Skip to main content

ND-Sync: Detecting Synchronized Fraud Activities

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9078))

Abstract

Given the retweeting activity for the posts of several Twitter users, how can we distinguish organic activity from spammy retweets by paid followers to boost a post’s appearance of popularity? More generally, given groups of observations, can we spot strange groups? Our main intuition is that organic behavior has more variability, while fraudulent behavior, like retweets by botnet members, is more synchronized. We refer to the detection of such synchronized observations as the Synchonization Fraud problem, and we study a specific instance of it, Retweet Fraud Detection, manifested in Twitter. Here, we propose: (A) ND-Sync, an efficient method for detecting group fraud, and (B) a set of carefully designed features for characterizing retweet threads. ND-Sync is effective in spotting retweet fraudsters, robust to different types of abnormal activity, and adaptable as it can easily incorporate additional features. Our method achieves a 97% accuracy on a real dataset of 12 million retweets crawled from Twitter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almaatouq, A., et al.: Twitter: who gets caught? observed trends in social micro-blogging spam. In: WebSci, pp. 33–41. ACM (2014)

    Google Scholar 

  2. Beutel, A., et al.: CopyCatch: stopping group attacks by spotting lockstep behavior in social networks. In: WWW, pp. 119–130. ACM (2013)

    Google Scholar 

  3. Breunig, M., et al.: LOF: identifying density-based local outliers. In: Proc. ACM SIGMOD Conf. 2000, pp. 93–104 (2000)

    Google Scholar 

  4. Brys, G., et al.: A Robust Measure of Skewness. Journal of Computational and Graphical Statistics 13, 996–1017 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chan, P. K., et al.:Modeling multiple time series for anomaly detection. In: ICDM, pp. 90–97. IEEE Computer Society (2005)

    Google Scholar 

  6. Chandola, V., et al.: Anomaly Detection: A Survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chu, Z., et al.: Detecting Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg? IEEE Trans. Dependable Secur. Comput. 9(6), 811–824 (2012)

    Article  Google Scholar 

  8. Cook, D., et al.: Twitter Deception and Influence: Issues of Identity, Slacktivism, and Puppetry. Journal of Information Warfare 13(1), 58–71 (2014)

    Google Scholar 

  9. Freitas, C.A., et al.: Reverse Engineering Socialbot Infiltration Strategies in Twitter. ArXiv e-prints (2014)

    Google Scholar 

  10. Garrett, R.G.: The Chi-square Plot: a Tool for Multivariate Outlier Recognition. Journal of Geochemical Exploration 32, 319–341 (1989)

    Article  Google Scholar 

  11. Ghosh, R., et al.: Entropy-based classification of ‘Retweeting’ activity on twitter. In: KDD Workshop on Social Network Analysis (SNA-KDD) (2011)

    Google Scholar 

  12. Ghoting, A., et al.: Fast mining of distance-based outliers in high-dimensional datasets. Data Mining and Knowledge Discovery 16(3), 349–364 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hazel, G.: Multivariate Gaussian MRF for Multispectral Scene Segmentation and Anomaly Detection. IEEE Transactions on Geoscience and Remote Sensing 38(3), 1199–1211 (2000)

    Article  Google Scholar 

  14. Hubert, M., et al.: ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics 47, 64–79 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hubert, M., et al.: Robust PCA for Skewed Data and its Outlier Map. Computational Statistics & Data Analysis 53(6), 2264–2274 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang, M., et al.: CatchSync: catching synchronized behavior in large directed graphs. In: KDD, pp. 941–950. ACM (2014)

    Google Scholar 

  17. Jiang, M., Cui, P., Beutel, A., Faloutsos, C., Yang, S.: Inferring strange behavior from connectivity pattern in social networks. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 126–138. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Jolliffe, I.T.: Discarding Variables in a Principal Component Analysis. II: Real Data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 22(1), 21–31 (1973)

    Google Scholar 

  19. Noble, C.C., et al.: Graph-based anomaly detection. In: KDD (2003)

    Google Scholar 

  20. Papadimitriou, S., et al.: LOCI: Fast outlier detection using the local correlation integral. In: ICDE 2003 (2003)

    Google Scholar 

  21. Shah, N., et al.: Spotting suspicious link behavior with fBox: an adversarial perspective. In: ICDM (2014)

    Google Scholar 

  22. Stringhini, G., et al.: Follow the green: growth and dynamics in twitter follower markets. In: IMC, pp. 163–176. ACM (2013)

    Google Scholar 

  23. Tavares, G., et al.: Scaling-Laws of Human Broadcast Communication Enable Distinction between Human, Corporate and Robot Twitter Users. PLoS ONE 8(7), e65774 (2013)

    Article  Google Scholar 

  24. Twitter Inc. S-1 Filing, US Securities and Exchange Commission (2013). http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm

  25. Xiong, L., et al.: Group Anomaly Detection using Flexible Genre Models. Advances in Neural Information Processing Systems 24, 1071–1079 (2011)

    Google Scholar 

  26. Xiong, L., et al.: Efficient learning on point sets. In: ICDM, pp. 847–856 (2013)

    Google Scholar 

  27. Yang, C., et al.: Analyzing spammers’ social networks for fun and profit: a case study of cyber criminal ecosystem on twitter. In: WWW, pp. 71–80 (2012)

    Google Scholar 

  28. Yu, R., et al.: GLAD: group anomaly detection in social media analysis. In: KDD, pp. 372–381. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Giatsoglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Giatsoglou, M., Chatzakou, D., Shah, N., Beutel, A., Faloutsos, C., Vakali, A. (2015). ND-Sync: Detecting Synchronized Fraud Activities. In: Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D., Motoda, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science(), vol 9078. Springer, Cham. https://doi.org/10.1007/978-3-319-18032-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18032-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18031-1

  • Online ISBN: 978-3-319-18032-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics