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Abstract. A way of implementing domain-specific cutting planes in branch-and-
cut based Mixed-Integer Programming (MIP) solvers is through solving so-called
sub-IPs, solutions of which correspond to the actual cuts. We consider the suit-
ability of using Maximum satisfiability solvers instead of MIP for solving sub-
IPs. As a case study, we focus on the problem of learning optimal graphical mod-
els, namely, Bayesian and chordal Markov network structures.

1 Introduction

A central element contributing to the success of mixed-integer programming (MIP)
solvers are algorithms for deriving cutting planes which prune the search space within
a branch-and-cut routine. One way of implementing domain-specific cutting planes is
through solving so-called sub-IPs, solutions of which correspond to the actual cuts. We
consider the suitability of using Maximum satisfiability (MaxSAT) solvers instead of
the more typical choice of using MIP solvers for solving sub-IPs. As a case study, we
focus on important NP-hard optimization problems of learning probabilistic graphical
models, namely, optimal Bayesian [16, 12, 18, 4, 6, 19] and chordal Markov network
structures [5, 11]. The GOBNILP system [3, 6], which implements a practical MIP-
based branch-and-cut approach using specific sub-IPs for deriving domain-specific cut-
ting planes, is a state-of-the-art exact approach for these problem domains. We point
out that GOBNILP’s sub-IPs can be naturally expressed as MaxSAT, and thereby a
MaxSAT solver can be harnessed for solving the sub-IPs instead of relying on a MIP
solver such as IBM CPLEX. This results in a hybrid MIP-MaxSAT approach which
allows for fine-grained control over the number and structure of the derived cutting
planes, as well as enables deriving a set of optimal cutting planes wrt the sub-IP cost
function. We present results of a preliminary empirical evaluation of the behavior of
such a hybrid approach. The preliminary results suggest that MaxSAT can achieve simi-
lar performance as GOBNILP while finding fewer but higher quality cutting planes than
the MIP-based sub-IP procedure within GOBNILP. We hope this encourages looking
into possibilities of harnessing MaxSAT solvers within other domains in which sub-IPs
are used for deriving domain-specific cutting planes within MIP-based approaches.

2 Preliminaries

Bayesian Network Structure Learning Given a set X = {X1, . . . , XN} of nodes
(representing random variables), an element of Pi = 2X\{Xi} is a candidate parent set



ofXi. For a given DAGG = (X,E), the parent set of nodeXi is {Xj | (Xj , Xi) ∈ E},
i.e., it consists of the parents ofXi inG. Picking a single Pi ∈ Pi for eachXi gives rise
to the (not necessarily acyclic) graph in which, for each Xi, there is an edge (Xj , Xi)
iff Xj ∈ Pi. In case this graph is acyclic, the choice of Pis corresponds to a Bayesian
network structure (DAG) [17]. With these definitions, the Bayesian network structure
learning problem (BNSL) [9] is as follows. Given a set X = {X1, . . . , XN} of nodes
and, for each Xi, a non-negative local score (cost) si(Pi) for each Pi ∈ Pi as input, the
task is to find a DAG G∗ such that

G∗ ∈ argmin
G∈DAGS(N)

N∑
i=1

si(Pi), (1)

where Pi is the parent set of Xi in G and DAGS(N) the set of DAGs over X1.

MaxSAT Maximum satisfiability (MaxSAT) [13, 2, 15] is a well-known optimization
variant of SAT. For a Boolean variable x, there are two literals, x and ¬x. A clause is
a disjunction (∨, logical OR) of literals. A truth assignment is a function from Boolean
variables to {0, 1}. A clauseC is satisfied by a truth assignment τ (τ(C) = 1) if τ(x) =
1 for a literal x in C, or τ(x) = 0 for a literal ¬x in C. A set F of clauses is satisfiable
if there is an assignment τ satisfying all clauses in F (τ(F ) = 1), and unsatisfiable
(τ(F ) = 0 for every assignment τ ) otherwise. An instance F = (Fh, Fs, c) of the
weighted partial MaxSAT problem consists of two sets of clauses, a set Fh of hard
clauses and a set Fs of soft clauses, and a function c : Fs → R+ that associates a non-
negative cost with each of the soft clauses. Any truth assignment τ that satisfies Fh is a
solution to F . The cost of a solution τ to F is

