Skip to main content

Combining Constraint Propagation and Discrete Ellipsoid-Based Search to Solve the Exact Quadratic Knapsack Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9075))

Abstract

We propose an extension to the discrete ellipsoid-based search (DEBS) to solve the exact quadratic knapsack problem (EQKP), an important class of optimization problem with a number of practical applications. For the first time, our extension enables DEBS to solve convex quadratically constrained problems with linear constraints. We show that adding linear constraint propagation to DEBS results in an algorithm that is able to outperform both the state-of-the-art MIP solver CPLEX and a semi-definite programming approach by about one order of magnitude on two variations of the EQKP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Létocart, L., Plateau, M.C., Plateau, G.: An efficient hybrid heuristic method for the 0–1 exact k-item quadratic knapsack problem. Pesquisa Operacional 34(1), 49–72 (2014)

    Article  Google Scholar 

  2. Martí, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. European Journal of Operational Research 200(1), 36–44 (2010)

    Article  MATH  Google Scholar 

  3. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS Journal on Computing 11(2), 125–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems with cardinality constraints. European Journal of Operational Research 123(2), 333–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Turner, S., Romero, D., Zhang, P., Amon, C., Chan, T.: A new mathematical programming approach to optimize wind farm layouts. Renewable Energy 63, 674–680 (2014)

    Article  Google Scholar 

  6. Zhang, P.Y., Romero, D.A., Beck, J.C., Amon, C.H.: Solving wind farm layout optimization with mixed integer programs and constraint programs. EURO Journal on Computational Optimization 2(3), 195–219 (2014)

    Article  MATH  Google Scholar 

  7. Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the uncapacitated task allocation problem. Operations Research Letters 33(2), 176–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of Operations Research and Management Science. Wiley, Chichester (2010)

    Google Scholar 

  9. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Mathematical Programming 109(1), 55–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving max-cut problems to optimality. Mathematical Programming, 1–26 (2012)

    Google Scholar 

  11. Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy, vol. 2. Springer, Berlin (1998)

    Book  Google Scholar 

  12. Ku, W.-Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for binary quadratic programming problems. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 334–350. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems. IEEE Transactions on Wireless Communications 7(1), 277–287 (2008)

    Article  Google Scholar 

  14. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares problems. SIAM Journal on Matrix Analysis and Applications 31(3), 1071–1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for integer least squares problems. Submitted to IEEE Transactions on Wireless Communications (2014)

    Google Scholar 

  16. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical programming 66(1), 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krislock, N., Malick, J., Roupin, F.: BiqCrunch online solver (2012) (Retrieved: 11/06/2014). http://lipn.univ-paris13.fr/BiqCrunch/download

  18. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yang Ku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ku, WY., Beck, J.C. (2015). Combining Constraint Propagation and Discrete Ellipsoid-Based Search to Solve the Exact Quadratic Knapsack Problem. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics