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Abstract. Dynamic languages are praised for their flexibility and ex-
pressiveness, but static analysis often yields many false positives and
verification is cumbersome for lack of structure. Hence, unit testing is
the prevalent incomplete method for validating programs in such lan-
guages.

Falsification is an alternative approach that uncovers definite errors in
programs. A falsifier computes a set of inputs that definitely crash a
program.

Success typing is a type-based approach to document programs in dy-
namic languages. We demonstrate that success typing is, in fact, an in-
stance of falsification by mapping success (input) types into suitable logic
formulae. Output types are represented by recursive types. We prove the
correctness of our mapping (which establishes that success typing is fal-
sification) and we report some experiences with a prototype implemen-
tation.

1 Introduction

Dynamic languages like JavaScript, Python, and Erlang are increasingly used in
application domains where reliability and robustness matters. Their advantages
lie in the provision of domain specific libraries, flexibility, and expressiveness,
which enables rapid prototyping. However, massive unit testing with all its draw-
backs is the primary method of discovering errors: static analysis is often not
applicable because it either yields many false positives or restricts the expres-
siveness. Verification is feasible but cumbersome (see for example the JavaScript
formalization effort [3, 6]). Moreover, it requires a major effort.

Unit testing with good code coverage is not straightforward to achieve, either.
As the development of meaningful unit tests is also cumbersome and time con-
suming, the lack of static analyses that permit error detection prior to execution
is one of the major drawbacks of dynamic languages.

Classical static analyses and type systems guarantee the absence of a par-
ticular class of errors: the program cannot go wrong. Imposing such a system
on a dynamic language deprives it of its major attraction for certain program-
mers: the ability to write code without being restricted by a formal framework.
Even suggesting such a framework would come close to treason. Furthermore,
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programmers are confused by false positives or error messages they do not under-
stand [2]. However, an analysis that only reports problems that would definitely
lead to an error during execution could be acceptable. This point of view leads
to the idea of a success typing.

In a standard type system, the typing F : τ1 → τ2 means that an application
of F to an argument v of type τ1 yields a result of type τ2 if F (v) terminates
normally. If type checking for the system is decidable, then there are programs
which do not lead to type mismatches when executed, but which are rejected
by the type system. A trivial example is a conditional that returns values of
different types in its branches, but semantically it is clear that only the first
branch can ever be executed.

In contrast, a success type system guarantees that for all arguments v not of
type τ1, the function application F (v) leads to a run-time error (or nontermina-
tion). For an argument v of type τ1, success typing gives the same guarantees as
traditional typing: F (v) ∈ τ2 if it terminates normally. By necessity, the guar-
antee of the run-time error is also an approximation, but success typing must
approximate in the other direction as a standard type system. Hence, the “stan-
dard part” of a success type usually gives a weaker guarantee than a standard
type. In model checking terms, a standard type system performs verification
whereas success typing seems related to falsification [1]: its goal is the detection
of errors rather than proving the absence of them.

1.1 Success Typings in Erlang

Erlang is a dynamically typed functional programming language with commer-
cial uses in e-commerce, telephony, and instant messaging. Besides the usual
numeric and string types, Erlang includes an atom data type for symbols and
tuples for building data structures.

Lindahl and Sagonas [10, 14] designed a success typing system for Erlang
which infers types with a constraint-based algorithm. Types are drawn from
a finite lattice that encompasses types for various atoms (symbols, numbers,
strings, etc), functions, tuple and list constructions, unions, and a type any that
subsumes all other types. One of the major goals of their approach is the ability
to automatically generate documentation for functions from the inferred success
types. This goal requires small, readable types, which are guaranteed by the
finiteness of the lattice. Types for data structures are made finite by cutting off
at a certain depth bound. A concrete example shows where this boundedness
leads to approximation.

Many Erlang programming idioms rely on named tuples, that is, tuples where
the first component is an atom and the remaining components contain associ-
ated data as in {book,”Hamlet”,”Shakespeare”}. One can view named tuples
as named constructors: book(”Hamlet”,”Shakespeare”). Named tuples can be
nested arbitrarily and created dynamically.

Lindahl and Sagonas’ algorithm misses some definite errors based on nested
named tuples, as can be seen by the following example. Here is an implementation



of a list length function returning the zero constructor and succ constructor
instead of the built-in integers.1

length ( [ ] ) −> { zero} ;
length ( [ |XS ] ) −> {succ , length (XS)} .

The Dialyzer2 infers the following success type for length:

length : [any] → zero ∪ succ(zero ∪ succ(zero) ∪ succ(any))

The argument part of the success type, [any], describes that applying length to
a non-list argument yields an error and applying it to a list of arbitrary content
might succeed or fail. The result part describes the return value as either zero or
as a nested tuple consisting of succ and any value. The argument part is exact:
There is no argument of type [any] for which length fails. However, the analyzer
restricts tuples to a nesting depth of three levels.

To illustrate the problem with this approximation, consider the function
check that pattern matches on a nest of named tuples, which cannot be created
by the length function. Applying the check function to the result of length

yields a definite error. However, the standard setting of the Dialyzer does not
detect this error.

check ({succ , {succ , {succ , { foo}}}} ) −> 0 .
t e s t ( ) −> check ( length ( [ 0 ,0 ,0 ,0 ] ) ) .

1.2 Our Approach

We focus on errors that include the creation and destruction of data structures
and thus consider programs that manipulate constructor trees, only. Our ap-
proach describes input type and output type of a function with different models.
A success typing of a function comprises a recursive type describing the possi-
ble outputs and of a crash condition as a logical formula whose models are the
crashing inputs of the function. This approach yields a modular definition of
success typings.

Contributions

– We propose a new formally defined view of success typing for a language
with data structures. We represent the input and output types of a function
differently and thus obtain a modular approach.

– Our approach is correct. We show preservation of types and crash condition
during evaluation as well as failure consistency (i.e., if our analysis predicts
a crash, the evaluation crashes definitely).

– We give a prototype implementation of our approach.

1 The left-hand side pattern [] matches the empty list and the pattern [ |XS] matches
a list with arbitrary head and tail bound to XS.

2 The DIscrepancy AnalYZer for ERlang programs, an implementation of Lindahl and
Sagonas’ algorithm. http://www.erlang.org/doc/man/dialyzer.html



Outline In Section 2 we define syntax and semantics of a constructor-based lan-
guage. We introduce types and crash conditions for expressions of this language
in Section 3 followed by an analysis that assigns types and crash conditions to
expressions. Afterwards, we show show the correctness of the analysis. We dis-
cuss practical issues of our approach in Section 4. In Section 5 we discuss related
work and conclude in Section 6.

An extended version of this article, including proofs, is available online [8].

2 Language

We illustrate our approach using a higher-order call-by-value language λC that
comprises of explicit recursion, integer values, n-ary constructors, and pattern-
matching to distinguish and destruct the previously defined constructors. We
draw these constructors from a fixed, finite, and distinct ranked alphabet, that is,
every constructor has a specific arity. We will denote constructors by upper case
letters A,B,C, . . . , and implicitly specify their arity when creating constructor
terms.

Syntax Syntactically, the language λC (Fig. 1) consists of values and expressions.
A value v is either an integer literal n, a constructor term C(v1, . . . , vn) where
C has arity n and vi are values, a recursive unary3 function rec f x = e,
or an explicit error err. An expression e is either a value v, an identifier x, a
constructor term C(e1, . . . , en) where C has arity n and ei are expressions, a
function application (e e), or a pattern-matching expression match e with P .
Within the possibly empty list of patterns P , a pattern C(x1, . . . , xn) → e
consists of a constructor C with arity n, a list of variables x1, . . . , xn, and a
body expression e. For the list of empty patterns we write [ ] and to append
lists we write [C(x1, . . . , xn) → e] ++ P . We assume that the constructors in a
list of patterns occur at most once. We introduce an auxiliary definition v̂ that
represents values not containing functions. For constructor expressions with arity
zero, we omit parentheses.

Semantics In Fig. 2 we define the semantics of λC as a small-step operational
semantics. We use E to describe expressions with holes � and Eval-Final to
evaluate expressions containing only values as subexpressions. Eval-Hole eval-
uates expressions by choosing holes. SApp defines recursive function application
by capture-avoiding substitution of the argument and function symbol. The rule
SMatch evaluates a constructor value and a list of patterns if the the construc-
tor value matches the first pattern. If so, it extracts the values of the argument
and substitutes the variables for the corresponding values in the pattern’s body
expression. If the first pattern in the list of patterns does not match the construc-
tor value, the rule SMatchNext applies and discards the first non-matching
pattern.

3 Multiple arguments can be passed by wrapping them in a constructor.



We explicitly define error creation and propagation as we want to detect def-
inite errors in our programs. Errors occur, if the expression at the first argument
of a function application is reduced to a non-function value or if a pattern match-
ing expression occurs with an empty list either because no pattern matched or
the list of patterns was initially empty. The former case, non-function values in
applications, is handled by the rule SAppErr1 and the latter case by the rule
SMatchErr both reducing to the error value err. Error propagation is handled
by the rules SMatchErr, if the argument to a pattern matching is an error, the
rule SAppErr2 if the argument to a function application is an error, and the
rule SMatchNextErr, if a constructor contains an error as a subexpression.

v ::= n | rec f x = e | C(v1, . . . , vn) | err

e ::= v | x | C(e1, . . . , en) | (e e) | match e with [Ci(x̄) → ei]

v̂ ::= n | C(v1, . . . , vn)

Fig. 1. Syntax of λC with values v, expressions e and non-function values v̂.

E ::= C(v1, . . . , vn,�, e1, . . . , em) | � e | v � | match � with [Ci(x̄) → ei]

Eval-Final
e −→ e′

e →֒ e′

Eval-Hole
e →֒ e′

E [e] →֒ E [e′]

SApp ((rec f x = e) v) −→ e[x 7→ v, f 7→ rec f x = e]

SAppErr1 (v̂ v) −→ err

SAppErr2 ((rec f x = e) err) −→ err

SMatch match C(v) with [C(x) → e, . . . ] −→ e[xi 7→ vi]

SMatchErr match err with [. . . ] −→ err

SMatchNext match C(v) with [D(x) → e] ++ P −→ match C(v) with P

SMatchNextErr match C(v) with [ ] −→ err

SCtorErr C(v1, . . . , vn, err, e1, . . . , em) −→ err

Fig. 2. Small-step operational semantics for λC .



3 Type and Crash Condition

The basic notion of our formalization is a type τ that represents trees created
from constructors C on a type level. Furthermore, we represent function values
using recursive types. To formalize success types, we represent the possible out-
puts of a function and the valid inputs of a function differently, thus resulting
in a non-standard function type definition where the possible outputs are rep-
resented using a type τ and the possible inputs are represented using a crash
condition φ. Types and crash conditions are defined mutually in Fig. 5. Intu-
itively, a crash condition for a function is a logical formula whose models are
types. These types describe inputs that definitely crash the function.

Types τ comprise of type variables α, an equi-recursive function type written
µX.∀α [φ] .τ that includes a type variable α representing the function’s argument,
a return type τ , and a crash condition φ indicating when the function definitely
crashes. Furthermore, we define a constructor type τ that captures the types of
a constructor expression, a union type τ ∪ τ , an integer type int, and the empty
type ⊥ that has no values. We define two operators that work on types: a type-
level function application (τ @τ τ), and a projection function for constructor
types τ ↓Ci that projects the ith component of a type τ if it is a constructor type
C. The semantics of these operators is defined in Fig. 6. In our definition, the
fix-point formulation µX only occurs together with a function type definition.
The type operators are always implicitly applied.

Crash conditions φ are defined as atoms true tt and false ff, intersection
φ∨φ and conjunction φ∧φ, predicates over types C ∈ τ symbolizing that a type
τ can be a constructor C, C /∈ τ symbolizing that a type τ is not a constructor
type C, and ∀ /∈ τ symbolizing that τ is not a function. Furthermore, in Fig. 6
we define an operator (τ @φ τ) that describes a crash-condition-level function
application. Again, the crash condition operator is implicitly applied.

An interpretation J is a mapping of type variables to types. An interpretation
of a type JτKJ is a set of types as specified in Fig. 3.

JαKJ = {J (α)}

JµX.∀α [φ] .τKJ = {µX.∀α [φ] .τ ′ | τ ′ ∈ JτKJ ′ ,J ′ = J \ {α}}

JC(τ1, . . . , τn)KJ = {C(τ ′
1, · · · , τ

′
n) | τ

′
i ∈ JτiKJ )

Jτ1 ∪ τ2KJ = Jτ1KJ ∪ Jτ2KJ

JintKJ = {int}

J⊥KJ = {}

Fig. 3. Definition of an interpretation J on a type τ .



In Fig. 4 we recursively define an entailment relation J � φ for an interpre-
tation J and a crash condition φ.

J � tt

J 2 ff

J � φ1 ∨ φ2 ⇐⇒ J � φ1 ∨ J � φ2

J � φ1 ∧ φ2 ⇐⇒ J � φ1 ∧ J � φ2

J � C ∈ τ ⇐⇒ ∃C(τ) ∈ JτKJ

J � C /∈ τ ⇐⇒ ∄(C(τ)) ∈ JτKJ

J � ∀ /∈ τ ⇐⇒ ∄(µX.∀α [φ] .τ ) ∈ JτKJ

Fig. 4. Definition of the entailment relation J � φ.

Example 1. We take the length function of lists as an example using constructors
Cnil, Czero, Csucc, and Ccons with arities zero, zero, one, and two, respectively.

rec len x = match x with [Cnil → Czero, Ccons(x1, x2) → Csucc((len x2))]

A possible function type for the length function is

τlen = µX.∀α
[

Cnil /∈ α ∧
((

Ccons ∈ α ∧ (X @φ α↓Ccons

2
)
)

∨Ccons /∈ α
)]

.

Czero ∪ Csucc((X @τ α↓Ccons

2
))

whose type is recursively entwined with its crash condition. The derivation of
this type is described in Section 3.1. We extract the crash condition that still
makes use of τlen via X and get a logical formula with free variable α

φlen = Cnil /∈ α ∧
((

Ccons ∈ α ∧ (τf @φ α↓Ccons

2
)
)

∨ Ccons /∈ α
)

that symbolizes when the function crashes. For example the following interpre-
tation (amongst many others)

J = {α 7→
⋃

{((µX.∀α [ff] .Czero ∪ Ccons (τ, (X @τ α))) @φ Cunused) | τ ∈ T }

entails the crash condition: J � φlen. Here, Cunused is only needed as a dummy
argument to the type-level function. When implicitly applying the type opera-
tors, we end up with the infinite type4

{µX.Czero ∪ Ccons(τ,X) | τ ∈ T }

This type represents all lists not ending with a nil but with a zero.



τ ::= α | µX.∀α [φ] .τ | C(τ1, . . . , τn) | τ ∪ τ | int | ⊥ | (τ @τ τ ) | τ ↓Ci

φ ::= ff | tt | φ ∨ φ | φ ∧ φ | C ∈ τ | C /∈ τ | ∀ /∈ τ | (τ @φ τ )

Fig. 5. Definition of types τ and crash conditions φ.

(τ1 @τ τ2) =































τb[α 7→ τ2, X 7→ τ1] if τ1 = µX.∀α [φ] .τb

(τ1 @τ τ2) if τ1 = α

(τ11 @τ τ2) ∪ (τ12 @τ τ2) if τ1 = τ11 ∪ τ12

(τ1 @τ τ21) ∪ (τ1 @τ τ22) if τ2 = τ21 ∪ τ22

⊥ otherwise

τ ↓Ci =











τi if τ = C(τ1, . . . , τn), 1 ≤ i ≤ n

τ ↓Ci if τ0 = α

⊥ otherwise

(τ1 @φ τ2) =































φ[α 7→ τ2, X 7→ τ1] if τ1 = µX.∀α [φ] .τb

(τ1 @φ τ2) if τ1 = α

(τ11 @φ τ2) ∪ (τ12 @φ τ2) if τ1 = τ11 ∪ τ12

(τ1 @φ τ21) ∪ (τ1 @φ τ22) if τ2 = τ21 ∪ τ22

tt otherwise

Fig. 6. Type and crash condition operators.



Before introducing the analysis that assigns types and crash conditions to
expressions, please note that the question of entailment is not decidable in gen-
eral.

Lemma 1. It is undecidable whether for an arbitrary crash condition φ there
exists an interpretation J such that J � φ.

