
ar
X

iv
:1

40
9.

75
09

v2
 [

cs
.P

L
]

 2
0

O
ct

 2
01

4

Expression-based aliasing for OO–languages

Georgiana Caltais1

Department of Computer Science, ETH Zürich, Switzerland

Abstract. Alias analysis has been an interesting research topic in verifi-
cation and optimization of programs. The undecidability of determining
whether two expressions in a program may reference to the same ob-
ject is the main source of the challenges raised in alias analysis. In this
paper we propose an extension of a previously introduced alias calculus
based on program expressions, to the setting of unbounded program ex-
ecutions such as infinite loops and recursive calls. Moreover, we devise a
corresponding executable specification in the K-framework. An impor-
tant property of our extension is that, in a non-concurrent setting, the
corresponding alias expressions can be over-approximated in terms of a
notion of regular expressions. This further enables us to show that the
associated K-machinery implements an algorithm that always stops and
provides a sound over-approximation of the “may aliasing” information,
where soundness stands for the lack of false negatives. As a case study,
we analyze the integration and further applications of the alias calculus
in SCOOP. The latter is an object-oriented programming model for con-
currency, recently formalized in Maude; K definitions can be compiled
into Maude for execution.

1 Introduction

A research direction of interest in Computer Science is the application of alias
analysis in verification and optimization of programs. One of the challenges
along this line of research has been the undecidability of determining whether
two expressions in a program may reference the same object. A rich suite of
approaches aiming at providing a satisfactory balance between scalability and
precision has already been developed in this regard. Examples include: (i) intra-
procedural frameworks [16,15] that handle isolated functions only, and their
inter-procedural counterparts [15,22,11] that consider the interactions between
function calls; (ii) type-based techniques [8]; (iii) flow-based techniques [4,6]
that establish aliases depending on the control-flow information of a procedure;
(iv) context-(in)sensitive approaches [9,29] that depend on whether the calling
context of a function is taken into account or not; (v) field-(in)sensitive ap-
proaches [20,1] that depend on whether the individual fields of objects in a
program are traced or not. More details on such classifications can be found
in [25], for instance. For a comprehensive survey on alias analyses for object-
oriented programs, corresponding issues and remaining open problems, we refer
the interested reader to the works in [28,10].

http://arxiv.org/abs/1409.7509v2

Of particular interest for the work in this paper is the untyped, flow-sensitive,
field sensitive, inter-procedural and context-sensitive calculus for may aliasing,
introduced in [14]. The aforementioned calculus covers most of the aspects of a
modern object-oriented language, namely: object creation and deletion, condi-
tionals, assignments, loops and (possibly recursive) function calls. The approach
in [14] abstracts the aliasing information in terms of explicit access paths [17]
referred to as alias expressions. Consider, for an example, the code

x : = y;
loop x : = x.next end

(1)

The corresponding execution causes x to become aliased to y.next.next. . . ., with
a possibly infinite number of occurrences of the field next. The set of associated
alias expressions can be equivalently written as:

{[x, y.nextk] | k ≥ 0}. (2)

The sources of imprecision introduced by the calculus in [14] are limited to ig-
noring tests in conditionals, and to “cutting at length L”, for the case of possibly
infinite alias relation as in (2). Intuitively, the cutting technique considers se-
quences longer than a given length L as aliased to all expressions.

There is a huge literature on heap analysis for aliasing [10], but hardly any
paper that presents a calculus as in [14] allowing the derivation of alias relations
as the result of applying various instructions of a programming language.

Our focus is two folded. First, we want extend the framework in [14] to the
setting of unbounded program executions such as infinite loops and recursive
calls. In accordance, the goal is to provide a way to shift from “finite” to “infi-
nite behaviours”. This can be achieved in a rather straightforward manner, by
redefining the construct loop p end in [14] according to the informal semantics:
“execute p repeatedly any number of times, including zero”. However, developing
a corresponding mechanism for reasoning on “may aliasing” in a finite number of
steps is not trivial. The key observation that paves the way to a possible (finite
state-based) modeling in a non-concurrent setting is that the alias expressions
corresponding to loops and recursive calls grow in a regular fashion. Hence, they
are finitely representable, as it is easy to see in (2), for instance. Such regular-
ities cannot be exploited in concurrent contexts, due to the “non-determinism”
of process interaction.

A similar technique exploiting regular behaviour of (non-concurrent) pro-
grams, in order to reason on “may aliasing”, was previously introduced in [2]. In
short, the results in [2] utilize abstract representations of programs in terms of
finite pushdown systems, for which infinite execution paths have a regular struc-
ture (or are “lasso shaped”) [3]. Then, in the style of abstract interpretation [7],
the collecting semantics is applied over the (finite state) pushdown systems to
obtain the alias analysis itself. In short, the main difference with the results
in [2] consists in how the abstract memory addresses corresponding to pointer
variables are represented. In [2] these range over a finite set of natural numbers.
In this paper we consider alias expressions build according to the calculus in [14].

The work in [2] also proposes an implementation of pushdown systems in
the K-framework [26]. The latter is an executable semantic framework based on
Rewriting Logic (RL) [18], and has successfully been used for defining program-
ming languages and corresponding formal analysis tools. Moreover,K definitions
have a direct implementation in K-Maude [27].

We agree that it could be worth presenting our analysis as an abstract in-
terpretation (AI) [7]. A modelling exploiting the machinery of AI (based on
abstract domains, abstraction and concretization functions, Galois connections,
fixed-points, etc.) is an interesting, but different research topic per se.

Our second interest w.r.t. may aliasing is its integration in SCOOP [21] – a
simple object oriented programming model for concurrency; thus an operational
based approach on handling the alias calculus is more appropriate. The basis
of a RL-based framework for the design and analysis of the SCOOP model was
recently set in [21]. The reference implementation of SCOOP is Eiffel [19]. The
integration of alias analysis belongs to a more ambitious goal, namely, the con-
struction of a RL-based toolbox for the analysis of SCOOP programs (examples
include a deadlock detector and a type checker).

Our contribution. By drawing inspiration from, and building on top of the results
in [14,2], in this paper we propose:

– an extension of the (finite) alias calculus in [14] to the setting of unbounded
program executions, and a sound over-approximation technique based on
“regular alias expressions”, for non-concurrent settings;

– a RL-based specification of the extended calculus;

– an algorithm that always terminates and provides a sound over-approximation
of “may aliasing” by exploiting a notion of regular (finitely representable)
aliases, for non-concurrent settings.

Moreover, we analyze the integration, implementation and further applications
of the alias calculus in SCOOP.

Paper structure. The paper is organized as follows. In Section 2 we introduce
the extension of the alias calculus in [14] to unbounded executions. In Section 3
we provide the RL-based executable specification of the calculus in the K se-
mantic framework. The implementation in SCOOP, and further applications are
discussed in Section 4. In Section 5 we draw the conclusions and provide pointers
to future work.