COST(F, τ) =
∑
C∈Fs:
τ(C)=0

c(C),

i.e., the sum of the costs of the soft clauses not satisfied by τ . A solution τ is (globally)
optimal for F if COST(F, τ) ≤ COST(F, τ ′) holds for any solution τ ′ to F . Given an
instance F , the weighted partial MaxSAT problem asks to find an optimal solution to
F . We will refer to weighted partial MaxSAT instances simply as MaxSAT instances.

3 The GOBNILP Approach to BNSL

In this section, we give an overview of the GOBNILP solver for the BNSL problem.
GOBNILP [3, 6] is based on formulating BNSL as an integer program (IP), and imple-
ments a branch-and-cut search algorithm using the constrained integer programming
framework SCIP [1], enabling the use of, e.g., the state-of-the-art IBM CPLEX IP solver
for solving the IP instances encountered during search.

Assume an arbitrary BNSL instance (X = {X1, . . . , X}, {si}Ni=1), where si :
Pi → R+. GOBNILP is based on the following binary IP formulation of BNSL:

1 For scoring functions with negative scores (e.g., BD [9]), the problem is instead to maximize
the score. Flipping the signs gives the equivalent minimization problem considered here.
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minimize
∑
Xi∈X

∑
S∈Pi

si(S) · PSi (2)

subject to
∑
S∈Pi

PSi = 1 ∀i = 1..N (3)

∑
Xi∈C

∑
S∩C=∅

PSi ≥ 1 ∀C ⊂ X (4)

PSi ∈ {0, 1} ∀i = 1..N, S ∈ Pi (5)

In words, binary “parent set” variables PSi are indicators for choosing S ∈ Pi as the
parent set of node Xi (Eq. 5). The BNSL cost function (Eq. 1) is directly represented
as Eq. 2 under minimization. The fact that for each Xi exactly one parent set Pi ∈ Pi
has to be selected is encoded as Eq. 3. Finally, and most importantly, acyclicity of the
graph G∗ corresponding to the choice of parent sets is ensured by the so-called cluster
constraints [10] in Eq. 4, stating that for each possible cluster C (a subset of nodes),
there is at least one variable in C whose parent-set is either outside C or empty.

Instead of directly declaring and solving the integer program consisting of Eqs. 2–5,
GOBNILP implements a branch-and-cut approach, a basic outline of which is presented
as Algorithm 1. Essentially, the search starts with the linear programming (LP) relax-
ation consisting of Eqs. 2–3. Cyclic subgraphs are ruled out during search by deriving
cutting planes based on a found solution to the LP relaxation consisting of Eqs. 2–3
and the already added cluster constraints. At each search node, an LP relaxation con-
sisting of the current set of constraints (Line 3) is solved. If the solution x to the LP
relaxation has worse cost than a best already found solution x∗ (initialized to a known
upper bound solution), the search backtracks (Line 4). Otherwise, x∗ is updated to x,
and one or more clusters C for which the cluster constraints are violated under this new
x∗ are identified, and cutting planes are added to the current LP relaxation (Lines 6 and
7) based on C. If no cutting planes are found (i.e., no clusters C are identified) and x is
integral, then it is the optimal solution for that branch (Line 8). Failing that, a variable
with a non-integral value in x is selected for branching (Lines 10–13).

Two of the main components of the algorithm are solving the LP relaxation and
computing cutting planes. GOBNILP uses an off-the-shelf LP solver, such as CPLEX
or SoPlex, to solve the LP relaxation. It looks for standard cutting planes, including
Gomory, strong Chvátal-Gomory and zero-half cuts. However, the primary strength of
GOBNILP is in using a custom routine to find violated cluster constraints, which are
added as cutting planes to the current LP relaxation. We will next describe how this is
implemented within GOBNILP.