We discuss possible solutions to this problem in Section 4.

3.1 Analysis

We present our analysis as a type system using a judgment Γ ⊢ e : τ & φ that
relates a type variable environment Γ , an expression e, a type τ of the expression,
and a crash condition φ characterizing when the expression crashes. We define
the derivation rules in Fig. 7.

The rule T-Rec derives a recursive function type for a recursive function
expression by inferring the body’s type and crash condition using type variables
for the argument and a recursive type formulation for recursive calls. For a
function application (T-FunApp) we infer types and crash conditions for both
the callee e1 and the argument e2 . The result type of the function application
is the type-level application of the types of the callee and the argument. The
function application can crash if either e1 or e2 crashes, e1 is not a function,
or the application itself crashes. The latter is symbolized by a crash condition-
level function application. The rule T-Identifier derives the type of a variable
from the environment and never crashes. An error value err has type ⊥ and
always crashes (T-Error). In rule T-Constructor, a constructor expression
has a constructor type with the types of its arguments inferred recursively. A
constructor crashes if one of its arguments crashes. Integer literals are handled
by T-Integer and always have type int and never crash.

For the pattern matching expression, the type is described by the union of
the types of the expression in the patterns. The crash condition is described by
the crash condition of the expression to match and the crash conditions of the
cases. The crash conditions of the cases are built using an auxiliary judgment:
φm; τ0;Γ ⊢p P : τp & φp where φm describes the crash conditions accumulated
so far, τ0 describes the type of the expression to match, P the list of patterns
which are traversed and τp the union of the types of the pattern case’s body
expression. The type and crash condition of a pattern list is created by two
rules: if the pattern list is empty, we return the bottom type and the crash
condition accumulated to far. If the pattern list is non-empty, we create the type
of the current body expression by binding the variables defined in the pattern
and inductively applying the derivation. The current expression can crash, if
either the pattern matches (C ∈ τ0) and the body expression crashes, or if the
pattern does not match at all.

4 For the sake of a simpler type syntax, this type cannot be represented using our type
syntax directly. We always have to use type-level applications.



Additionally, we define a subtyping relation ≤: τ × τ in Fig. 8 The relation is
standard, except for the rule S-Fun, which requires a logical implication of the
crash conditions.

The (output) types derived for an expression are over-approximationswhereas
the crash conditions describe the possible crashes exactly. The interplay of types
and crash conditions ends up with definite errors, because the predicate C /∈ τ
describes the question whether it is not possible that the type τ is a constructor
C, and similarly for the predicate ∀ /∈ τ .

T-Rec
Γ, xr : αr, fr : X ⊢ e : τe & φe αr fresh xr, fr /∈ dom(Γ )

Γ ⊢ rec fr xr = e : µX.∀αr [φe] .τe & ff

T-FunApp
Γ ⊢ e1 : τ1 & φ1

Γ ⊢ e2 : τ2 & φ2

Γ ⊢ (e1 e2) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

T-Identifier
Γ (x) = τ

Γ ⊢ x : τ & ff

T-Error

Γ ⊢ err : ⊥ & tt

T-Constructor
∀i ∈ {1, . . . , n} : Γ ⊢ ei : τi & φi

Γ ⊢ C(e1, . . . , en) : C(τ1, . . . , τn) &
∨

φ

T-Pattern-Matching
tt; τ0;Γ ⊢p P : τp & φp

Γ ⊢ e0 : τ0 & φ0

Γ ⊢ match e0 with P : τp & φ0 ∨ φp

T-Integer

Γ ⊢ n : int & ff

T-Pattern-Next
φ0 ∧ ((C ∈ τ0 ∧ φe) ∨ C /∈ τ0); τ0;Γ ⊢p P : τ ′ & φ′

Γ, xi : τ0 ↓
C
i ⊢ e : τe & φe i = 1, . . . , n

φ0; τ0;Γ ⊢p [C(x1, . . . , xn) → e] ++ P : τ ′ ∪ τe & φ′

T-Pattern-Empty

φ0; τ0;Γ ⊢p [ ] : ⊥ & φ0

Fig. 7. Derivation rules for the types and crash conditions.

3.2 Properties

To justify our analysis, we prove the preservation of types and crash conditions
and the correctness. To do so, we need several auxiliary lemma.

Weakening allows the introduction of a fresh type variable into the type
environment without changing anything.

Lemma 2 (Weakening). For expressions e, types τ , τy, and τ0, an identifier
y, conditions φ and φ0, and an environment Γ , the following holds:

1. If Γ ⊢ e : τ & φ and y /∈ dom(Γ ) then Γ, y : τy ⊢ e : τ & φ



S-Bot

⊥ ≤ τ

S-Union

τ ≤ τ ∪ τ ′

S-Refl

τ ≤ τ

S-Ctor
τ̄ ≤ τ̄ ′

C(τ̄ ) ≤ C(τ̄ ′)

S-Fun
τ ≤ τ ′ φ′ → φ

µX.∀α [φ] .τ ≤ µX.∀α
[

φ′
]

.τ ′

T-Sub
Γ ⊢ e : τ & φ τ ≤ τ ′ φ′ → φ

Γ ⊢ e : τ ′ & φ′

Fig. 8. Subtyping rules.

2. If φ0; τ0;Γ ⊢p P : τ & φ and y /∈ dom(Γ ) then φ0; τ0;Γ, y : τy ⊢p P : τ & φ.

The next lemma shows that we can replace a type variable α within an
environment by a concrete type α if we replace all occurrences of the type variable
in the resulting type and crash condition. We need this lemma when working
with the type-level function application.

Lemma 3 (Consistency of type substitution). For a well-formed environ-
ment Γ , an identifier y, a type variable α, an arbitrary expression e, types τ and
τα, conditions φ and φ0 the following holds:

1. If Γ, y : α ⊢ e : τ & φ then (Γ, y : α)[α 7→ τα] ⊢ e : τ [α 7→ τα] & φ[α 7→ τα]
2. If φ0; τ0;Γ, y : α ⊢p P : τ & φ then φ0[α 7→ τα]; τ0[α 7→ τα]; (Γ, y : α)[α 7→

τα] ⊢p P : τ [α 7→ τα] & φ[α 7→ τα].

Item 2 shows that we can substitute a variable y in an expression e with a
value of the same type without changing the type and crash condition of the
whole expression. This lemma is needed for the type-level function applications
later.

Lemma 4 (Consistency of value substitution). For an environment Γ , an
identifier y, types τ and τy, an expression e, conditions φ and φ0, and a value
v, the following holds

1. If Γ, y : τy ⊢ e : τ & φ and Γ ⊢ v : τy & ff then Γ ⊢ e[y 7→ v] : τ & φ.
2. If φ0; τ0;Γ, y : τy ⊢p P : τ & φ and Γ ⊢ v : τy & ff then φ0; τ0;Γ ⊢p

P [y 7→ v] : τ & φ.

The next lemma shows that the analysis is designed such that after a suc-
cessful pattern matching, the crash conditions of the remaining pattern’s body
expressions cannot be satisfied anymore. The reason is that φ0 in the rules T-
Pattern-Next and T-Pattern-Empty influences the resulting crash condi-
tion of the whole expression.

Lemma 5 (Unsatisfiability after matching patterns). For an environment
Γ , types τ and τ ′, and conditions φ′ it holds that if ff, τ0;Γ ⊢p P : τ ′ & φ′ then
2 φ′.



Finally, we can establish the preservation theorem for our type system.

Theorem 1 (Preservation of types and crash conditions). If Γ ⊢ e :
τ & φ, e →֒ e′ and Γ ⊢ e′ : τ ′ & φ′ then τ ≤ τ ′ and φ ↔ φ′.

Furthermore, we show that our analysis is sound: if the crash conditions
report an error, then there is either an error or the evaluation does not terminate.

Theorem 2 (Failure). If ∀T ,V , Γ and ∀x ∈ dom(Γ ): ⊢ V(x) : T (Γ (x)) �

T (φ), and

1. Γ ⊢ e : τ & φ, then V(e) →֒∗ err or V(e)⇑.
2. φ0; τ0;Γ ⊢p [C1(x̄ → e1), . . . , Cn(x̄ → en)] : τ & φ and a value C(v1, . . . , vn)

with Γ ′ ⊢ C(v1, . . . , vn) : C(τ1, . . . , τn) & ff, then either
– ∀i : Ci 6= C
– or ∃i : Ci = C and (V ′(ei) →֒∗ err or V(e1)⇑).

4 Practical Considerations

We have shown that success typing is an instance of falsification and thus allows
the detection of definite errors. However, as shown by Lemma 1, the satisfiability
of φ is undecidable in general. Thus a direct algorithmic solution cannot exist.
We implemented5 a version of the analysis that imposes a user-definable limit
of k iterations on the unfolding operations described in the operators in Fig. 6
and can thus check for errors up to depth k.

Example 2. An example for a yet problematic combination of type and crash
condition we cannot solve at the moment is the following: We create a function
that generates an infinite list and apply the resulting stream on the list length
function.

With the list generator’s type

τgen = ((µX.∀α [ff] .Ccons(Czero, (X @τ α))) @τ Cunused)

= Ccons(Czero, (τgen @τ Cunused))

and the list’s type from Example 1 the application of the stream to the length
function has the following crash condition after type and crash condition oper-
ators are applied once (before substitution):

(

Cnil /∈ α ∧
((

Ccons ∈ α ∧ (X @φ α↓Ccons

2
)
)

∨Ccons /∈ α
))

[α 7→ Ccons(Czero, (τgen @τ Cunused))]

After performing the substitution, we can evaluate the predicates that only look
finitely deep into their argument. When we apply type and crash condition
operators again, we end up on the same crash condition. Although we reach
a fix point in this case, this is of course not the case in general.

5 http://www.informatik.uni-freiburg.de/~jakobro/stpa/



To solve this problem in general, we need to find an approximation for the
crash condition formula. As we only want to find definite errors, our approx-
imation has to be an under-approximation. However, finding a good under-
approximation, is yet an open problem.

When we view the output type of a functions as a constructor tree, we can
represent it as a higher-order tree grammar, as is proposed by Ong and Ram-
sey [12]. The (approximated) crash condition of a function can be represented
as a tree automaton. As the model checking of tree automata and higher-order
tree grammars is decidable [11] we have some means of finding definite errors.

5 Related Work

The idea of finding definite errors in programs is quite old and several approaches
exist.

Constraint-based analyses to detect must-information can be found in Reynolds
[13] where he describes a construction of recursive set definitions for LISP pro-
grams that are “a good fit to the results of a function”. However, the goal of
the paper was to infer data structure declarations and not to find errors. The
constraint-based analysis of Lindahl and Sagonas’ [10] is a modular approach
similar to ours, but does not account for data structures of arbitrary depth
but instead uses k-depth abstraction as we do in our current implementation.
Furthermore, the approach of Lindahl and Sagonas uses union types that are
widened after a fixed size limit. These limits are to establish small and readable
types whereas we focus on exact tracking of values.

Soft typing, presented by Cartwright and Fagan [4] detects suspicious ex-
pressions in a program, i.e., expressions that cannot be verified to be error-free,
and adds run-time checks. Although the idea of not rejecting working programs
is the same, our approach requires no changes in existing programs as we only
assume programs to contain errors if we can proof it.

The line of work of Vaziri et al. [5, 7] focuses on imperative first-order lan-
guages and uses user-defined specifications given in the Alloy language to state
the intention of a function and then checks the implementation against its spec-
ification. Although they explicitly mention unbounded data structures in their
approach, only instances up to a number of heap cells and loop iterations are
considered. In contrast to our approach, they require user-defined annotations. A
similar framework [15] removes the chore to define annotations and only requires
the user to provide a property to be checked. Their abstraction refines specifi-
cations that describe the behavior of procedures and thus creates a refinement-
based approach that ensures that no spurious errors appear if the analysis halts.

Different approaches for definite error detections are presented by Ball et
al. [1] and Kroening and Weissenbacher [9] for imperative first-order languages
in a Hoare-style way. However, a comparison to our approach is difficult because
they rely on a transition system to model the behavior of programs whereas we
use a type system.



6 Conclusion

We presented a new formal approach to success typings for a constructor-based
higher-order language using different representations for the input and output
type of a function. We proved that our formulation of success typings is a falsifi-
cation in the sense that it only reports definite errors. We presented a prototype
implementation that checks for errors up to a user-defined bound.

In future we want to look at means to model check (type) trees [11,12] with
logical formula represented as higher-order tree grammars and tree automata, re-
spectively. Thus, we hope to (partly) remove the n-bound of current approaches.
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A Proofs

For the sake of completeness we enlist the substitution of variables and of type
variables in Figs. 9 and 10, respectively.

x[x 7→ v] = v

y[x 7→ v] = y

n[x 7→ v] = n

C(ē)[x 7→ v] = C(ē[x 7→ v])

((e e))[x 7→ v] = (e[x 7→ v] e[x 7→ v])

([Ci(ȳ) → e])[x 7→ v] = [Ci(ȳ) → e[x 7→ v]] x /∈ {ȳ}

rec f y = e[x 7→ v] = rec f y = e[x 7→ v] x /∈ {f, y}

rec f y = e[x 7→ v] = rec f y = e x ∈ {f, y}

Fig. 9. Substitution of variables.

Proof (Lemma 1). As types and crash conditions contain type-level functions,
applications, and constructors, the crash conditions are Turing-complete and
thus satisfiability is not decidable.

Proof (Item 2). Proof by induction on the derivation of the analysis.

Case T-Integer: Let Γ ′ = Γ, y : τy. Then, Γ
′ ⊢ n : int & ff trivially holds by

T-Integer.
Case T-Identifier: We assume Γ ⊢ x : τ & ff and y /∈ dom(Γ ). Then, we

have two subcases:
Subcase x = y: By inversion, we get Γ (x) = Γ (y) = τ . Thus, y ∈ dom(Γ )

which contradicts our assumption.
Subcase x 6= y: By inversion, we get Γ (x) = τ . Let Γ ′ = Γ, y : τy. Then,

Γ ′(x) = τ still holds and we apply T-Identifier and conclude Γ ′ ⊢ x :
τ & ff.

Case T-Constructor: By assumption we have both

Γ ⊢ C(e) : C(τ ) & ∨ φ̄

y /∈ dom(Γ )

Using inversion we get
Γ ⊢ ei : τi & φi

for i = 1, . . . , n. On each of these judgements, we can apply the induction
hypothesis, and deduce

Γ, y : τy ⊢ ei : τi & φi



α[α 7→ τ ] = τ

β[α 7→ τ ] = β

⊥[α 7→ τ ] = ⊥

C(τ̄)[α 7→ τ ] = C(τ [α 7→ τ ])

(τ1 ∪ τ2)[α 7→ τ ] = τ1[α 7→ τ ] ∪ τ2[α 7→ τ ]

µX.∀α [φ] .τ [α 7→ τ ] = µX.∀α [φ] .τ

µX.∀β [φ] .τ [α 7→ τ ] = µX.∀β [φ[α 7→ τ ]] .τ [α 7→ τ ]

int[α 7→ τ ] = int

(τ1 τ2)[α 7→ τ ] = (τ1[α 7→ τ ] τ2[α 7→ τ ])

τ ↓Ci [α 7→ τ ] = (τ [α 7→ τ ])↓Ci

ff[α 7→ τ ] = ff

tt[α 7→ τ ] = tt

φ0 ∧ φ1[α 7→ τ ] = φ0[α 7→ τ ] ∧ φ1[α 7→ τ ]

φ0 ∨ φ1[α 7→ τ ] = φ0[α 7→ τ ] ∨ φ1[α 7→ τ ]

C ∈ τ [α 7→ τ ] = C ∈ (τ [α 7→ τ ])

C /∈ τ [α 7→ τ ] = C /∈ (τ [α 7→ τ ])

∀ /∈ τ [α 7→ τ ] = ∀ /∈ (τ [α 7→ τ ])

(τ1 @φ τ2)[α 7→ τ ] = (τ1[α 7→ τ ] @φ τ2[α 7→ τ ])

Fig. 10. Substitution of type variables.



Finally, we apply T-Constructor and conclude that

Γ, y : τy ⊢ C(e) : C(τ ) &
∨

φ̄

holds.
Case T-FunApp: We assume

Γ ⊢ (e1 e2) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

y /∈ dom(Γ )

By inversion we get
Γ ⊢ ei : τi & φi

for i = 1, 2 and apply the induction hypothesis on both of them. With

Γ, y : τy ⊢ ei : τi & φi

we can apply T-FunApp and conclude

Γ, y : τy ⊢ (e1 e2) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

Case T-Rec: We assume

Γ ⊢ rec fr xr = e : rec αr τe = φe & ff

y /∈ dom(Γ )

By inversion we get

Γ, xr : αr, fr : rec αr τe = φe ⊢ e : τe & φe

By alpha-conversion we can assume that xr 6= y and fr 6= y. Thus, with

y /∈ dom(Γ, xr : αr, fr : rec αr τe = φe)

we apply the induction hypothesis and get

Γ, y : τy, xr : αr, fr : rec αr τe = φe ⊢ e : τe & φe

As all preconditions still hold, we can apply T-Rec and finally conclude

Γ, y : τy ⊢ rec fr xr = e : rec αr τe = φe & ff

Case T-Pattern-Matching: By assumption we have

Γ ⊢ match e0 with [Ci(x̄) → ei] : τ & φ0 ∨ φ′

y /∈ dom(Γ )

We use inversion to deduce both

tt; τ0;Γ ⊢p [Ci(x̄) → ei] : τ & φ′



and
Γ ⊢ e0 : τ0 & φ0

We can directly apply the induction hypothesis on both judgements and
obtain

tt; τ0;Γ, y : τy ⊢p [Ci(x̄) → ei] : τ & φ′

and
Γ, y : τy ⊢ e0 : τ0 & φ0

respectively. Applying T-Pattern-Matching concludes

Γ, y : τy ⊢ match e0 with [Ci(x̄) → ei] : τ & φ0 ∨ φ′

Case T-Pattern-Empty: Let Γ ′ = Γ, y : τy and

φ0; τ0;Γ
′ ⊢p [ ] : ⊥ & φ0

trivially holds by T-Pattern-Empty.
Case T-Pattern-Next: Assume

φ0; τ0;Γ ⊢p [C(x1, . . . , xn) → e] ++R : τ ′ ∪ τe & (φ0 ∧C ∈ τ0 ∧ φe) ∨ φ′

y /∈ dom(Γ )

By inversion we get

(φ0 ∧ C /∈ τ0); τ0;Γ ⊢p R : τ ′ & φ′

and
Γ, xi : τ0 ↓

C
i ⊢ e : τe & φe

for i = 1, . . . , n. By alpha-conversion we know, that ∀i = 1, . . . , n. xi 6= y.
Thus, we can apply the induction hypothesis on both judgements and get

(φ0 ∧ C /∈ τ0; τ0;Γ, y : τy ⊢p R : τ ′ & φ′

and
Γ, y : τy, xi : τ0 ↓

C
i ⊢ e : τe & φe

respectively. Now we apply T-Pattern-Next and conclude

φ0; τ0;Γ, y : τy ⊢p [C(x1, . . . , xn) → e] ++R : τ ′ ∪ τe & (φ0 ∧C ∈ τ0 ∧φe)∨φ′

Proof (Item 2). Proof by induction on the derivation of the analysis.

Case T-Integer: Let Γ ′ = (Γ, y : α)[α 7→ τα]. By substitution and T-Integer
our consequence

Γ ′ ⊢ n : n[α 7→ τα] & ff[α 7→ τα]

immediately holds.
Case T-Identifier: We have two subcases.



Subcase y = x: We have to show that

(Γ, y : α)[α 7→ τα] ⊢ y : τα & ff

holds. We apply inversion and get

((Γ, y : α)[α 7→ τα])(y) = τα

By definition of substitution this is equivalent to

(Γ [α 7→ τα], y : τα)(y) = τα

As we require Γ to be well-formed this holds trivially.
Subcase y 6= x: As assumption we have

(Γ, y : α)[α 7→ τα] ⊢ x : α′ & ff

By inversion we get (Γ, y : α)(x) = α′. Thus, we know that Γ = Γ1, x :
α′, Γ2. As Γ is well-formed, we can insert a substitution without changing
the equality

((Γ1, x : α′, Γ2, y : α)[α 7→ τα])(x) = α′

Now, we can apply T-Identifier and finally get

(Γ1, x : α′, Γ2, y : α)[α 7→ τα] ⊢ x : α′ & ff

which is equivalent to our goal

(Γ, y : α)[α 7→ τα] ⊢ x : α′[α 7→ τα] & ff[α 7→ τα]

by the rules of substitution.
Case T-Constructor: On the assumption

Γ, y : α ⊢ C(e) : C(τ ) & ∨ φ̄

we apply inversion and get

Γ, y : α ⊢ ei : τi & φi

With the induction hypothesis, we can deduce

(Γ, y : α)[α 7→ τα] ⊢ ei : τi[α 7→ τα] & φi[α 7→ τα]

Applying T-Constructor yields

(Γ, y : α)[α 7→ τα] ⊢ C(e) : C(τ [α 7→ τα]) & ∨ (φ[α 7→ τα])

which is, by rules of substitution, equivalent to

(Γ, y : α)[α 7→ τα] ⊢ C(e) : C(τ̄ )[α 7→ τα] & (∨φ̄)[α 7→ τα]



Case T-FunApp: On the assumption

Γ, y : α ⊢ (e1 e2) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

we apply inversion and get

Γ, y : α ⊢ ei : τi & φi

With the induction hypothesis, we can deduce

(Γ, y : α)[α 7→ τα] ⊢ ei : τi[α 7→ τα] & φi[α 7→ τα]

Applying T-FunApp yields

(Γ, y : α)[α 7→ τα] ⊢ (e1 e2) : (τ1[α 7→ τα] @τ τ2[α 7→ τα])

& (τ1[α 7→ τα] @φ τ2[α 7→ τα]) ∨ φ1[α 7→ τα]

∨ φ2[α 7→ τα] ∨ ∀ /∈ τ1[α 7→ τα]

which is, by rules of substitution, equivalent to

(Γ, y : α)[α 7→ τα] ⊢ (e1 e2) : (τ1 @τ τ2)[α 7→ τα]

& ((τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1)[α 7→ τα]

Case T-Rec: We assume

Γ, y : α ⊢ rec fr xr = e : µX.∀αr [φe] .τe & ff

By inversion we can follow that y 6= fr, y 6= xr , and α 6= αr. Additionally,

Γ, y : α, fr : µX.∀αr [φe] .τe, xr : αr ⊢ e : τe & φe

With the induction hypothesis we get

(Γ, y : α, fr : µX.∀αr [φe] .τe, xr : αr)[α 7→ τα] ⊢ e : τe[α 7→ τα] & φe[τ 7→ τα]

When we apply T-Rec and exploit substitution we finally obtain

(Γ, y : α)[α 7→ τα] ⊢ rec fr xr = e : (µX.∀αr [φe] .τe)[α 7→ τα] & ff

Case T-Pattern-Matching: We have the assumption

Γ, y : α ⊢ match e0 with [Ci(x̄) → ei] : τ & φ0 ∨ φ′

By inversion we get two judgements. On the first, Γ, y : α ⊢ e0 : τ0 & φ0, we
apply the induction hypothesis and get

(Γ, y : α)[α 7→ τα] ⊢ e0 : τ0[α 7→ τα] & φ0[α 7→ τα]

On the second judgment

tt; τ0;Γ, y : α ⊢p [Ci(x̄) → ei] : τ & φ′



we apply the induction hypothesis, too and obtain

tt[α 7→ τα]; τ0[α 7→ τα]; (Γ, y : α)[α 7→ τα] ⊢p [Ci(x̄) → ei]

: τ [α 7→ τα] & φ′[α 7→ τα]

Now we can apply T-Pattern-Matching and conclude

(Γ, y : α)[α 7→ τα] ⊢ match e0 with [Ci(x̄) → ei]

: τ [α 7→ τα] & (φ0 ∨ φ′)[α 7→ τα]

Case T-Pattern-Empty: The consequent

φ0[α 7→ τα]; τ0[α 7→ τα]; (Γ, x : α)[α 7→ τα] ⊢p [ ]

: ⊥[α 7→ τα] & φ0[α 7→ τα]

holds by T-Pattern-Empty.
Case T-Pattern-Next: As assumption we have

φ0; τ0;Γ, y : α ⊢p [C(x1, . . . , xn) →] ++ P

: τ ′ ∪ τe & (φ0 ∧ C ∈ τ0 ∧ φe) ∨ φ′

By inversion we get two judgments. As first we get

Γ, y : α, xi : τ0 ↓
C
i ⊢ e : τe & φe

for i = 1, . . . , n with ∀i : y 6= xi by alpha conversion. Now we can apply the
induction hypothesis and obtain

(Γ, y : α, xi : τ0 ↓
C
i )[α 7→ τα] ⊢ e : τe[α 7→ τα] & φe[α 7→ τα]

for i = 1, . . . , n. On the second judgment

(φ0 ∧C /∈ τ0); τ0;Γ, y : α ⊢p P : τ ′ & φ′

we apply the induction hypothesis and deduce

(φ0 ∧C /∈ τ0)[α 7→ τα]; τ0[α 7→ τα]; (Γ, y : α)[α 7→ τα] ⊢p P

: τ ′[α 7→ τα] & φ′[α 7→ τα]

Finally, we apply T-Pattern-Next and conclude that

φ0[α 7→ τα]; τ0[α 7→ τα];Γ, y : α ⊢p [C(x1, . . . , xn) → e] ++ P

: (τ ′ ∪ τe)[α 7→ τα] & ((φ0 ∧ τ0 ∈ ∧φe) ∨ φ′)[α 7→ τα]

holds.

Proof (Item 2). Proof by induction on the derivation of the analysis.



Case T-Integer: The consequent Γ ⊢ n[y 7→ v] : n & ff trivially holds by
T-Integer.

Case T-Identifier: For this case we have two subcases. One with y = x and
one with y 6= x.

Subcase y = x: We have the assumptions

Γ, y : τy ⊢ y : τ & ff

Γ ⊢ v : τy & ff

By inversion we get (Γ, y : τy)(y) = τ and thus, τ = τy and Γ ⊢ v :
τ & ff. By applying substitution on our goal

Γ ⊢ y[y 7→ v] : τ & ff

we get Γ ⊢ v : τ & ff and are done.
Subcase y 6= x: We have the assumptions

Γ, y : τy ⊢ x : t & ff

Γ ⊢ v : τy & ff

By inversion we get (Γ, y : τy)(x) = t. Thus, Γ = Γ1, x : t, Γ2 which leads
to (Γ1, x : t, Γ2)(x) = t. This is a precondition for Γ, x : t ⊢ x : t & ff

which by rules of substitution is equivalent to Γ, x : t ⊢ x[y 7→ v] : t & ff.

Case T-Constructor: Assume

Γ, y : τy ⊢ C(e) : C(τ ) & ∨ φ̄

By inversion we get
Γ, y : τy ⊢ ei : τi & φi

for i = 1, . . . , n and apply the induction hypothesis. Thus, we obtain

Γ ⊢ ei[y 7→ v] : τi & φi

and can apply T-Constructor and conclude

Γ ⊢ C(e[y 7→ v]) : C(τ ) & ∨ φ̄

which is by substitution equivalent to

Γ ⊢ C(e)[y 7→ v] : C(τ ) & ∨ φ̄

Case T-FunApp: Assume

Γ, y : τy ⊢ (e1 e2) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

By inversion we get
Γ, y : τy ⊢ ei : τi & φi



and apply the induction hypothesis. Thus, we obtain

Γ ⊢ ei[y 7→ v] : τi & φi

and can apply T-FunApp and conclude

Γ ⊢ (e1[y 7→ v] e2[y 7→ v]) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

which is equivalent, by the rules of substitution, to

Γ ⊢ ((e1 e2))[y 7→ v] : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

Case T-Rec: As part of the antecedent we have Γ, y : τy ⊢ rec fr xr =
e : rec αr τe = φe & ff. By inversion we get Γ, y : τy, fr : rec αr τe =
φe, xr : αr ⊢ e : τe & φe. Our induction hypothesis contains the antecedent
Γ ⊢ v : τy & ff but we need Γ, fr : rec αr τe = φe ⊢ v : τy & ff which we
get using weakening (Item 2). Now we can apply the induction hypothesis
and obtain Γ, fr : rec αr τe = φe, xr : αr ⊢ e[y 7→ v] : τe & φe. Applying T-
Rec and the rules of substitution finally yields Γ ⊢ (rec fr xr = e)[y 7→ v] :
rec αr τe = φe & ff.

Case T-Pattern-Matching: We have Γ, y : τy ⊢ match e0 with [C(x) →
ei] : t & φ0 ∨ φ′. By inversion we obtain tt; τ0;Γ, y : τy ⊢p [C(x) → ei] :
t & φ′ and Γ, y : τy ⊢ e0 : τ0 & φ0. We apply the induction hypothesis
on both preconditions and get tt; τ0;Γ ⊢p {Cix̄ → ei}[y 7→ v] : t & φ′

and Γ ⊢ e0[y 7→ v] : τ0 & φ0 which are the preconditions for T-Pattern-
Matching. We conclude by applying the rules of substitution and get Γ ⊢
(match e0 with [C(x) → ei])[y 7→ v] : t & φ0 ∨ φ′.

Case T-Pattern-Empty: Our goal, φ0; τ0;Γ ⊢p {}[y 7→ v] : ⊥ & φ0, trivially
holds by substitution and T-Pattern-Empty.

Case T-Pattern-Next: We assume φ0; τ0;Γ, y : τy ⊢p {C(x̄) → e}; p̄ : t′ ∪
τe & (φ0 ∧C ∈ τ0 ∧ φe) ∨ φ′. By inversion we get (1) (φ0 ∧C /∈ τ0); τ0;Γ, y :
τy ⊢p p̄ : t′ & φ′ and (2) Γ, y : τy, xi : τ0 ↓

C
i ⊢ e : τe & φe with i = 1, . . . , n. On

(1) we can apply the induction hypothesis and get (φ0 ∧ C.n * τ0); τ0;Γ ⊢p

p̄[y 7→ v] : t′ & φ′. On (2) the antecedent of the induction hypothesis does
not fit Γ ⊢ v : τy & ff. Thus we apply weakening (Item 2) and obtain
Γ, xi : τ0 ↓

C
i ⊢ v : τy & ff with i = 1, . . . , n. Now we can apply the induction

hypothesis and get Γ, xi : τ0 ↓Ci ⊢ e[y 7→ v] : τe & φe. Using the rule T-
Pattern-Next and substitution, we conclude that φ0; τ0;Γ ⊢p ({C(x̄) →
e}; p̄)[y 7→ v] : t′ ∪ τe & (φ0 ∧ C ∈ τ0 ∧ φe) ∨ φ′ holds.

Proof (Lemma 5). Proof by induction on the derivation of ⊢p.

Case T-Pattern-Empty: For

ff; τ0;Γ ⊢p [ ] : ⊥ & ff

we have 2 ff.



Case T-Pattern-Next: We have

φ0; τ0;Γ ⊢p [C(x1, . . . , xn) → e] ++ P : τ ′ ∪ τe & (φ0 ∧ C ∈ τ0 ∧ φe) ∨ φ′

and know that φ0 = ff. Thus, the crash condition simplifies to (ff ∧ τ0 ∈
∧φe) ∨ φ′ = φ′. We have to show that 2 φ′. By inversion we get

(φ0 ∧C /∈ τ0); τ0;Γ ⊢p P : τ ′ & φ′

and with φ0 = ff we get

ff; τ0;Γ ⊢p P : τ ′ & φ′

Applying the induction hypothesis finally yields 2 φ′.

Proof (Theorem 1). We abbreviate E [ê] with e and E [ê′] with e′, respectively. By
induction on the derivation of e →֒ e′. In all the cases building on Eval-Hole,
we have ê →֒ ê′ by inversion on e →֒ e′.

Case e = C(v1 . . . , vn, ê, e1, . . . , em) →֒ e′ = C(v1 . . . , vn, ê
′, e1, . . . , em): By

assumption we have

Γ ⊢ C(v1...n, ê, e1...m) : C(τv1...n , τ̂ , τe1...m) & ∨n
i=1

φvi ∨ φ̂ ∨ ∨m
i=1

φei (1)

Γ ⊢ C(v1...n, ê
′, e1...m) : C(τ ′v1...n , τ̂

′, τ ′e1...m) & ∨n
i=1 φ

′
vi
∨ φ̂′ ∨ ∨m

i=1φ
′
ei

(2)

Inversion on equation (1) yields

Γ ⊢ vi : τvi & φvi Γ ⊢ ei : τei & φei Γ ⊢ ê : τ̂ & φ̂

and for inversion on equation (2) we get

Γ ⊢ vi : τ
′
vi

& φ′
vi

Γ ⊢ ei : τ
′
ei

& φ′
ei

Γ ⊢ ê′ : τ̂ ′ & φ̂′

Thus, we can follow that τvi = τ ′vi , τei = τ ′ei , φvi = φ′
vi
, and φei = φ′

ei
.