2 The alias calculus

In this section we define an extension of the calculus in [14], to unbounded
program executions. Moreover, based on the idea behind the pumping lemma for
regular languages [24], we devise a corresponding sound over-approximation of
“may aliasing” in terms of regular expressions, applicable in sequential contexts.
This paves the way to developing an algorithm for the aliasing problem, as
presented in Section 3, in the formal setting of the K semantic framework [26].

Preliminaries. We proceed by briefly recalling the notion of alias relation and
a series of associated notations and basic operations, as introduced in [14].

We call an expression a (possibly infinite) path of shape x.y.z. . . ., where x
is a local variable, class attribute or Current, and y, z, . . . are attributes. Here,
Current, also known as this or self, stands for the current object. For an arbitrary
alias expression e, it holds that e.Current = Current .e = e. Let E represent the
set of all expressions of a program. An alias relation is a symmetric and irreflexive
binary relation over E × E.

Given an alias relation r and an expression e, we define

r/e = {e} ∪ {x:E | [x, e] ∈ r}

denoting the set consisting of all elements in r which are aliased to e, plus e
itself.

Let x be an expression; we write r − x to represent r without the pairs with
one element of shape x.e.

We say that an alias relation is dot complete whenever for any t, u, v and
a it holds that if [t, u] and [t.a, v] are alias pairs, then [u.a, v] is an alias pair
and, moreover, if a is in the domain of t, then [t.a, u.a] is an alias pair. By
the “domain of t” we refer to a method or a field in the class corresponding to
the object referred by the expression associated to t. For instance, given a class
NODE with a field next of type NODE, and a NODE object x, we say that
next is in the domain of t = x.next.next. For the sake of brevity, we write
dot-complete(r) for the closure under dot-completeness of a relation r.

The notation r[x = u] represents the relation r augmented with pairs [x, y]
and made dot complete, where y is an element of u.

2.1 Extension to unbounded executions

We further introduce an extension of the alias calculus in [14] to infinite alias
relations corresponding to unbounded executions such as infinite loops or recur-
sive calls. The main difference in our approach is reflected by the definition of
loops, which now complies to the usual fixed-point denotational semantics.

The alias calculus is defined by a set of axioms “describing” how the execution
a program affects the aliasing between expressions. As in [14], the calculus ignores
tests in conditionals and loops. The program instructions are defined as follows:

p :: = p ; p | then p else p end |
create x | forget x | t := s |
loop p end | call f(l) | x.call f(l).

(3)

In short, we write r » p to represent the alias information obtained by executing
p when starting with the initial alias relation r.

The axiom for sequential composition is defined in the obvious way:

r » (p ; q) = (r » p)» q. (4)

Conditionals are handled by considering the union of the alias pairs resulted
from the execution of the instructions corresponding to each of the two branches,
when starting with the same initial relation:

r » (then p else q end) = r » p ∪ r » q. (5)

As previously mentioned, we define r » loop p end according to its informal
semantics : “execute p repeatedly any number of times, including zero”. The
corresponding rule is:

r » (loop p end) =
⋃

n∈N

(r » pn) (6)

where ∪ stands for the union of alias relations, as above. This way, our calculus is
extended to infinite alias relations. This is the main difference with the approach
in [14] that proposes a “cutting” technique restricting the model to a maximum
length L. In [14], sequences longer than L are considered as aliased to all expres-
sions. Orthogonally, for sequential settings, we provide finite representations of
infinite alias relations based on over-approximating regular expressions, as we
shall see in Section 2.2.

Both the creation and the deletion of an object x eliminate from the current
alias relation all the pairs having one element prefixed by x:

r » (create x) = r − x
r » (forget x) = r − x.

(7)

The (qualified) function calls comply to their initial definitions in [14]:

r » (call f(l)) = (r[f•:l])» | f |
r » (x.call f(l)) = x.((x′.r)» call f(x′.l)).

(8)

Here f• and | f | stand for the formal argument list and the body of f , respec-
tively, whereas r[u:v] is the relation r in which every element of the list v is
replaced by its counterpart in u. Intuitively, the negative variable x′ is meant to
transpose the context of the qualified call to the context of the caller. Note that
“ .” (i.e., the constructor for alias expressions) is generalized to distribute over
lists and relations: x.[a, b, . . .] = [x.a, x.b, . . .].

For an example, consider a class C in an OO-language, and an associated
procedure f that assigns a local variable y, defined as: f(x) { y : = x }. Then,
for instance, the aliasing for a.call f(a) computes as follows:

∅ » a.call f(a) =
a.(a′.∅ » y : = a′.a) =

a.(∅ » y : = Current) =
dot-complete({[a.y, a]}).

Recursive function calls can lead to infinite alias relations. In sequential set-
tings, as for the case of loops, the mechanism exploiting sound regular over-
approximations in order to derive finite representations of such relations is pre-
sented in the subsequent sections.

The axiom for assignment is as well in accordance with its original counter-
part in [14]:

r » (t := s) = given r1 = r[ot = t]
then (r1 − t)[t = (r1/s − t)]− ot end

(9)

where ot is a fresh variable (that stands for “old t”). Intuitively, the aliasing
information w.r.t. the initial value of t is “saved” by associating t and ot in r
and closing the new relation under dot-completeness, in r1. Then, the initial t
is “forgotten” by computing r1 − t and the new aliasing information is added in
a consistent way. Namely, we add all pairs (t, s′), where s′ ranges over r1/s − t
representing all expressions already aliased with s in r1, including s itself, but
without t. Recall that alias relations are not reflexive, thus by eliminating t we
make sure we do not include pairs of shape [t, t]. Then, we consider again the
closure under dot-completeness and forget the aliasing information w.r.t. the
initial value of t, by removing ot.

Remark 1. It is worth discussing the reason behind not considering transitive
alias relations. Assume the following program:

then x := y else y := z end

Based on the equations (5) and (9) handling conditionals and assignments, re-
spectively, the calculus correctly identifies the alias set: {[x, y], [y, z]}. Including
[x, z] would be semantically equivalent to the execution of the two branches in
the conditional at the same time, which is not what we want.

2.2 A sound over-approximation

In a sequential setting, the challenge of computing the alias information in the
context of (infinite) loops and recursive calls reduces to evaluating their corre-
sponding “unfoldings”, captured by expressions of shape

r » pω,

with ω ranging over naturals plus infinity, r an (initial) alias relation (r = ∅),
and p a basic control block defined by:

p :: = p ; p | then p else p end |
create x | forget x |
t := s.

(10)

The value r » pω refers to the alias relation obtained by recursively executing the
control block p, and it is calculated in the expected way:

r » p0 = r
r » pk+1 = (r » pk)» p.

Consider again the code in (1):

x := y;
loop x := x.next end.

Its execution generates the alias relation

(((∅ » (x := y))» (x := x.next))» (x := x.next) . . .

including an infinite number of pairs of shape:

[x, y.next], [x, y.next.next], [x, y.next.next.next] (11)

A similar reasoning does not hold for concurrent applications, where process
interaction is not “regular”.

In what follows we provide a way to compute finite representations of infinite
alias relations in sequential settings. The key observation is that alias expressions
corresponding to unbounded program executions grow in a regular fashion. See,
for instance, the aliases in (11), which are pairs of type [x, y.nextk≥1].

Regular expressions are defined similarly to the regular languages over an
alphabet. We say that an expression is regular if it is a local variable, class at-
tribute or Current. Moreover, the concatenation e1 . e2 of two regular expressions
e1 and e2 is also regular. Given a regular alias expression e, the expression e∗

is also regular; here (−)∗ denotes the Kleene star [13]. We call an alias relation
regular if it consists of pairs of regular expressions.

Lemma 1. Assume p a program built according to the rules in (3). Then, in a
sequential setting, the relation ∅ » p is regular.

Proof. The result follows by induction on the structure of p. We refer to Ap-
pendix A for the detailed proof.

Inspired by the idea behind the pumping lemma for regular languages [24], we
define a lasso property for alias relations, which identifies the repetitive patterns
within the structure of the corresponding alias expressions. The intuition is that
such patterns will occur for an infinite number of times due to the execution of
loops or recursive function calls. Then, we supply sound over-approximations of
“lasso” relations, based on regular alias expressions.

In the context of alias relations, we say that the lasso property is satisfied
by r and r′ whenever the following two conditions hold: (1) r behaves like a
lasso base of r′. Namely, all the pairs [e1, e2] ∈ r are used to generate elements
[e′1, e

′
2] ∈ r′, by repeating tails of prefixes of e1 and e2, respectively, and (2) r′ is

a lasso extension of r. Namely, all the pairs in r′ are generated from elements of
r by repeating tails of their prefixes. For example, if e1 above is an expression
of shape x.y.z.w, then e′1 can be x.y.y.z.w if we consider the tail y of the prefix
x.y, or x.y.z.y.z.w if we take the tail y.z of the prefix x.y.z.

Formally, consider r and r′ two alias relations, and xi, yi and zi a set of
(possibly empty) expressions, for i ∈ {1, 2}. Then:

lasso(r, r′) = ([x1y1z1, x2y2z2] ∈ r iff [x1y1y1z1, x2y2y2z2] ∈ r′). (12)

For the simplicity of notation we sometimes omit the dot-separators between
expressions. For instance, we write x y z in lieu of x.y.z.

Assuming a lasso over r and r′, we compute a relation consisting of regular
expressions over-approximating r and r′ as:

reg(r, r′) = {[x1y
∗
1z1, x2y

∗
2z2] |

[x1y1z1, x2y2z2] ∈ r∧
[x1y1y1z1, x2y2y2z2] ∈ r′}

(13)

where xi, yi and zi are possibly empty expressions, for i ∈ {1, 2}. As previously
indicated, the over-approximation is sound w.r.t. the repeated application of a
basic control block as in (10), in the way that it does not introduce any false
negatives:

Lemma 2. Consider r and r′ two alias relations, and p a basic control block in
a sequential setting. If r » p = r′ and lasso(r, r′) = true, then the following holds
for all n ≥ 1:

r » pn ∈ reg(r, r′).

Proof. The reasoning is by induction on n. The base case follows immediately,
whereas the induction step is proved by “reductio ad absurdum”. A detailed proof
is included in Appendix B. ⊓⊔

3 A K-machinery for collecting aliases

In this section we provide the specification of a RL-based mechanism collecting
the alias information in the K semantic framework [26]. We choose K more as
a notational convention to enable compact and modular definitions. In reality,
the K-rules in this section are implemented in Maude, as rewriting theories, on
top of the formalization of SCOOP [21] (we refer to Section 4 for more details
on our approach).

In short, our strategy is to start with a program built on top of the control
structures in (3), then to apply the corresponding K-rules in order to get the
“may aliasing” information in a designated K-cell (〈 − 〉al). Independently of
the setting (sequential or concurrent) one can exploit this approach in order to
evaluate the aliases of a given finite length L. We also show that for sequential
contexts, the application of the K-rules is finite and the aliases in the final
configuration soundly over-approximate the (infinite) “may alias” relations of
the calculus.

Brief overview of K. K [26] is an executable semantic framework based on
Rewriting Logic [18]. It is suitable for defining (concurrent) languages and cor-
responding formal analysis tools, with straightforward implementation in K-
Maude [27]. K-definitions make use of the so-called cells, which are labelled
and can be nested, and (rewriting) rules describing the intended (operational)
semantics.

A cell is denoted by 〈 − 〉[name], where [name] stands for the name of the
cell. A construction 〈 . 〉n stands for an empty cell named n. We use “pattern
matching” and write 〈 c . . .〉n for a cell with content c at the top, followed by
an arbitrary content (. . .). Orthogonally, we can utilize cells of shape 〈. . . c 〉n
and 〈 . . . c . . . 〉n, defined in the obvious way.

Of particular interest is 〈 − 〉k – the continuation cell, or the k-cell, holding
the stack of program instructions (associated to one processor), in the context
of a programming language formalization. We write

〈 i1 y i2 . . .〉k

for a set of instructions to be “executed”, starting with instruction i1, followed
by i2. The associative operation y is the instruction sequencing.

A K-rewrite rule

〈 c . . .〉n1
〈 c′ 〉n2

⇒ 〈 c′ . . .〉n1
〈. . . c′ 〉n3

(14)

reads as: if cell n1 has c at the top and cell n2 contains value c′, then c is replaced
by c′ in n1 and c′ is added at the end of the cell n3. The content of n2 remains
unchanged. In short, (14) is written in a K-like syntax as:

〈 c . . .〉n1

c′
〈 c′ 〉n2

〈. . . . 〉n3

c′
.

We further provide the details behind the K-specification of the alias calcu-
lus. As expected, the k-cell retains the instruction stack of the object-oriented
program. We utilize cells 〈−〉al to enclose the current alias information, and the
so-called back-tracking cells 〈−〉bkt-. . . enabling the sound computation of aliases
for the case of then − else − end and, in non-concurrent contexts, for loops and
(possibly recursive) function calls. As a convention, we mark with (♣) the rules
that are sound only for non-concurrent applications, based on Lemma 2. Due
to space limitations, in what follows we introduce only the K-rules for handling
assignments and loops. The entire specification is included in Appendix C.

As expected, the assignment rule simply restores the current alias relation
according to its axiom in (9), and removes the assignment instruction from the
top of the k-cell:

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (15)

For loop p end, we utilize a meta-construction p l loop p end simulating
the unfolding corresponding to (6), and a back-tracking stack 〈−〉bkt-l collect-
ing the alias information obtained after each execution of p. Moreover, the K-
implementation exploits the result in Lemma 2. Whenever a “lasso” is reached,
the infinite rewriting is prevented by resuming the infinite application of p in
terms of a sound over-approximating alias relation. The K-rules are as follows.

