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Abstract. This paper describes a tool for intersecting context-free gram-
mars. Since this problem is undecidable the tool follows a refinement-
based approach and implements a novel refinement which is complete
for regularly separable grammars. We show its effectiveness for safety
verification of recursive multi-threaded programs.

1 Introduction

Checking emptiness of intersections of context-free grammars is a well-known
undecidable problem. However, the fact that this problem is equivalent to safety
verification of recursive multi-threaded programs has kept motivating the design
of semi-decision procedures that can still be effective in practice.

In this paper, we describe covenant, a tool for checking whether the lan-
guages of an arbitrary number of context-free grammars are disjoint and show
its role as a component in the analysis of recursive multi-threaded programs.
The tool takes a grammatical approach [7], in the sense that it is formalized
in terms of context-free grammars rather than pushdown automata [1, 2, 10]. It
implements a counter-example guided abstraction refinement (CEGAR) of reg-
ular over-approximations and integrates a complete refinement procedure that
guarantees termination if the context-free grammars are regularly separable.3 We
show its application to safety verification of recursive multi-threaded programs.

To the best of our knowledge, our tool is the only publicly available implemen-
tation tackling the problem of intersecting unbounded context-free grammars.

2 Approach

The tool discussed in this paper follows the so-called counter-example guided
abstraction refinement (CEGAR) of regular over-approximations. Without loss
of generality, in this presentation we consider the intersection of just two context-
free grammars G1 and G2. The scheme is based on an initial abstraction which is
repeatedly refined until either the languages are proven disjoint, an intersection
witness has been found, or resources have been exhausted:

3 Two context-free grammars G1 and G2 are regularly separable if there exist two
regular languages L1 and L2 such that L(G1) ⊆ L1, L(G2) ⊆ L2 and L1 ∩ L2 = ∅.



1. Abstraction: compute regular approximations R1 and R2 such that L(G1) ⊆
L(R1) and L(G2) ⊆ L(R2).

2. Verification: using a decision procedure for regular languages if L(R1) ∩
L(R2) = ∅ then L(G1) ∩ L(G2) = ∅, so answer “the languages are disjoint.”
If w ∈ (L(R1) ∩ L(R2)), w ∈ L(G1), and w ∈ L(G2) then L(G1) ∩ L(G2) 6=
∅, so answer “the languages are not disjoint” and provide w as a witness.
Otherwise, go to step 3.

3. Refinement: produce new regular approximations R′
1 and R′

2 such that for
each R′

i
, i ∈ {1, 2}, we have L(Gi) ⊆ L(R′

i
) ⊆ L(Ri), and L(R′

i
) ⊂ L(Ri) for

some i. Update the approximations R1 ← R′
1, R2 ← R′

2, and go to step 2.

Abstraction. Note that a regular approximation always exists for any grammar
G since we can use Σ∗, where Σ is the alphabet of G. However, the precision of
the initial abstraction often has a significant impact on the convergence of the
refinement loop, so non-trivial initial abstractions such as the ith-prefix abstrac-
tion [1, 2] and the downward closure with a cycle-breaking heuristic [7] are more
suitable candidates.

Verification. This step assumes a decision procedure that returns “no” if L(A1)∩
L(A2) = ∅ or returns a witness w if w ∈ L(A1) ∩ L(A2) 6= ∅, where A1 and A2

are finite-state automata recognizing regular languages R1 and R2, respectively
(that is, L(A1) = R1 and L(A2) = R2). This can be solved using, for instance,
the classical product construction. Note that a different approach would make
use of the fact that the class of context-free languages is closed under intersec-
tion with regular languages. However, one advantage of our approach is that we
are able to leverage the latest advances made in string solving [4, 6, 11].

Refinement. At this point, the regular solver has found some witness w such
that w ∈ (L(A1) ∩L(A2)), but w /∈ (L(G1) ∩ L(G2)). There are three cases: (1)
w /∈ L(G1) ∧w ∈ L(G2), (2) w /∈ L(G1) ∧ w /∈ L(G2), and (3) w ∈ L(G1) ∧ w /∈
L(G2). For (1) and (3) we should refine A1 and A2, respectively. For (2) we could
choose to refine either A1 or A2, or both. covenant aggressively refines both.

We say a language L is a safe generalization of a witness w with respect
to a context-free grammar G if (a) L ⊇ {w} and (b) L ∩ L(G) = ∅. If w /∈
L(Gi) then a straightforward refinement is to produce a new abstraction that
recognizes L(Ai)\{w} in place of Ai. However, that refinement process will rarely
converge, as it excludes only finitely many examples. Instead, we would like to
produce safe generalizations of w containing an infinite number of words, to
hasten convergence. For this purpose, our tool implements the concept of star -
generalization [5]. Informally, a star-generalization of a word w is a language
that applies the Kleene ∗ operator (i.e., unbounded repetition) to any number
of non-overlapping, but possibly nested, subsequences of w, while ensuring the
resulting augmented language remains disjoint with the language of G.

3 Covenant

The tool is publicly available at https://bitbucket.org/jorgenavas/covenant.
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3.1 Design and Implementation Choices

The tool is implemented in C++ and parameterized by the initial approximation,
the regular solver, and the refinement procedure.

Abstraction. One advantage of having a grammatical view is that covenant
can easily leverage the advances made in areas such as speech processing where
precise abstraction of context-free grammars into regular grammars is an active
topic of research. covenant implements the method described by Nederhof [8]
for approximating context-free grammars with strongly regular languages.

We say a grammar is strongly regular if all productions are of the form:
A → B w | w or A → w B | w, where w ∈ Σ∗ and A,B are nonterminals. The
abstraction relies on the following observation: a grammar with productions of
the form A → αAβ with both α, β non-empty might not be represented as a
strongly regular grammar because α and β might be related through an “un-
bounded” communication not expressible by regular languages. The abstraction
consists of breaking conservatively those unbounded communications in such a
way that the grammar becomes regular while preserving as much as possible
the structure of the original grammar. Nederhof [8] also proposed a transfor-
mation from strongly regular grammars to finite automata also implemented in
covenant.

Regular Solver. covenant currently implements only the naive product con-
struction for intersecting finite automata but other regular solvers can easily
be plugged in. In fact, an initial implementation of covenant was tested using
Revenant [4], an efficient regular solver based on bounded model checking with
interpolation, though the released version does not incorporate it.

Refinement. covenant implements both the greedy and maximum star-epsilon
generalizations both described in [5]. We refer to [5] for details and describe
them informally through an example. Assume we have a witness w ≡ aab and
a context-free language L = {aibi+1 | i ≥ 0}. The greedy algorithm starts by
checking whether W1 ≡ a∗ab 6∈ L. Since the query succeeds, W1 is already a safe
generalization of w wrt . L so we could stop here. However, we can continue and
check next whether W2 ≡ a∗a∗b 6∈ L but b ∈ L so W2 must be discarded. Next,
we try whether W3 ≡ a∗ab∗ 6∈ L but abb ∈ L and thus W3 is also not a safe
generalization. Finally, we query W4 ≡ a∗(ab)∗ 6∈ L and W5 ≡ (a∗(ab)∗)∗ 6∈ L
which both succeed. Therefore, starting from aab, our tool can produce the safe
generalization (a∗(ab)∗)∗. In fact, our tool generated three safe generalizations:
W1 ⊆W4 ⊆W5. Although this greedy method is reasonably cheap (O(|w|2)), if
resources are scarce it can stop at any time, returning either W1 or W4.

The maximum star-epsilon version is similar to the greedy one except it
will compute the union of all possible safe generalizations without committing
to any successful partial generalization. That is, the greedy version started by
checking W1 and since W1 succeeded the rest of queries were relative to W1.
The non-greedy version will not commit to W1 but also try other possibilities.
For instance, aa∗b, (aa)∗b, (aab)∗, and a(ab)∗ are also safe generalizations from
which we can keep generalizing. Although more expensive, it is worth mentioning
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that this version ensures termination of the CEGAR loop whenever the context-
free grammars are regularly separable.

For the implementation, two operations are important: (a) intersection be-
tween a context-free grammar and a finite automaton for checking safe gener-
alizations, and (b) automata difference for refining the current abstraction by
discarding a safe generalization W of w. For (a), covenant uses a modified
version of the efficient pre∗ algorithm [3] and for (b) it intersects the current
abstraction with the complement of the determinization of W . Although deter-
minization of automata can have an exponential size blowup, this behavior is
rare; we have not seen it during experiments. Based on our experience, it is also
useful to minimize after (b) has been performed, to keep the abstraction small.

3.2 Preprocessing and Output

We require that the input grammars are in the following normal form: A→ BC |
B | a | ε, where A,B,C are nonterminals and a ∈ Σ+, where Σ is the alphabet
of the grammar. Any context-free grammar can be converted to this form by a
linear increase in terms of the size of the original grammar. covenant performs
this normalization as a preprocessing step but it does not require any further
(more expensive) normalizations, such as Chomsky Normal Form.

If covenant proves that the language of the grammars are not disjoint it will
return a witness. The user can set the option --solutions n to ask the solver
for n solutions. The option --dot will output the automata resulting from the
initial abstraction, each of the safe generalizations, and the final abstractions
when emptiness was proven, all in the dot language of the Graphviz package.

4 Safety Verification of Multithread Programs

Bouajjani et al . [1] pioneered safety verification of recursive multi-threaded pro-
grams by reduction to checking the intersection of context free languages for
emptiness. For lack of space, we refer to [1, 2, 7] for details of the encoding.