GOBNILP implements FINDCUTTINGPLANES (Line 6 of Alg. 1), by solving ex-
actly a nested integer program, referred to as a sub-IP. A solution to the sub-IP cor-
responds to a subset of the nodes (i.e., a cluster C) for which the cluster constraint is
violated (Eq. 4). Each identified cluster C gives rise to the cutting plane∑

v∈C

∑
S:S∩C=∅

PSv ≥ 1. (6)
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Algorithm 1 Branch-and-cut
1: procedure SOLVE(objective function f , constraints c)
2: while True do
3: x←SOLVELPRELAXATION(f, c)
4: if f(x) ≥ f(x∗) then return x∗ . f(x∗) =∞ if x∗ undefined
5: x∗ ← x
6: cnew ←FINDCUTTINGPLANES(x∗)
7: if cnew 6= ∅ then c← c ∪ cnew

8: else if x∗ is integral then return x∗

9: else break
10: y ← a variable that x∗ assigns a non-integral value
11: x∗y=0 ← Solve(f, c ∪ {y = 0})
12: x∗y=1 ← Solve(f, c ∪ {y = 1})
13: return argmaxx∈{x∗

y=0,x
∗
y=1}

f(x)

14: end procedure

We will now detail the sub-IP formulation used within GOBNILP. Intuitively, solu-
tions to the sub-IP represent cyclic subgraphs over the setX of nodes. For the following,
let x∗(PSi ) indicate the value of PSi in the current best solution x∗ to the outer LP relax-
ation. Note that, by construction,

∑
S∈Pi

x∗(PSi ) ≤ 1 holds generally for any solution
x∗ and node Xi. Furthermore, if for each Xi there is an S ∈ Pi such that x∗(PSi ) = 1,
then x∗ represents a (possibly cyclic) directed graph.

Two types of binary variables are used in the sub-IP: (1) for each Xi, a binary
variable Ci indicates whether Xi is in a cluster C found; and (2) for each x∗(PSi ) >
0, where S 6= ∅, a binary variable JSi indicates whether the set S of nodes are the
parents of Xi in the cyclic subgraph found, such that at least one of the parents are in
C whenever Xi is in C. Using these variables, the sub-IP formulation is the following.

maximize
∑
Xi∈X

∑
S∈Pi

x∗(PSi ) · JSi −
∑
Xi∈X

Ci (7)

subject to JSi → Ci ∀i = 1..N, x∗(PSi ) > 0 (8)

JSi →
∨
s∈S

Cs ∀i = 1..N, x∗(PSi ) > 0 (9)∑
Ci ≥ 2 ∀i = 1..N (10)

Ci, J
S
i ∈ {0, 1} ∀i = 1..N, x∗(PSi ) > 0 (11)

Intuitively, the objective function (Eq. 7) under maximization balances between
finding small clusters (the term −Ci contributing a unit penalty) and including nodes
from parent-sets with high x∗ values. Eq. 8 declares that a node Xi must be in C when-
ever at least one parent set is chosen for Xi; and Eq. 9 states that at least one node in
any chosen parent set must be in C. Finally, Eq. 10 requires that any found cluster must
be non-trivial, i.e., contain at least two nodes.

As argued in [6], any feasible solution to the sub-IP has cost greater than -1, and
corresponds to a valid cutting plane (following Eq. 6). During search, GOBNILP solves
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the sub-IPs in a way which generates multiple non-optimal feasible solutions before
finding an optimal solution. GOBNILP generates cutting planes according to Eq. 6
for each of the found solutions. Eqs. 8–9 are implemented using SCIP’s logicor
construct.

4 Solving Sub-IPs via MaxSAT

We formulate the GOBNILP sub-IP as MaxSAT using the same set of binary variables,
and describe how a MaxSAT solver can be used to provide k best solutions to the sub-IP
under different side-constraints over the next solutions w.r.t. the already found clusters.
Eq. 8 is represented as the hard clause

¬JSi ∨ Ci, (12)

and Eq. 9 as the hard clauses
¬JSi ∨

∨
s∈S

Cs. (13)

The non-trivial cluster constraint (Eq. 10, i.e.,
∑
Ci ≥ 2) can be equivalently expressed

using the JSi variables as the hard clause∨
S∈Pi

JSi . (14)

This is due to the fact that, for any Xi, if JSi = 1 for some S ∈ Pi, Eq. 12 and Eq. 13
together imply that Ci = 1 as well as Cs = 1 for some s ∈ S (and by the BNSL
problem definition we have that s 6= i for all s ∈ S ∈ Pi).