First, the aforementioned unfolding is performed, and the alias relation before
p is stored in the back-tracking cell as 〈r〉al-o〈p〉l:

〈 r 〉al
〈 loop p end . . .〉k

p l loop p end

〈〉bkt-l

〈 r 〉al-o〈 p 〉l
(16)

If the alias relation r′ obtained after the successful execution of p (marked

by l at the top of the continuation) is not a lasso of the aliasing r before
p (previously stored in 〈−〉bkt-l) then p is constrained to a new execution by
becoming the top of the k-cell, and r′ is memorized for back-tracking:

〈 r′ 〉al
〈 l loop p end . . .〉k

p l loop p end

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l

〈 r′ 〉al-o〈 p 〉l
if not lasso(r, r′) (♣) (17)

Last, if a lasso is reached after the execution of p, then the current aliasing is
soundly replaced by a “regular” over-approximation reg(r, r′), the corresponding
back-tracking information is removed from 〈−〉bkt-l and the loop instruction is
eliminated from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 l loop p end . . .〉k
.

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l

.
if lasso(r, r′) (♣) (18)

In a non-concurrent setting, the machinery orchestrating the K-rules intro-
duced in this section, and thoroughly discussed in Appendix C, implements an
algorithm that always terminates and provides a sound over-approximation of
“may aliasing”.

Theorem 1. Consider p a program built on top of the control structures in (3),
that executes in a sequential setting. Then, the application of the corresponding
K-rules when starting with p and an empty alias relation, is a finite rewriting of
shape

〈 ∅ 〉al〈 p 〉k
(∗)
=⇒ 〈 r 〉al〈 . 〉k,

with r a sound over-approximation of the aliasing information corresponding to
the execution of p.

Proof. The key observation is that, due to the execution of loops and/or recursive
calls, expressions can infinitely grow in a regular fashion. Hence, a lasso is always
reached. Consequently, the control structure generating the infinite behaviour is
removed from the k-cell, according to the associated K-specification for loops
and/or recursive calls. This guarantees termination. Moreover, recall that the
regular expressions replacing the current alias information are a sound over-
approximation, according to Lemma 2. ⊓⊔

Observe that the RL-based machinery can simulate precisely the “cutting
at length L” technique in [14]. It suffices to disable the rules (♣) and stop the
rewriting after L steps.

The naturalness of applying the resulted aliasing framework is illustrated in
the example in Appendix D, for the case of two mutually recursive functions.

4 Integration in SCOOP

In this section we provide a brief overview on the integration and applicability
of the alias calculus in SCOOP [21] – a simple object-oriented programming
model for concurrency. Two main characteristics make SCOOP simple: 1) just
one keyword programmers have to learn and use in order to enable concurrent
executions, namely, separate and 2) the burden of orchestrating concurrent ex-
ecutions is handled within the model, therefore reducing the risk of correctness
issues.

In short, the key idea of SCOOP is to associate to each object a processor,
or handler (that can be a CPU, or it can also be implemented in software, as a
process or thread). Assume a processor p that performs a call o.f() on an object
o. If o is declared as “separate”, then p sends a request for executing f() to q –
the handler of o (note that p and q can coincide). Meanwhile, p can continue.
Processors communicate via channels.

The Maude semantics of SCOOP in [21] is defined over tuples of shape

〈p1 ::St1 | . . . | pn ::Stn, σ〉

where, pi denotes a processor (for i ∈ {1, . . . , n}), Sti is the call stack of pi
and σ is the state of the system. States hold the information about the heap
(which is a mapping of references to objects) and the store (which includes
formal arguments, local variables, etc.).

The assignment instruction, for instance, is formally specified as the transi-
tion rule:

a is fresh

Γ ⊢ 〈p :: t : = s;St, σ〉 → 〈p :: eval(a, s);wait(a);write(t, a.data);St, σ〉
(19)

where, intuitively, “eval(a, s)” evaluates s and puts the result on channel a,
“wait(a)” enables processor p to use the evaluation result, “write(t, a.data)” sets
the value of t to a.data, St is a call stack, and Γ is a typing environment [23]
containing the class hierarchy of a program and all the type definitions.

At this point it is easy to understand that the K-rule for assignments

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (15)

can be straightforwardly integrated in (19) by enriching the state structure with
a new field encapsulating the alias information, and considering instead the tran-
sition Γ ⊢ 〈p :: t : =s;St, σ〉 → 〈p :: eval(a, s);wait(a);write(t, a.data);St, σ′〉
where

σ.aliases = r σ′.aliases = (r1 − t)[t = (r1/s − t)]− ot

with r and r1 as in (15). The integration of all the K-rules of the alias calculus
on top of the Maude formalization of SCOOP can be achieved by following a
similar approach.

For a case study, one can download the SCOOP formalization at:
https://dl.dropboxusercontent.com/u/1356725/SCOOP.zip

and run the command
> maude SCOOP.maude ..\examples\aliasing-linked_list.maude

corresponding to the code in (1):

x : = y; loop x : = x.next end.

The console outputs the aliased expressions for a rewriting of depth 100 which
include, as expected, pairs of shape [x, y.nextk]. (The over-approximating mech-
anism for sequential settings is still to be implemented.)

As can be observed based on the code in aliasing-linked_list.maude, in or-
der to implement our applications in Maude, we use intermediate (still intuitive)
representations. For instance, the class structure defining a node in a simple
linked list, with filed next is declared as:

class ’NODE

create {’make}

(attribute { ’ANY } ’next : [?, . , ’NODE] ;)

[...]

end ;

where ’next : [?, . , ’NODE] stands for an object of type NODE, that is han-
dled by the current processor (.) and that can be Void (?), and ’make plays the
role of a constructor. The intermediate representation of the instruction block
in (1) is:

assign (’x, ’y);

until False loop (assign (’x, ’x . ’next(nil)) ;) end ;

We include in Appendix E the whole class structure corresponding to (1),
together with (the relevant parts of) the console output. For a detailed descrip-
tion of SCOOP and its Maude formalization we refer the interested reader to
the work in [21].

4.1 Further applications of the alias calculus

Apart from providing an alias analysis tool, the alias calculus can be exploited
in order to build an abstract semantics of SCOOP. For example, an abstraction
of the assignment rule (15) would omit the evaluation of the right-hand side of
the assignment t : = s and the associated message passing between channels:

·

Γ ⊢ 〈p :: t : = s;St, σ〉 → 〈p :: St, σ′〉

where

σ.aliases = r σ′.aliases = (r1 − t)[t = (r1/s − t)]− ot

with r and r1 as in (15). This way one derives a simplified, reduced seman-
tics of SCOOP, more appropriate for model checking, for instance; the current

https://dl.dropboxusercontent.com/u/1356725/SCOOP.zip

SCOOP formalization in Maude is often too large for this purpose. A survey on
abstracting techniques on top of Maude executable semantics is provided in [18].

