Skip to main content

Indexing the Positions of Continuously Moving Objects

  • Reference work entry
  • First Online:
  • 103 Accesses

Synonyms

Indexing Moving Objects; Spatio-temporal Indexing

Definition

Wireless communications and positioning technologies enable tracking of the changing positions of objects capable of continuous movement. Continuous movement poses new challenges to database technology. In conventional databases, data is assumed to remain constant unless it is explicitly modified. Capturing continuous movement under this assumption would entail either performing very frequent updates or recording outdated, inaccurate data, neither of which are attractive alternatives. Instead, rather than storing simple positions, functions of time that express the objects’ changing positions are stored (Wolfson et al. 1998). More specifically, linear functions are assumed. This entry describes indexing of the current and anticipated future positions of such objects with the focus on the TPR-tree (Šaltenis and Jensen 2000).

Modeling the positions of moving objects as functions of time enables querying not only the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the ACM PODS symposium, Dallas, 14–19 May 2000, pp 175–186

    Google Scholar 

  • Basch J, Guibas LJ, Hershberger J (1997) Data structures for mobile data. In: Proceedings of ACM-SIAM SODA, New Orleans, 5–7 Jan 1997, pp 747–756

    Google Scholar 

  • Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the ACM SIGMOD conference, Brisbane, 13–16 Aug 1990, pp 322–331

    Google Scholar 

  • Benetis R, Jensen CS, Karèiauskas G, Šaltenis S: Nearest and reverse nearst neighbor queries for moving objects. VLDB J 15(3):229–249 (2006)

    Article  Google Scholar 

  • Cai M, Revesz PZ (2000) Parametric R-tree: an index structure for moving objects. In: Proceedings of the 10th international conference on management of data, Pune, Dec 2000. McGraw Hill, pp 57–64

    Google Scholar 

  • Cai M, Keshwani D, Revesz PZ (2000) Parametric rectangles: a model for querying and animation of spatiotemporal databases. In: Proceedings of the 7th conference on extending database technology, Konstanz, Mar 2000. LNCS, vol 1777. Springer, pp 430–444

    Google Scholar 

  • Chomicki J, Revesz PZ (1997) Constraint-based interoperability of spatiotemporal databases. In: Proceedings of the 5th international symposium on spatial databases, Berlin, July 1997. LNCS, vol 1262. Springer, pp 142–162

    Google Scholar 

  • Chomicki J, Revesz PZ (1999) Constraint-based interoperability of spatiotemporal databases. Geoinformatica 3(3):211–243

    Article  Google Scholar 

  • Guttman A: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM SIGMOD conference, Boston, 18–21 June 1984, pp 47–57

    Google Scholar 

  • Jensen CS, Lin D, Ooi BC (2004) Query and update efficient B+-tree based indexing of moving objects. In: Proceedings of the VLDB conference, Toronto, 31 Aug–3 Sept 2004, pp 768–779

    Google Scholar 

  • Jensen CS, Tišytë D, Tradišauskas N (2006) Robust B+-tree-based indexing of moving objects. In: Proceedings of the MDM conference, Nara, 9–13 May 2006, p. 12

    Google Scholar 

  • Kollios G, Gunopulos D, Tsotras VJ (1999) On indexing mobile objects. In: Proceedings of the ACM PODS symposium, Philadelphia, 31 May–2 June 1999, pp 261–272

    Google Scholar 

  • Lee ML, Hsu W, Jensen CS, Cui B, Teo KL (2003) Supporting frequent updates in R-trees: a bottom-up approach. In: Proceedings of the VLDB conference, Berlin, 9–12 Sept 2003, pp 608–619

    Google Scholar 

  • Lin B, Su J (2005) Handling frequent updates of moving objects. In: Proceedings of ACM CIKM, Bremen, 31 Oct–5 Nov 2005, pp 493–500

    Google Scholar 

  • Nelson RC, Samet H (1986) A consistent hierarchical representation for vector data. In: Proceedings of the ACM SIGGRAPH conference, Dallas, 18–22 Aug 1986, pp 197–206

    Google Scholar 

  • Patel JM, Chen Y, Chakka YP (2004) STRIPES: an efficient index for predicted trajectories. In: Proceedings of the ACM SIGMOD conference, Paris, 13–18 June 2004, pp 637–646

    Google Scholar 

  • Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002) Query indexing and velocity constrained indexing: scalable techniques for continuous queries on moving objects. IEEE Trans Comput 51(10):1124–1140

    Article  MathSciNet  Google Scholar 

  • Procopiuc CM, Agarwal PK, Har-Peled S (2002) STAR-tree: an efficient self-adjusting index for moving objects. In: Proceedings of the ALENEX workshop, San Francisco, 4–5 Jan 2002, pp 178–193

    Google Scholar 

  • Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving objects. In: Proceedings of the ACM SIGMOD conference, Dallas, 14–19 May 2000, pp 331–342

    Google Scholar 

  • Samet H (1984) The quadtree and related hierarchical data structures. Comput Surv 16(2):187–260

    Article  MathSciNet  Google Scholar 

  • Tao Y, Papadias D, Sun J (2003) The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proceedings of the VLDB conference, Berlin, 9–12 Sept 2003, pp 790–801

    Google Scholar 

  • Tayeb J, Ulusoy O, Wolfson O (1998) A quadtree based dynamic attribute indexing method. Comput J 41(3):185–200

    Article  MATH  Google Scholar 

  • Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving objects databases: issues and solutions. In: Proceedings of the SSDBM conference, Capri, 1–3 July 1998, pp 111–122

    Google Scholar 

  • Yiu ML, Tao Y, Mamoulis Y. The Bdual-tree: indexing moving objects by space filling curves in the dual space. VLDB J 22 (in press)

    Google Scholar 

Recommended Reading

  • Mokbel MF, Ghanem TM, Aref WG (2003) Spatio-temporal access methods. IEEE Data Eng Bull 26(2):40–49

    Google Scholar 

  • Šaltenis S, Jensen CS (2002) Indexing of moving objects for location-based services. In: Proceedings of ICDE, San Jose, 26 Feb–1 Mar 2002, pp 463–472

    Google Scholar 

  • Xiong X, Aref WG: R-trees with update memos. In: Proceedings of ICDE, Atlanta, 3–8 Apr 2006, p. 22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Šaltenis, S. (2017). Indexing the Positions of Continuously Moving Objects. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_618

Download citation

Publish with us

Policies and ethics