We have tested covenant and compared with lcegar [7] using two classes
of programs: textbook Erlang programs and several variants of a real Bluetooth
driver. A detailed description of the programs as well as the safety properties can
be found in [2, 7, 9]. We ran lcegar with the setting provided by the authors
and tried with the two available initial abstractions: pseudo-downward closure
(PDC) and cycle breaking (CB). Table 1 shows the results. The symbol∞ means
a timeout expired after 2 hours. We ran covenant with the greedy refinement.

5 Related Work

To the best of our knowledge, covenant is the first publicly available implemen-
tation for intersecting context-free grammars ensuring termination for regularly
separable grammars. Several CEGAR approaches have been proposed before.
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Program covenant lcegar

PDC CB

SharedMem safe 0.01 14.37 24.75

Mutex safe 0.04 6.12 0.14

RA safe 0.01 ∞ 0.39

Modified RA safe 0.03 ∞ 27.90

TNA unsafe 0.01 0.02 0.25

Banking unsafe 0.01 ∞ 3.36

(a) Verification of multi-thread Erlang programs

Program covenant lcegar

PDC CB

Version 1 unsafe 0.84 19.74 21.04

Version 2 unsafe 0.25 5560.00 4852.00

Version 2 w/ Heuri unsafe 0.11 44.68 38.89

Version 3 (1A2S) unsafe 0.12 217.74 217.27

Version 3 (1A2S) w/ Heuri unsafe 0.05 6.68 11.37

Version 3 (2A1S) safe 0.27 4185.00 3981.00

(b) Verification of multi-thread Bluetooth drivers

Table 1: Comparison of covenant with lcegar; times in seconds. All experi-
ments ran on a single core of a 2.4GHz Core i5-M520 with 8GiB of memory.

Here, we do not consider the effect of initial approximations, as they do not
affect the expressiveness of the refinement loop and are easily interchangeable.

The first CEGAR approach was proposed in [1] based on the concept of
refinable finite-chain abstraction which consists of computing the series (αi)i≥1

overapproximating the language of a CFG G such that L(α1(G)) ⊃ L(α2(G)) ⊃
· · · ⊇ L(G). Several refinable abstractions were described in [1] although no
experimental data was provided. Instead, we compare here with the ith-prefix
abstraction4 implemented in [2]. In this, αi(G) is the set of words of G of length
less than i, together with the set of prefixes of length i of G. We argue that
the refinement implemented in covenant is more expressive as it is not hard
to find regularly separable languages that cannot be proven so by the ith-prefix
abstraction. For instance, with R1 ≡ a∗b and R2 ≡ a∗c, we have R1 ∩ R2 = ∅,
while for every length i, the string ai forms a prefix to words in both R1 and
R2. Therefore the intersection of the two abstractions will always be non-empty.

The lcegar method described in [7] is based on a similar refinement frame-
work, but the approach differs radically. lcegar maintains a pair of context-free
grammars A1, A2, over-approximating the intersection of the original languages.
At each refinement step, an elementary bounded language Bi is generated from
each grammar Ai.

5 The refinement ensures Bi∩Ai 6= ∅, but Bi is not necessarily

4 [2] also implemented the i
th-suffix abstraction which suffers from same limitations.

5 An elementary bounded language is a language of the form B = w
∗

1 . . . w
∗

k, where
each wi is a (finite) word in Σ

∗.

5



either an over- or under-approximation of Ai. After that, I = Bi ∩ L1 ∩ L2 is
computed. If I is non-empty, L1∩L2 must also be non-empty. If I is empty, then
the approximations can safely be refined by removing Bi.

Here a comparison between methods is more involved, and we refer to [5] for
details. Suffice it to say that the refinements done by lcegar and covenant

are incomparable. That is, there are grammars which are not regularly separable
for which lcegar can terminate but covenant cannot, and there are also
grammars which are regularly separable but lcegar cannot terminate.

Finally, the verification phase in covenant consists of intersecting finite
automata, for which efficient solvers are available. Instead, lcegar intersects
several context-free grammars and a bounded language which, although decid-
able, is NP-Complete. In our experience, lcegar makes a smaller number of
refinements than covenant, but each refinement in covenant is considerably
cheaper than in lcegar, resulting in the better performance.

6 Conclusions

The main contributions of this paper have been to describe a tool for intersecting
context-free grammars, and to show it can be effective for safety verification of
recursive multi-threaded programs.
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Appendix: Tool Demonstration

Installation. The installation process relies on cmake which allows covenant
being installed across different platforms6. The only requirements are:

– to install the boost library
– to install a reasonable modern C++ compiler version. covenant has been

tested for clang++ 3.2 and g++ 4.8.

Usage. The options for running covenant are:

covenant [OPTIONS] INPUT

where INPUT is a text file containing the context-free grammars to be inter-
sected. We will describe the most relevant options as they are needed during
this presentation. All options are visible by typing covenant -h.