Furthermore, the aliasing information could be used for the so-called “dead-
locking” problem, where two or more executing threads are each waiting for
the other to finish. In the context of SCOOP, this is equivalent to identifying
whether a set of processors reserve each other circularly (i.e., there is a Coffman
deadlock). This situation might occur, for instance, in a Dinning Philosophers
scenario, where both philosophers and forks are objects residing on their own
processors. The difficulty of identifying such deadlocks stems from the fact that
SCOOP processors are known from object references, which may be aliased.

5 Conclusions

In this paper we provide an extension of the alias calculus in [14] from finite alias
relations to infinite ones corresponding to loops and recursive calls. Moreover, we
devise an associated executable specification in the K semantic framework [26].
In Theorem 1 we show that the RL-based machinery implements an algorithm
that always terminates with a sound over-approximation of “may aliasing”, in
non-concurrent settings. This is achieved based on the sound (finitely repre-
sentable) over-approximation of (“lasso shaped”) alias expressions in terms of
regular expressions, as in Lemma 2. We also discuss the integration and appli-
cability of the alias calculus on top of the Maude formalization of SCOOP [21].

An immediate direction for future work is to identify interesting (industrial)
case studies to be analyzed using the framework developed in this paper. We
are also interested in devising heuristics comparing the efficiency and the preci-
sion (e.g., the number of false positives introduced by the alias approximations)
between our approach and other aliasing techniques. In this respect, we antici-
pate that the rewriting modulo associativity, together with the pattern matching
capabilities of Maude will accelerate the identification of the “lasso” properties
and the corresponding over-approximating regular alias expressions. This could
eventually provide an effective reasoning apparatus for the “may aliasing” prob-
lem.

Another research direction is to derive alias-based abstractions for analyzing
concurrent programs. We foresee possible connections with the work in [12] on
concurrent Kleene algebra formalizing choice, iteration, sequential and concur-
rent composition of programs. The corresponding definitions exploit abstractions
of programs in terms of traces of events that can depend on each other. Thus,
obvious challenges in this respect include: (i) defining notions of dependence
for all the program constructs in this paper, (ii) relating the concurrent Kleene
operators to the semantics of the SCOOP concurrency model and (iii) checking
whether fixed-points approximating the aliasing information can be identified
via fixed-point theorems.

Furthermore, it would be worth investigating whether the graph-based model
of alias relations introduced in [14] can be exploited in order to derive finite K
specifications of the extended alias calculus. In case of a positive answer, the

general aim is to study whether this type of representation increases the speed
of the reasoning mechanism, and why not – its accuracy. With the same purpose,
we refer to a possible integration with the technique in [5] that handles point-to
graphs via a stack-based algorithm for fixed-point computations.

We are also interested to what extent an abstract semantics based on aliases
for SCOOP can be exploited for building more efficient analysis tools such as
deadlock detectors, for instance. A survey on similar techniques that abstract
away from possibly irrelevant information w.r.t. the problem under consideration
is provided in [18].

Acknowledgements We are grateful for valuable comments to Măriuca Asăvoae,
Alexander Kogtenkov, José Meseguer, Bertrand Meyer, Benjamin Morandi and
Sergey Velder. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant agreement no. 291389.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Field-sensitive value analysis
by field-insensitive analysis. In Proceedings of the 2Nd World Congress on Formal
Methods, FM ’09, pages 370–386, Berlin, Heidelberg, 2009. Springer-Verlag.

2. I. M. Asavoae. Abstract semantics for alias analysis in K. Electr. Notes Theor.
Comput. Sci., 304:97–110, 2014.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR, pages 135–150, 1997.

4. M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-insensitive interprocedural
alias analysis in the presence of pointers. In K. Pingali, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Comput-
ing, volume 892 of Lecture Notes in Computer Science, pages 234–250. Springer
Berlin Heidelberg, 1995.

5. D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In PLDI, pages 296–310, 1990.

6. J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural com-
putation of pointer-induced aliases and side effects. In Proceedings of the 20th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’93, pages 232–245, New York, NY, USA, 1993. ACM.

7. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. J. Log. Program., 13(2&3):103–179, 1992.

8. A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis. SIGPLAN
Not., 33(5):106–117, May 1998.

9. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of the ACM SIG-
PLAN 1994 Conference on Programming Language Design and Implementation,
PLDI ’94, pages 242–256, New York, NY, USA, 1994. ACM.

10. M. Hind. Pointer analysis: haven’t we solved this problem yet? In PASTE, pages
54–61, 2001.

11. M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias anal-
ysis. ACM Trans. Program. Lang. Syst., 21(4):848–894, July 1999.

12. C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene al-
gebra. In CONCUR 2009 - Concurrency Theory, 20th International Conference,
CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings, pages 399–414,
2009.

13. S. C. Kleene. Representation of events in nerve nets and finite automata. In
C. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton
University Press, Princeton, NJ, 1956.

14. A. Kogtenkov, B. Meyer, and S. Velder. Alias and change calculi, applied to frame
inference. CoRR, abs/1307.3189, 2013.

15. W. Landi. Undecidability of static analysis. ACM Lett. Program. Lang. Syst.,
1(4):323–337, Dec. 1992.

16. W. Landi and B. G. Ryder. Pointer-induced aliasing: A problem classification.
In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’91, pages 93–103, New York, NY, USA, 1991.
ACM.

17. J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses. In
PLDI, pages 21–34, 1988.

18. J. Meseguer and G. Rosu. The rewriting logic semantics project: A progress report.
In Fundamentals of Computation Theory - 18th International Symposium, FCT
2011, Oslo, Norway, August 22-25, 2011. Proceedings, pages 1–37, 2011.

19. B. Meyer. Eiffel: The Language. Prentice-Hall, 1991.
20. A. Miné. Field-sensitive value analysis of embedded c programs with union types

and pointer arithmetics. In Proceedings of the 2006 ACM SIGPLAN/SIGBED
Conference on Language, Compilers, and Tool Support for Embedded Systems,
LCTES ’06, pages 54–63, New York, NY, USA, 2006. ACM.

21. B. Morandi, M. Schill, S. Nanz, and B. Meyer. Prototyping a concurrency model.
In ACSD, pages 170–179, 2013.

22. E. M. Myers. A precise inter-procedural data flow algorithm. In Proceedings
of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’81, pages 219–230, New York, NY, USA, 1981. ACM.

23. P. Nienaltowski. Practical Framework for Contract-based Concurrent Object-
oriented Programming. ETH, 2007.

24. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J.
Res. Dev., 3(2):114–125, Apr. 1959.

25. V. Robert and X. Leroy. A formally-verified alias analysis. In CPP, pages 11–26,
2012.

26. G. Rosu and T. F. Serbanuta. K overview and SIMPLE case study. In Proceedings
of International K Workshop (K’11), ENTCS. Elsevier, 2013. To appear.

27. T.-F. Serbanuta and G. Rosu. K-Maude: A rewriting based tool for semantics of
programming languages. In WRLA, pages 104–122, 2010.

28. M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav. Alias analysis
for object-oriented programs. In Aliasing in Object-Oriented Programming, pages
196–232. 2013.

29. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C
programs. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, PLDI ’95, pages 1–12, New York, NY, USA,
1995. ACM.

A Regular expressions in sequential settings

In this section we provide the proof of Lemma 1; we proceed by demonstrating
a series of intermediate results.

Remark 2. We first observe that the operations r/s, r−x, dot-completeness and
r[x = u] introduced in Section 2 preserve the regularity of an alias relation r.

Then, we define a notion of finite execution control blocks:

p :: = create x | forget x | t := s |
p ; p | then p else p end |
call f(l) | x.call f(l)

(20)

where f stands for a non-recursive function.

It is easy to see that the execution of control blocks as in (20) preserve the
regularity of alias relations as well.

Lemma 3. For all regular alias relations r and p a finite-execution control block,
in a sequential setting, it holds that r » p is also regular.

Proof. The proof follows immediately, by induction on the structure of p and
Remark 2. Base cases are: create x, forget x and t := s. For function calls, the
result is a consequence of their corresponding unfolding, based on the definitions
in (8).

Remark 3. W.r.t. may aliasing, recursive calls can be handled via loops. Con-
sider, for instance the recursive function

f(x) {B1; f(y); B2 }

where B1 and B2 are instruction blocks built as in (3). It is intuitive to see that
computing the may aliases resulted from the execution of f(x) reduces executing
unfoldings of shape:

loop B1 end; loop B2 end.

Moreover, unbounded program executions also preserve regularity.

Lemma 4. For all regular alias relations r and p a control block that can execute
unboundedly, in a sequential setting, it holds that r » p is also regular.

Proof. The proof follows by induction on the number of nested loops in p and
Remark 3.

Then, the result in Lemma 1 follows immediately by Lemma 3 and Lemma 4.

B Sound over-approximations

In what follows we provide the proof of Lemma 2:
Consider r and r′ two alias relations, and p a basic control block. If r » p = r′

and lasso(r, r′) = true, then the following holds for all n ≥ 1:

r » pn ∈ reg(r, r′).

Proof. We proceed by induction on n.

– Base case: n = 1. By hypothesis it holds that lasso(r, r′) = true. Hence,
according to the definition of lasso(−,−) in (12), there exists a one-to-one
correspondence of the shape

[x1y1z1, x2y2z2] ∈ r iff [x1y1y1z1, x2y2y2z2] ∈ r′

between the elements of r and r′, respectively.
Consequently, by the definition of reg(−,−) in (13), it is easy to see that

r′ ∈ reg(r, r′).

– Induction step. Fix a natural number n and suppose that

r » pk ∈ reg(r, r′) (21)

for all k ∈ {1, . . . , n}. We want to prove that (21) holds also for k = n+ 1.
We continue by “reductio ad absurdum”. Consider

r = r » pn ∈ reg(r, r′),

and assume that
r » p 6∈ reg(r, r′) (22)

Clearly, the execution of p when starting with r identifies an alias pair which
is not in reg(r, r′). Given that p is a basic control block as in (10), and based
on the corresponding definitions in (4)–(9), it is not difficult to observe that
the regular structure of the alias information can only be broken via a new
added pair (t, s′) associated to an assignment t := s within p.
Let p = C[t := s], where C is a context built according to (10), and t := s
is the upper-most assignment instruction in the syntactic tree associated to
p, that introduces a pair [t, s′] which is not in reg(r, r′). Assume that r̃ is
the intermediate alias relation obtained by reducing r »C[t := s] according
to the equations (4)–(9), before the application of the assignment axiom
corresponding to t := s.
Note that t : = s was executed at least once before, as n ≥ 1, and observe
that r̃ ∈ reg(r, r′). Hence, we identify two situations in the context of the
aforementioned execution: (a) either all the newly added pairs corresponding

to the assignment t : = s complied to the regular structure, or (b) each
new pair [t′, s′] that did not fit the regular pattern was later removed via a
subsequent instruction “create u” or “forget u” within p, with u a prefix of
t′ or s′.

If the case (a) above was satisfied, then, based on the definition of dot-
completeness, a pair

(t, s′) ∈ (r̃1 − t)[t = r̃1/s− t]− ot,

where

r̃1 = r̃[ot = t]

cannot break the regular pattern of the alias expressions either. For the case
(b) above, all the “non-well-behaved” new pairs will be again removed via a
subsequent “create u” or “forget u” within p.

Therefore, the assumption in (22) is false, so it holds that:

r » p = r » pn+1 ∈ reg(r, r′).

⊓⊔

C Alias calculus in K – complete specification

In this section we provide the full specification of the alias calculus in K. Recall
that, as a convention, we mark with (♣) the rules that are sound only for non-
concurrent contexts, based on Lemma 2.

The following K-rules are straightforward, based on the axioms (4)–(9) in
Section 2.1. Namely, the rule implementing an instruction p ; q simply forces
the sequential execution of p and q by positioning p y q at the top of the
continuation cell:

〈 p ; q . . .〉k
p y q

(23)

Handling create x and forget x complies to the associated definitions. Namely,
it updates the current alias relation by removing all the pairs having (at least)
one element with x as prefix. In addition, it also pops the corresponding instruc-
tion from the continuation stack:

〈 r 〉al
r − x

〈 create x . . .〉k
.

〈 r 〉al
r − x

〈 forget x . . .〉k
.

(24)

The assignment rule restores the current alias relation according to its axiom
in (9), and removes the assignment instruction from the top of the k-cell:

〈 r 〉al
(r1 − t)[t = (r1/s − t)]− ot

〈 t := s . . .〉k
.

with r1 = r[ot = t] (25)

The K-implementation of a then p else q end statement is more sophisti-
cated, as it instruments a stack-based mechanism enabling the computation of
the union of alias relations r » p ∪ r » q in three steps. First, we define the K-rule:

〈 r 〉al
〈 then p else q end . . .〉k

p et q ee

〈〉bkt-te

〈 r, p 〉t 〈 r, q 〉e
(26)

saving at the top of the back-tracking stack 〈−〉bkt-te the initial alias relation
r to be modified by both p and q, via two cells 〈r, p〉t and 〈r, q〉e, respectively.
Note that the original instruction in the k-cell is replaced by a meta-construction
marking the end of the executions corresponding to the then and else branches
with et and ee , respectively.