Additionally, we have (τ̂ = τ̂ ′∧ φ̂ ↔ φ̂′) → t = t′∧φ = φ′. Now we can apply

the induction hypothesis (Γ ⊢ ê : τ̂ & φ̂ ∧ ê →֒ ê′ ∧ Γ ⊢ ê′ : τ̂ ′ & φ̂′ → τ̂ =

τ̂ ′ ∧ φ̂ ↔ φ̂′) and thus conclude that t = t′ and φ ↔ φ′.
Case e = (ê e2) →֒ e′ = (ê′ e2): By assumption we have

Γ ⊢ (ê e2) : (τ̂ @τ τ2) & (τ̂ @φ τ2) ∨ φ̂ ∨ φ2 ∨ ∀ /∈ τ̂ (3)

Γ ⊢ (ê′ e2) : (τ̂
′ @τ τ

′
2) & (τ̂ ′ @φ τ ′2) ∨ φ̂′ ∨ φ′

2 ∨ ∀ /∈ τ̂ ′ (4)

When applying inversion on equation (3) we obtain

Γ ⊢ ê : τ̂ & φ̂ Γ ⊢ e2 : τ2 & φ2

and for inversion on equation (4) we get

Γ ⊢ ê′ : τ̂ ′ & φ̂′ Γ ⊢ e2 : τ ′
2
& φ′

2

Thus, we have τ2 = τ ′
2
and φ2 = φ′

2
and (τ̂ = τ̂ ′ ∧ φ̂ ↔ φ̂′) → t = t′ ∧φ = φ′.

We apply the induction hypothesis (Γ ⊢ ê : τ̂ & φ̂ ∧ ê →֒ ê′ ∧ Γ ⊢ ê′ :

τ̂ ′ & φ̂′ → τ̂ = τ̂ ′ ∧ φ̂ ↔ φ̂′) and conclude that t = t′ and φ ↔ φ′.



Case e = (v ê) →֒ e′ = (v ê′): By assumption we have

Γ ⊢ (v ê) : (τ1 @τ τ̂ ) & (τ1 @φ τ̂ ) ∨ φ1 ∨ φ̂ ∨ ∀ /∈ τ1 (5)

Γ ⊢ (v ê′) : (τ1 @τ τ̂
′) & (τ1 @φ τ̂ ′) ∨ φ1 ∨ φ̂′ ∨ ∀ /∈ τ1 (6)

Inversion on equation (5) yields

Γ ⊢ ê : τ̂ & φ̂ Γ ⊢ v : τ1 & φ1

and inversion on equation (6) yields

Γ ⊢ ê′ : τ̂ ′ & φ̂′ Γ ⊢ v : τ ′1 & φ′
1

Thus we conclude τ1 = τ ′
1
, φ1 = φ′

1
, and furthermore, (τ̂ = τ̂ ′ ∧ φ̂ ↔ φ̂′) →

t = t′ ∧ φ = φ′. We apply the induction hypothesis (Γ ⊢ ê : τ̂ & φ̂ ∧ ê →֒

ê′∧Γ ⊢ ê′ : τ̂ ′ & φ̂′ → τ̂ = τ̂ ′∧ φ̂ ↔ φ̂′) and conclude that t = t′ and φ ↔ φ′.
Case e = match ê with [C(x) → e] →֒ e′ = match ê′ with [C(x) → e]: By

assumption we have

Γ ⊢ match ê with [C(x) → e] : τp & φ̂ ∨ φp (7)

Γ ⊢ match ê′ with [C(x) → e] : τ ′p & φ̂′ ∨ φ′
p (8)

By inversion on equation (7) we get

Γ ⊢ ê : τ̂ & φ̂

tt; τ̂ ;Γ ⊢p [C(x) → e] : τp & φp (9)

and by inversion on equation (8) we obtain

Γ ⊢ ê′ : τ̂ ′ & φ̂′

tt; τ̂ ′;Γ ⊢p [C(x) → e] : τ ′p & φ′
p (10)

Now by applying the induction hypothesis (Γ ⊢ ê : τ̂ & φ̂∧ ê →֒ ê′ ∧Γ ⊢ ê′ :

τ̂ ′ & φ̂′ → τ̂ = τ̂ ′ ∧ φ̂ ↔ φ̂′) we can conclude that the equations (9) and (10)
are equivalent and thus, t = t′ and φ = φ′.

Now to the interesting cases.

Case e = ((rec f x = ê) v) →֒ e′ = ê[x 7→ v, f 7→ rec f x = ê]: By assumption
we have

Γ ⊢ ((rec f x = ê v)) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1 (11)

on which we apply inversion (T-FunApp) and get

Γ ⊢ v : τv & ff

Γ ⊢ rec f x = ê : rec α τe = φe & ff (12)



Applying inversion (T-Rec) on the second judgement (12) yields

Γ, x : α, f : rec α τe = φe ⊢ ê : τe & φe α fresh (13)

Thus, for equation (11) we have (τ1@τ τ2) = ((rec α τe = φe)@τ τv) = τe[α 7→
τv] and (τ1@φ τ2)∨φ1 ∨φ2 ∨∀ /∈ τ1 = ((rec α τe = φe)@φ τv)∨ff∨ff∨∀ /∈
(rec α τe = φe) = φe[α 7→ τv]. Our assumption can thus be rewritten as

Γ ⊢ ((rec f x = ê v)) : τe[α 7→ τv] & φe[α 7→ τv]

We now claim that the following holds

Γ ⊢ ê[x 7→ v, f 7→ rec f x = ê] : τe[α 7→ τv] & φe[α 7→ τv]

To show that, we apply Item 2 and get

Γ, x : α, f : rec α τe = φe ⊢ ê : τe & φe ∧ Γ ⊢ rec f x = ê : rec α τe = φe & ff →

Γ, x : α ⊢ ê[f 7→ rec f x = ê] : τe & φe

On the consequent, we apply Item 2 and get

Γ, x : α ⊢ ê[f 7→ rec f x = ê] : τe & φe →

Γ [α 7→ τv], x : τv ⊢ ê[f 7→ rec f x = ê] : τe[xα 7→ τv] & φe[α 7→ τv]

From equation (13) we know that α was fresh, and thus α /∈ ran(Γ ) which
implies Γ [α 7→ τv] = Γ . Finally, we again apply Item 2 and get

Γ [α 7→ τv], x : τv ⊢ ê[f 7→ rec f x = ê] : τe[xα 7→ τv] & φe[α 7→ τv]

∧ Γ ⊢ v : τv & ff →

Γ ⊢ (ê[f 7→ rec f x = ê])[x 7→ v] : τe[α 7→ τv] & φe[α 7→ τv]

As x /∈ free(rec f x = ê), we can reorder the substitution and

Γ ⊢ ê[x 7→ v, f 7→ rec f x = ê] : τe[α 7→ τv] & φe[α 7→ τv]

holds, as claimed.
Case e = match C(v) with C(x) → ê|r →֒ e′ = ê[xi 7→ vi] (i = 1 . . . , n): By

our assumptions we know that

Γ ⊢ match C(v) with C(x) → ê|r : τp & φ0 ∨ φp (14)

Γ ⊢ ê[xi 7→ vi] : t
′ & φ′ (15)

Now we have to show that τp = t′ and φ0 ∨ φp ↔ φ′ holds. By inversion on
equation (14) we get two judgements: At first, Γ ⊢ C(v̄) : C(τv) & ff which
by inversion yields

Γ ⊢ vi : τi & ff i = 1, . . . , n (16)



and second, we get

tt;C(τv);Γ ⊢p C(x̄) → ê|r : τe ∪ τ̃ & (φ0 ∧ C /∈ C(τv)) ∧ φe) ∨ φ̃ (17)

We again apply inversion and by T-Pattern-Next get

(φ0 ∧ C /∈ C(τv));C(τv);Γ ⊢p r : τ̃ & φ̃ (18)

Γ, xi : C(τv)↓
C
i ⊢ ê : τe & φe i = 1, . . . , n (19)

As we know that φ0 = tt, C ∈ C(τv) = tt, and C /∈ C(τv) = ff (the
pattern matches), we can change equation (18) to

ff;C(τv);Γ ⊢p r : τ̃ & φ̃

and then apply Lemma 5 and conclude 2 φ̃. Thus, equation (17) simplifies
to

tt;C(τv);Γ ⊢p C(x̄) → ê|r : τe ∪ τ̃ & φe

Now we have to derive the types of equation (15) and show that τe ∪ τ̃ = t′

and φe ↔ φ′. In equation (19) we can simplify C(τv)↓
C
i to τi and then apply

Item 2 (value substitution) n times using equation (16) with the appropriate
i. Thus, we obtain

Γ ⊢ ê[xn 7→ vn] . . . [x1 7→ v1] : τe & φe

The substitution is order-independent as ∀i, j : xi /∈ vi and thus we get

Γ ⊢ ê[xi 7→ vi] : τe & φe

By subtyping (τe ≤ τe ∪ τ̃ ) our claim holds.
Case e = match C(v) with D(x̄) → ê|r →֒ e′ = match C(v) with r: By

assumption we have

Γ ⊢ match C(v) with D(x̄) → ê|r : τp & φ0 ∨ φp (20)

Γ ⊢ match C(v) with r : τ ′p & φ′
0 ∨ φ′

p (21)

Our claim is that τ ′p ≤ τp and φ0 ∨ φp ↔ φ′
0
∨ φ′

p. To prove this, we apply
inversion on equation (20) and obtain

Γ ⊢ C(v) : C(τ ) & ff (22)

tt;C(τ );Γ ⊢p D(x̄) → ê|r : τê ∪ τ̃ & tt ∧C ∈ D ∧ φê ∨ φ̃ (23)

where the crash condition (φ0 = ff) of equation (22) can be deduced by
another inversion. Equation (23) can be simplified as we know that C ∈
D = ff. Thus, we get φ = φp and (without simplifications) t = τp. Inversion
on the other assumption (21) again yields equation (21) and additionally we
have

tt;C(τ );Γ ⊢p r : τ ′p & φ′
p (24)

With the same reason as above, we can follow that φ0 = φ′
0
= ff and thus

φ′ = φ′
p. Inversion on both equations (23) and (24) requires a case distinction

over r as both the rules T-Pattern-Empty and T-Pattern-Next match.



Subcase r = [ ]: Inversion on equation (23) yields

tt ∧ (D ∈ C(v) ∨D /∈ C(τ ));C(τ );Γ ⊢p [ ] : τ̃ & φ̃

By T-Pattern-Empty we get τ̃ = ⊥ and φ̃ = tt. Thus, t = τê ∪ τ̂ and
φ = φ̃ = tt. With r = [ ] and T-Pattern-Empty equation (24) gets
more specific: tt;C(τ );Γ ⊢p [ ] : ⊥ & tt. It follows that τ ′p = ⊥ and
φ′ = tt and thus, our claim holds.

Subcase r 6= [ ]: Inversion on equation (23) now gives

tt ∧ (D ∈ C(v) ∨D /∈ C(τ ));C(τ );Γ ⊢p r : τ̃ & φ̃

This can be simplified by D /∈ C(τ ) = tt to

tt;C(τ );Γ ⊢p r : τ̃ & φ̃ (25)

As we have deterministic rules, we can follow from the equivalency of
equation (24) and (25) that τ̃ = τ ′p and φ̃ = φ′

p. Thus, φ = φ′ and t = t′.

And finally, the error cases.

Case e = (v̂ v) →֒ e′ = err: By assumption we have

Γ ⊢ (v̂ v) : t & φ (26)

Γ ⊢ err : ⊥ & tt

By inversion on equation (26) we also get Γ ⊢ v̂ : τv̂ & ff. As v̂ ∈ {n,C(v)},
we know that ∀ /∈ τv̂ holds and thus, φ = tt. But then, φ = φ′ and t′ ≤ t.

Case e = ((rec f x = e) err) →֒ e′ = err: By assumption we have

Γ ⊢ ((rec f x = e) err) : t & φ (27)

Γ ⊢ err : ⊥ & tt

By inversion on equation (27) we also get Γ ⊢ err : ⊥ & tt. Thus, φ2 = tt

which implies φ = tt. But then, φ = φ′ and t′ ≤ (τ1 @τ τ2).
Case e = match err with P →֒ e′ = err: by assumption we have

Γ ⊢ match err with P : t & φ (28)

Γ ⊢ err : ⊥ & tt

by inversion on equation (28) we also get Γ ⊢ err : ⊥ & tt. Thus, φ = tt.
But then, φ = φ′ and t′ ≤ τp.

Case e = match C(v) with [ ] →֒ e′ = err: by assumption we have

Γ ⊢ match C(v) with [ ] : t & φ (29)

Γ ⊢ err : ⊥ & tt

by inversion on equation (29) we also get tt; τ0;Γ ⊢p [ ] : τp & φp. By
T-Pattern-Empty we know that τp = ⊥ and φ = tt. Thus, t = ⊥ and
φ = tt. But then, φ = φ′ and t′ ≤ t.



Case e = C(v1, . . . , vn, err, e1, . . . , em) →֒ e′ = err: Assumptions give us

Γ ⊢ C(v1, . . . , vn, err, e1, . . . , em) : t & φ (30)

Γ ⊢ err : ⊥ & tt

By inversion on equation (30) we get, amongst others, Γ ⊢ err : ⊥ & tt, and
thus, we can follow by T-Constructor, that φ = tt. We can now conclude
t′ ≤ t and φ = φ′.

Proof (Item 2). For the simple cases e = {n, rec f x = e, C(v), x} the assump-
tion does not hold, as Γ ⊢ e : τ & ff.

Case e = err: Trivially holds.
Case e = C(e): Holds by inversion, application of the induction hypothesis and

application of SCtorErr.
Case e = (e1 e2):

– Wlog assume � T (φ1): Holds by inversion, application of the induction
hypothesis and application of SAppErr1

– Wlog assume � T (φ2): Holds by inversion, application of the induction
hypothesis and application of SAppErr2.

– Wlog assume � T (∀ /∈ τ1): We can assume that either V(e1) ⇑ or
V(e1) →֒∗ v. For the former, clearly V(e) ⇑. For the latter, we apply
Theorem 1 and deduce that v cannot be a function. Thus our claim
holds by SAppErr1.

– Wlog assume � T ((τ1 @τ τ2)), 2 T (φ1), and 2 T (φ2): We know that

V(e) →֒∗ ((rec f x = e′) v)
SApp
→֒ e′′. By inversion and application of the

induction hypothesis our claim holds.
Case e = match e0 with [C(x) → e′]:

– Wlog assume � T (φ0): By inversion, application of the induction hy-
pothesis, and SMatchErr our claim holds.

– Wlog assume � T (φp): By inversion we get

tt; τ0;Γ ⊢p P : τp & φp

Again by inversion we know that V(e0) →֒∗ C(v) with Γ ⊢ C(v) :
C(τ ) & ff. Thus we can apply the induction hypothesis and get
• that there is no matching constructor. Thus

V(e)
SMatchErr

→֒∗ V(match C(v) with [ ]

and by SMatchNextErr our claim holds.
• that there is a matching constructor. Thus

V(e)
SMatchNext

→֒∗ V(e′′) →֒ V(e′) →֒∗ err

For the pattern-matching cases we have get the following:



Case TPatternEmpty: Trivial follows that there is not matching constructor.
Case TPatternNext: There are two cases:

– If the first constructor matches the constructor value, then 2 T (φ0)
because it is the first match and Lemma 5. Furthermore, we have �

T (C ∈ τ0). By assumption we conclude that � T (φe) and thus apply the
induction hypothesis on

Γ, xi : τ0 ↓
C
i ⊢ e : τe & φe

and our claim holds.
– If the first constructor does not match, we apply inversion and the in-

duction hypothesis and on the remaining patterns and get:
• if there is no matching constructor our claim immediately holds.
• if there is a matching constructor Cj with body expression ej and
V(ej) →֒∗ err or V(ej)⇑, then our claim holds for i = j + 1.