Finally, the sub-IP objective function (Eq. 7) is represented in two parts with soft
clauses.

– The first part
∑
Xi∈X

∑
S∈Pi

x∗(PSi ) · JSi is represented by introducing the soft
clause

JSi with cost x∗(PSi ) , for each Xi and S ∈ Pi. (15)

– The second part −
∑
Xi∈X Ci is represented by the soft clause

¬Ci with cost 1, for each Xi. (16)

Given a solution τ to the sub-IP, we have that τ(Ci) = 1 if and only if Xi ∈ C, i.e.,
node Xi is in the cluster corresponding to τ . We will here consider different strategies
for ruling out C from the set of candidate clusters when finding k > 1 solutions to the
sub-IP via MaxSAT.

Ruling out exactly the found cluster. By adding the hard clause∨
τ(Ci)=1

¬Ci ∨
∨

τ(Ci)=0

Ci,

we rule out exactly the cluster C from the remaining solutions to the sub-IP. In other
words, C will not correspond to any optimal solution after adding this hard clause.
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Ruling out cluster supersets and subsets. Given two clusters,C andC ′, such thatC ⊂
C ′, the cutting plane resulting from C can result in stronger pruning of the outer LP
search space than the cutting plane resulting from C ′, since the cutting plane constraint
becomes more restrictive. Given a cluster C, adding the hard clause∨

τ(Ci)=1

¬Ci

results in ruling out all supersets of C from the set of solutions to the sub-IP; the clause
guarantees that all remaining solutions will correspond to clusters which include at least
one node which is not in C. Analogously, adding the hard clause∨

τ(Ci)=0

Ci

results in ruling out all subsets ofC, ensuring that all remaining solutions be orthogonal
to C in the sense that they will involve variables not mentioned in the cutting plane
corresponding to C.

Ruling out overlapping clusters. Even more orthogonal solutions—in terms of non-
overlapping clusters, involving non-overlapping subsets of nodes—to the sub-IP, pro-
vide cutting planes which together prune different dimensions of the search space of the
outer LP relaxation. To guarantee finding a set of non-overlapping clusters via MaxSAT,
after each found solution τ corresponding to a cluster C, one can add the hard unit
clauses

¬Ci for each Ci such that τ(Ci) = 1,

guaranteeing that none of the nodes in C will occur in any of the remaining solutions.

For integrating the sub-IP search via MaxSAT within GOBNILP, we use our own pro-
totype re-implementation of the MaxHS MaxSAT solver [8] that in preliminary exper-
iments showed good performance compared to other MaxSAT solvers in this domain.
The MaxHS algorithm is a hybrid SAT-MIP approach based on iteratively solving a se-
quence of SAT instances and extracting unsatisfiable cores, and using the IBM CPLEX
MIP solver to solve a sequence of minimum hitting set problems over the extracted
cores. The search progresses bottom-up by proving increasingly tight lower bounds for
the optimal solutions. We have implemented an API for the solver which allows for
incrementally querying for k best solutions without having to restart the search from
scratch after each found solution. Furthermore, the API enables adding arbitrary hard
clauses after each solution, using which we can apply the different set-based strate-
gies for finding multiple best solutions to the sub-IPs. Our implementation also natively
supports real-valued weights for the MaxSAT soft clauses. We used Minisat 2.2.0 as the
underlying SAT solver.

5 Experiments

For a preliminary empirical evaluation of using MaxSAT to solve sub-IPs within GOB-
NILP (version 1.4.1), we used a set of 530 Bayesian network structure learning in-
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stances from [14] and 285 chordal Markov network learning instances from [11]2 over
17–61 nodes. The experiments were run on a cluster of 2.53-GHz Intel Xeon quad core
machines with 32-GB memory and Ubuntu Linux 12.04. A timeout of 2 h and a memory
limit of 30 GB were enforced for solving each benchmark instance.