Second, whenever the successful execution of p (signaled by et) at the top
of the k-cell) builds an alias relation r′, the execution of q starting with the
original relation r is forced by replacing r′ with r in 〈−〉al, and by positioning
q ee at the top of the k-cell. The new alias information after p, denoted by
〈r′, p〉t, is updated in the back-tracking cell:

〈 r′ 〉al
r

〈 et q ee . . .〉k
q ee

〈 〈 r, p 〉t 〈 r, q 〉e . . .〉bkt-te

〈 r′, p 〉t
(27)

Eventually, if the successful execution of q (marked by ee at the top of
〈−〉k) produces an alias relation r′′, then the final alias information becomes
r′ ∪ r′′, where r′ is the aliasing after p, stored as showed in (27). The cor-
responding back-tracking information is removed from 〈−〉bkt-te, and the next
program instruction is enabled in the k-cell:

〈 r′′ 〉al
r′ ∪ r′′

〈 ee . . .〉k
.

〈 〈 r′, p 〉t 〈 r, q 〉e . . .〉bkt-te

.
(28)

For loop p end, we utilize a meta-construction p l loop p end simulating
the set union in (6), and a back-tracking stack 〈−〉bkt-l collecting the alias in-
formation obtained after each execution of p. Moreover, the K-implementation
exploits the result in Lemma 2. Whenever a “lasso” is reached, the infinite rewrit-
ing is prevented by resuming the infinite application of p in terms of a sound
over-approximating alias relation. The K-rules are as follows.

First, the aforementioned unfolding is performed, and the alias relation before
p is stored in the back-tracking cell as 〈r〉al-o〈p〉l:

〈 r 〉al
〈 loop p end . . .〉k

p l loop p end

〈〉bkt-l

〈 r 〉al-o〈 p 〉l
(29)

If the alias relation r′ obtained after the successful execution of p (marked

by l at the top of the continuation) is not a lasso of the aliasing r before
p (previously stored in 〈−〉bkt-l) then p is constrained to a new execution by
becoming the top of the k-cell, and r′ is memorized for back-tracking:

〈 r′ 〉al
〈 l loop p end . . .〉k

p l loop p end

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l

〈 r′ 〉al-o〈 p 〉l
if not lasso(r, r′) (♣) (30)

Last, if a lasso is reached after the execution of p, then the current aliasing is
soundly replaced by a “regular” over-approximation reg(r, r′), the corresponding
back-tracking information is removed from 〈−〉bkt-l and the loop instruction is
eliminated from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 l loop p end . . .〉k
.

〈 〈 r 〉al-o〈 p 〉l . . .〉bkt-l

.
if lasso(r, r′) (♣) (31)

For handling function calls such as call f(l) we use a meta-construction |

f | f . Here | f | stands for the body of f and f marks the end of the
corresponding execution. Moreover, a stack 〈−〉bkt-cf is utilized in order to store
the alias information before each (possibly recursive) call of f , with the purpose
of identifying the lassos generated by the (possibly repeated) execution of f . In
order to guarantee a sound implementation of (mutually) recursive calls, both

f and 〈−〉bkt-cf are parameterized by f – the name of the function. An example
illustrating this reasoning mechanism is provided in Appendix D.

The first K rule for handling function calls matches the associated axiom
in (8): the alias information is set to r[f•:l], whereas the next instructions to
be executed are given by | f |. Note that the original aliasing is retained in the
(initially empty) back-tracking cell via 〈r〉al-o.

〈 r 〉al
r[f•:l]

〈 call f(l) . . .〉k

| f | f

〈 . 〉bkt-cf

〈 r 〉al-o
(32)

Remark 4. Observe that the back-tracking cell does not need to be parameter-
ized by the actual argument list l of f . Each such argument is anyways replaced
in the current alias relation r by its counterpart in the formal argument list of
f . In short: r becomes r[f•:l].

A successful execution of call f(l) is distinguished by the occurrence of f
at the top of the continuation stack. If this is the case, then the corresponding
back-tracking alias information is removed from 〈−〉bkt-cf and the next program
instruction (if any) is enabled at the top of the k-cell:

〈 r′ 〉al
〈 f . . .〉k

.

〈 〈 r 〉al-o . . .〉bkt-cf

.
(33)

Recursive calls are treated by means of twoK-rules. Note that a recursive con-
text is identified whenever the current program instruction is of shape call f(l)
and the associated back-tracking structure is not empty, i.e., rule (32) was pre-
viously applied. Then, if the recursive call of f when starting with r produces a
lasso r′, the execution of f(l) is stopped by soundly over-approximating the alias
information with reg(r, r′), according to Lemma 2, and by removing call f(l)
from the k-cell:

〈 r′ 〉al
reg(r, r′)

〈 call f(l) . . .〉k
.

〈 〈 r 〉al-o . . .〉bkt-cf if lasso(r, r′) (♣) (34)

If a lasso is not reached, then the body of f is executed once more, and the
current aliasing is pushed to the back-tracking cell:

〈 r′ 〉al
〈 call f(l) . . .〉k

| f | f

〈 . 〈 r 〉al-o . . .〉bkt-cf

〈 r′ 〉al-o
if not lasso(r, r′) (♣) (35)

Qualified calls x.call f(l) are handled by two K-rules as follows. First, based
on the definition in (8), the “negative variable” x′ transposing the context of the
call to to the context of the caller is distributed to the elements of the initial alias
relation r, and to l – the argument list of f . Moreover, a meta-construction qf

is utilized in order to mark the end of the qualified call in the continuation cell,
similarly to the rule (32). The caller is stored in a back-tracking stack 〈 . 〉bkt-qf

also parameterized by f – the name of the function. The current instruction in
the k-cell becomes call f(x′.l), as expected:

〈 r 〉al
x′.r

〈 x.call f(l) . . .〉k

call f(x′.l) qf
〈 . 〉bkt-qf

〈 x 〉f
(36)

Second, when the successful termination of the qualified call is signaled by

qf at the top of the k-cell, the corresponding stored caller is distributed to

the current alias relation and removed from the back-tracking cell. The next

instruction in the continuation cell is released by eliminating the top qf :

〈 r 〉al
x.r

〈 qf . . .〉k

.

〈 〈 x 〉f . . .〉bkt-qf

.
(37)

D The K-machinery by example

For an example, in this section we show how the K-machinery developed in
Section 3 can be used in order to extract the alias information for the case of
two mutually recursive functions defined as:

f(x) { x := x.a ; call g(x) } g(x) { x := x.b ; call f(x) }

We assume that x is an object of a class with two fields a and b, respectively.
We consider a sequential setting.

At first glance it is easy to see that the execution of call f(x), when starting
with an empty alias relation r, produces the alias expressions:

[x, x.(a.b)∗] [x.a, x.(a.b)∗.a] [x.b, x.(a.b)∗.b] (38)

The associated reasoning in K is depicted in the figure below. The whole
procedure starts with an empty alias relation r = ∅, and call f(x) in the con-
tinuation stack. Then, the corresponding K rules (for handling assignments and
function calls) are applied in the natural way.

