart of verifying an ordering.

dicates a specific ordering, we only need to store the thread IDs in the zero-copy
memory, which further reduces the data transfer overhead.

4 Evaluation
To evaluate our LightPlay we conducted experiments by running PARSEC bench-
mark suite [3] on a machine with twelve Intel i7 processors (3.20GHz) and two
NVIDIA GeForce GTX 780 cards. Most PARSEC benchmarks (except Blacksc-
holes) have data races between threads. We used the large input set provided
with the PARSEC benchmarks for evaluation. All PARSEC benchmarks were
run using 4 threads unless specified otherwise. We used two GeForce GTX 780
graphic cards for the experiments with CUDA driver version 5. We used the
constant memory on the GPU to store the slices. Accesses to constant mem-
ory, unlike regular global memory, are cached. During GPU kernel launches, we
used shared memory and registers to improve performance as much as possible.
Considering the fact that GeForce GTX 780 has around 48 KBytes of shared
memory, we had to choose maximum possible size of a slice so that block size
be a multiple of warp size and also each thread block can have a suitable quota
of shared memory for operations. We selected 32 as the block size of each GPU
kernel call and it confined maximum possible slice size to 18. In the experi-
ments, each GPU uses at least two streams to maximize overlapping between
data transfer and kernel execution.

4.1 Logging Performance

Figure 12 shows the logging performance of LightPlay compared to total or-
der recording. Total order recording is implemented by atomically executing an
memory instruction with the corresponding recording instructions. We can see
that LightPlay is faster than total order recording by at least a factor of 20x.
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Fig. 12. Logging performance over total order recording.

Benchmark LightPlay Total Order Recording

blackscholes 2,624 649,343
bodytrack 10,749 2,577,869
canneal 16,002 3,948,534
dedup 39,729 9,817,656
facesim 315,683 78,124,661
ferret 22,609 5,584,933
fluidanimate 18,311 4,458,619
freqmine 51,016 12,621,886
raytrace 363,978 89,987,985
streamcluster 193,901 5,535,742
swaptions 11,523 2,850,757
vips 34,882 8,632,856
x264 8,155 2,005,157

Table 1. Log size (KB) of LightPlay and Total
Order Recording.

Benchmark Percentage

blackscholes 0.0000%
bodytrack 0.0062%
canneal 0.0019%
dedup 0.0015%
facesim 0.0000%
ferret 0.0011%
fluidanimate 0.0024%
freqmine 0.0002%
raytrace 0.0007%
streamcluster 0.1460%
swaptions 0.0006%
vips 0.0004%
x264 0.0010%

Table 2. Percentage of slices
with data races.

Table 1 lists the log size of LightPlay and total order recording. Compared to
total order recording, LightPlay does not need to record the trace for all memory
instructions. We only record values for slices which contain data races. As shown
in Table 2, all benchmarks contain less than 0.002% slices that have data races.
Thus, our log size is significantly smaller than that of total order recording. We
observed reduction in the log size of over two orders of magnitude.

4.2 Search Performance

Figure 13 shows the search performance for most PARSEC benchmarks (except
blackscholes and streamcluster) using GPUs. In the experiment, we run the
benchmarks using 2, 4, and 8 CPU threads. The slowdowns were measured over
the original execution time of the same benchmarks. We can see that for most
benchmarks, the slowdown caused by the search is below 30x. We do not show
blackscholes in the figure since it has no slice with data races. The search
performance for streamcluster is 1000x 2000x because its trace contains 673K
slices. The performance for streamcluster is still acceptable compared to other
search-based replay systems.
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Fig. 13. Search performance using GPU.
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Fig. 14. Search performance compared
to a CPU implementation.

In Figure 14, we compare our search performance with a CPU implementa-
tion, which runs a similar algorithm. The GPU performance was measured by
using 2 GPUs, each with 4 streams. The host-pinned memory was used to help
transfer data to the GPUs. We used 8 threads for the CPU implementation.
Compared to the CPU implementation, our GPU implementation is on aver-
age 28x faster, which demonstrates GPU is a good platform for performing the
search. Figure 15 shows a breakdown of the execution time of the GPU kernel.
For all benchmarks, over 96% of time is spent on computation. Therefore, our
GPU implementaiton has very high computation to data transfer ratio.
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Fig. 15. Breakdown of GPU kernel exe-
cution time.
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Fig. 16. Percentage of slices that need to
be fixed.

4.3 Fixing the Order Performance

Figure 16 shows the percentage of slices that need to be fixed after the search.
For all benchmarks, only less than 1.5% of slices require the fixing procedure.
The swaptions benchmark shows an empty bar since it does not have any slices
requiring order fixing.

Figure 17 shows the performance of the fixing procedure. The slowdowns
were measured over the original execution time of the same benchmarks. The
fixing procedure causes less than 2x slowdown for most benchmarks except
streamcluster. It takes much less time than the search. For streamcluster,
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Fig. 17. Performance of order fixing.
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Fig. 18. Performance of constructing the
minimal ordering constraints.

the fixing procedure causes around 18x slowdown since it has more than 800
slices that need to be fixed.

4.4 Constructing Minimal Ordering Constraints
Figure 18 shows the performance of constructing the minimal ordering con-
straints. The minimal ordering constraints were constructed on the CPU. We
can see that for most benchmarks, the slowdown caused by the construction
is below 25x, which costs less than the search procedure. The constraint con-
struction for streamcluster takes longest time, causing 788x slowdown. This is
because its trace contains 673K slices. The step of constructing minimal ordering
constraints is optional since the constraints are not necessary for replay.

5 Conclusion

We presented a software solution to record and replay multithreaded programs.
Our solution does not require recording shared-memory dependences. Each thread
only records its own memory instructions locally. In the replay run, GPUs are
used to quickly identify the correct total order of shared memory accesses. In
the recording phase, memory accesses are organized in time slices to reduce the
search space. To reduce the logging overhead, the traces for time slices are se-
lectively saved and the checkpointing at the end of a time slice is done using
a parallel thread. The experiments show that logging overhead is very low and
GPUs are much faster than CPUs in building correct ordering of shared accesses.

References

1. Gautam Altekar and Ion Stoica. Odr: output-deterministic replay for multicore
debugging. In SOSP, pages 193–206, 2009.

2. Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray,
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