An overview of the results is presented in Fig. 1. The upper two plots give views
to the total per-instance running times of the default GOBNILP (“GOBNILP”, using
CPLEX to solve the sub-IP encountered during search) and our modified GOBNILP
variants (“MaxSAT”) which use our MaxSAT solver on the MaxSAT formulations pre-
sented in Sect. 4 to solve the encountered sub-IPs. In the plot keys, the numerical pa-
rameter (1/5/10) after “MaxSAT” gives the number of best solutions looked for, where
“all” (“opt”, respectively) refers to finding all (respectively, all optimal) solutions re-
gardless of how many exist for the individual sub-IPs. In case of “super+subset” and
“overlap”, the set of solutions to the sub-IPs are incrementally refined after each solu-
tion by ruling out solutions which are either superset or subsets (“super+subset”) of the
found solution, or overlap with the solution, using the clauses detailed in Sect. 4.

Fig. 1 (top left) gives the number of Bayesian network structure learning instances
solved (x-axis) within different timeouts (y-axis). We observe that the best-performing
MaxSAT-based variants for solving the sub-IPs show generally very similar perfor-
mance as the default GOBNILP. Here we emphasize that the default MIP-based sub-IP
solving strategy within GOBNILP has been carefully hand-tuned for these kinds of in-
stances. The MaxSAT-based variant which aims at finding orthogonal (non-overlapping,
i.e., variable-disjoint) cuts, especially the one which incrementally finds a maximal dis-
joint set of optimal sub-IP solutions performs very similarly to GOBNILP. Surprisingly,
even finding only a single optimal solution to the sub-IP using MaxSAT comes close
to the performance of GOBNILP. These observations seem to suggest that high-quality
cuts (in terms of the sub-IP objective function) are very important in pruning the search
space. In contrast, the variants which look for many cuts (5-10) with the less-restrictive
refinement strategies (ruling out either all supersets and all subsets, or only the exact
solutions found), perform noticeably worse. Here we note that, due to the fact that our
MaxSAT solver implementation allows for adding the hard refinement clauses incre-
mentally without having to start the solver from scratch, we observed that the running
time cost of finding many solutions is rather negligible, often a fraction of a second.
Hence it seems that the refinement strategy plays a key role. Focusing on the best-
performing MaxSAT-based variant (finding a maximal disjoint set of optimal solutions),
Fig. 1 (top right) gives a per-instance running time comparison with GOBNILP on the
Markov network learning instances, again showing performance close to that of GOB-
NILP. In fact, MaxSAT results in solving one more instance within the timeout, and
the average time spent in solving the sub-IPs is less than that of GOBNILP on several
Markov network instances (Fig. 1 top right). As can be seen from Fig. 1 (bottom left),
the cuts found with MaxSAT tend to be of better quality on average compared to those
found by GOBNILP. Here it is important to note that since GOBNILP and the MaxSAT
variants find different cuts, the overall search performed by the different solvers, espe-
cially, the sub-IPs encountered during search, differ. While the MaxSAT-based sub-IP

2 Setting the option gobnilp/noimmoralities to true in GOBNILP allows for learning
chordal Markov networks with GOBNILP [7] without changing the sub-IP model.
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Fig. 1. Top left: number of solved instances using different timeouts on Bayesian networks; right:
running time comparison of GOBNILP and MaxSAT finding all cuts under the disjoint refinement
on Markov networks. Bottom left: average cut quality; middle: number of cuts; right: average
sub-IP solving time.

routine results in overall performance similar to GOBNILP, this is achieved by adding
notably fewer cuts, as shown in Fig. 1 (bottom middle). The price paid for finding better
quality cuts, on the other hand, is reflected in the average running time of solving the
per-instance sub-IPs, as can be seen from Fig. 1 (bottom right).

A current challenge is to further speed up solving the sub-IPs with MaxSAT, e.g.
by by devising domain-specific search heuristics. Similar modifications to GOBNILP’s
MIP-based sub-IP routine, as well as studying alternative sub-IP objective functions,
would also be of interest. It would also be interesting to apply MaxSAT solvers to sub-
IPs within MIP-based approaches to other problem domains.
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