“UNSAT” example. Consider the two contrived regularly-separable context-free
languages L1 = {wcwR | w ∈ {a, b}∗} and L2 = {ancbn}. The content of INPUT
is the following:

;; L1 = { wcw^{R} | w \in {a,b}^{*} }

( S1 -> [ "c" ];

S1 -> [ "a" S1 "a", "b" S1 "b" ];

)

;; L2 = { (a^n)c(b^n) | n>0 }

(

S2 -> [ "a" A2 "b" ];

A2 -> [ "c" ];

A2 -> [ S2 ]

)

The nonterminal symbol appearing on the left-hand side in the first grammar
production is considered the start symbol of the grammar. In the above example
the start symbols are S1 and S2, respectively. Terminal symbols must be between
double quotes (e.g., “a” and “b”). Each grammar production is of the form A ->

[ ...]; where A is a nonterminal and . . . is a sequence of any nonterminal or
terminal symbol separated by one or more blanks. We also allow A -> [ ...,

...]; to express two grammar productions with the same left-hand side A. That
is, S1-> [ "a" S1 "a", "b" S1 "b" ]; is syntactic sugar for S1 -> [ "a" S1

"a"]; S1 ->[ "b" S1 "b" ];. Any text after ;; is considered a comment.
If we type covenant INPUT --gen=max-gen, where max-gen refers to the

maximum star-epsilon generalization, we obtain:

6
covenant has been tested only for x86 64.
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Initial Regular Approximation of L1

q 0

a
b

q 1
c

a
b

Initial Regular Approximation of L2

q 0 q 1
a

a

q 2
c

b

Fig. 1: abstractions.dot: initial regular abstractions

Finished after 2 cegar iterations.

======

UNSAT

======

This means that covenant proved that the two languages L1 and L2 are dis-
joint. Similar result and number of iterations are obtained if we run with option
--gen=greedy (for the greedy generalization).

We can also view the dot files produced by covenant by adding option
--dot. Figure 1 depicts the initial regular approximations of the context-free
grammars by means of finite-state automata. Note that in both cases the struc-
ture of the original context-free grammar is preserved as much as possible. For
instance, for L2, the abstraction comes from the need to “forget” the relation
between the number of as and bs while still remembering that a symbolic c

must separate the as and bs. Each spurious witness found during the refinement
loop is also shown as a finite automata as well as their safe generalizations in
Figure 2. Note that after the second witness w ≡ acb is found, covenant only
needs to compute a safe generalization of w with respect to L1, since w is already
recognized by L2. Figure 3 shows the final regular approximations which prove
that L1 and L2 are disjoint.

“SAT” example. Consider now the languages L1 = {w | #a′s = #b′s, w ∈
{a, b}∗} and L2 = {wwR | w ∈ {a, b}∗} with the corresponding context-free
grammars in covenant format:

;; L1 = { w | w \in {a,b}^{*}, #a’s=#b’s }

( S1 -> [];

S1 -> [ "a" S1 "b" S1];

S1 -> [ "b" S1 "a" S1]

)

;; L2 = { ww^{R} | w \in {a,b}^{*} }

( S2 -> ["a" "a", "b" "b", "a" S2 "a", "b" S2 "b"])

8



1st  Cex 

q 0 q 1
a

q 2
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2nd Cex 

q 0 q 1
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q 3
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Safe general izat ion of  1st  Cex wrt  L1
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a
q 1a

c
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Safe general izat ion of  2nd Cex wrt  L1

q 0

a
c

q 1

a

c

q 2
c

c

c
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b
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q 3
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c

c

c
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Safe general izat ion of  1st  Cex wrt  L2

q 0

a
c
c

q 1

a

c

c

q 2

c

c

c

c

c
c

c

c

c

c

c

Fig. 2: refinements.dot: witnesses and safe generalizations

By typing covenant INPUT, we obtain:

Found a solution after 5 iterations:

a b b a

======

SAT

======

That is, covenant found a word abba that is recognized by both languages.
Moreover, we can ask covenant for more solutions, say, five more solutions, by
typing covenant INPUT --solutions 5:

Found a solution after 5 iterations:

a b b a

Found a solution after 6 iterations:

b a a b

Found a solution after 20 iterations:

a a b b b b a a
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Final Regular Approximation of L1

q 0

q 2

c

q 5
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q 6

b

q 1

a
b

q 3

a
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b

b
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a
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c

a
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q 8

a

b
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Final Regular Approximation of L2

q 0 q 1
a

a

q 3
c

q 2

b

b

Fig. 3: proofs.dot: final regular abstractions that prove emptiness

Found a solution after 22 iterations:

a b a b b a b a

Found a solution after 23 iterations:

a b b a a b b a

======

SAT

======
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