A lasso is reached after two calls of f(x) that, consequently, determine two

calls of g(x) – identified by g f g f in the k-cell. This triggers the ap-

plication of rule (34) enabling the “regular” over-approximation as in Lemma 2.
Our example also illustrates the importance of isolating the back-traced alias

information in cells of shape 〈 . 〉bkt-cf parameterized by the (possibly recursive)
function f . More explicitly, rule (34) is soundly applied by identifying the afore-
mentioned lasso based on: the current alias relation r4, the recursive call f(l)
at the top of the continuation, and the back-traced aliasing 〈 〈 r2 〉al-o . . .〉bkt-cf

associated to the previous executions of f(l).
As introduced in (12), an alias relation r′ is a lasso of a relation r whenever

there is a one-to-one correspondence between their elements as follows:

[x1y1z1, x2y2z2] ∈ r iff [x1y1y1z1, x2y2y2z2] ∈ r′.

The current alias relation

r4 = {[x, x.a.b.a.b], [x.a, x.a.b.a.b.a], [x.b, x.a.b.a.b.b]},

before applying rule (34), is a lasso of

r2 = {[x, x.a.b], [x.a, x.a.b.a], [x.b, x.a.b.b]}.

The aforementioned one-to-one correspondence is summarized in the following
table:

[x1y1z1, x2y2z2] ∈ r2 iff [x1y1y1z1, x2y2y2z2] ∈ r4 x1 y1 z1 x2 y2 z2

[x, x.a.b] ∈ r2 iff [x, x.a.b.a.b] ∈ r4 x ε ε x a.b ε

[x.a, x.a.b.a] ∈ r2 iff [x.a, x.a.b.a.b.a] ∈ r4 x ε a x a.b a

[x.b, x.a.b.b] ∈ r2 iff [x.b, x.a.b.a.b.b] ∈ r4 x ε b x a.b b

Here ε stands for the empty alias expression.
Moreover, according to rule (34), the lasso shaped by r2 and r4 also causes

the (otherwise infinite) recursive calls to stop, as call f(l) is eliminated from
the top of the k-cell. Hence, the rewriting process finishes with a sound over-
approximation reg(r2, r4) replacing the current alias relation (cf. Lemma 2),
defined precisely as in (38).

〈 r 〉al 〈 call f(x) 〉k
〈 . 〉bkt-cf 〈 . 〉bkt-cg

⇓ (32)

〈 r 〉al 〈 x := x.a; call g(x) f 〉k
〈 〈 r 〉al-o 〉bkt-cf 〈 . 〉bkt-cg

⇓ (25)

〈 r1 〉al 〈 call g(x) f 〉k
〈 〈 r 〉al-o 〉bkt-cf 〈 . 〉bkt-cg

where r1 = {[x, x.a], [x.a, x.a.a], [x.b, x.a.b]}

⇓ (35)

〈 r1 〉al 〈 x := x.b; call f(x) g f 〉k

〈 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

⇓ (25)

〈 r2 〉al 〈 call f(x) g f 〉k

〈 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

where r2 = {[x, x.a.b], [x.a, x.a.b.a], [x.b, x.a.b.b]}

⇓ (35)

〈 r2 〉al 〈 x := x.a; call g(x) f g f 〉k

〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

⇓ (25)

〈 r3 〉al 〈 call g(x) f g f 〉k

〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r1 〉al-o 〉bkt-cg

where r3 = {[x, x.a.b.a], [x.a, x.a.b.a.a], [x.b, x.a.b.a.b]}

⇓ (35)

〈 r3 〉al 〈 x := x.b; call f(x) g f g f 〉k

〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r3 〉al-o 〈 r1 〉al-o 〉bkt-cg

⇓ (25)

〈 r4 〉al 〈 call f(x) g f g f 〉k

〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r3 〉al-o 〈 r1 〉al-o 〉bkt-cg

where r4 = {[x, x.a.b.a.b], [x.a, x.a.b.a.b.a], [x.b, x.a.b.a.b.b]}

⇓ (34)

〈 reg(r2, r4) 〉al 〈 g f g f 〉k

〈 〈 r2 〉al-o 〈 r 〉al-o 〉bkt-cf 〈 〈 r3 〉al-o 〈 r1 〉al-o 〉bkt-cg

⇓ (*)(33)

〈 {[x, x.(a.b)∗], [x.a, x.(a.b)∗.a], [x.b, x.(a.b)∗.b]} 〉al〈 . 〉k〈 . 〉bkt-cf〈 . 〉bkt-cg

Fig. 1. Aliasing and mutual recursion in K.

E Example of aliasing in Maude

The intermediate class-based representation (in aliasing-linked_list.maude)
corresponding to the example

x : = y;
loop x : = x.next end

is given as:

(class ’LINKED_LIST_TEST

create { ’make }

(

procedure { ’ANY } ’make (nil)

require True

local

(’x : [?, . , ’NODE] ; ’y : [?, . , ’NODE] ;)

do

(

assign (’x, ’y);

until False loop (assign (’x, ’x . ’next(nil)) ;) end ;

)

ensure True

rescue nil

end ;

)

invariant True

end) ;

class ’NODE

create {’make}

(

attribute { ’ANY } ’next : [?, . , ’NODE] ;

)

invariant True

end ;

As can be seen from the code above, the syntax enables expressing Eiffel-
like properties of classes by using assertions s.a. preconditions (introduced by
the keyword require), postconditions (through the keyword ensure) and class
invariants.

The “entry point” of the program corresponds to the function ’make in the
(main) class ’LINKED_LIST_TEST and is set via:

settings(’LINKED_LIST_TEST, ’make, false, aliasing-on) .

Observe that the flag for performing the alias analysis is switched to “on”.
In ’LINKED_LIST_TEST, two local variables x and y of type NODE are declared as

running on the current processor (.), i.e., they are not separate. The instruction
assign(’x, ’y), for instance, corresponds to the assignment x : = y. The class
defining a NODE structure (in a linked list) simply consists of a (non-separate)
field ’next of type NODE.

We run the example by executing the command:

> maude SCOOP.maude ..\examples\aliasing-linked_list.maude

The relevant parts of the corresponding Maude output are as follows:

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.6 built: Mar 31 2011 23:36:02

Copyright 1997-2010 SRI International

[...]

==

rewrite [100] in SYSTEM :

[...]

{0}proc(1) ::

until False loop

assign(’x, ’x . ’next(nil)) ;

end ;

[...],

100,

aliasing-on

({[’x ; ’y . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next]} U

{[’x . ’next ; ’y . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next . ’next . ’next . ’next .

’next . ’next . ’next . ’next . ’next]})

[...]

state

[...]

heap [...]

store [...]

end

In short, after 100 rewriting steps, the current processor {0}proc(1) has the
execution corresponding to loop x : = x.next end on top of its instruction stack,
and the aliasing information contains (the dot-complete closure of) the relation
{[x, y.next42]}. Moreover, the output displays the contents of the current system
state, by providing information on the heap and store, as formalized in [21].

	Expression-based aliasing for OO–languages

