
Mining Uncertain Sequential Patterns in
iterative MapReduce

Jiaqi Ge1, Yuni Xia1, and Jian Wang2

1 Department of Computer & Information Science, Indiana University Purdue
University Indianapolis, Indiana, USA, 46202

2 School of Electronic Science and Engineering, Nanjing University, Jiangsu, China,
210023

1 {jiaqige,yxia}@cs.iupui.edu, 2 wangjnju@nju.edu.cn

Abstract. This paper proposes a sequential pattern mining (SPM) al-
gorithm in large scale uncertain databases. Uncertain sequence databases
are widely used to model inaccurate or imprecise timestamped data in
many real applications, where traditional SPM algorithms are inapplica-
ble because of data uncertainty and scalability. In this paper, we develop
an efficient approach to manage data uncertainty in SPM and design
an iterative MapReduce framework to execute the uncertain SPM algo-
rithm in parallel. We conduct extensive experiments in both synthetic
and real uncertain datasets. And the experimental results prove that our
algorithm is efficient and scalable.

Keywords: Uncertain Databases, Sequential Pattern Mining

1 Introduction

Sequential pattern mining (SPM) is an important data mining application. It
provides inter-transactional analysis for timestamped data which are modeled by
sequence databases. In real applications, uncertainty is almost everywhere and
it may cause probabilistic event existence in sequence databases. For example,
in an employee tracking RFID network, the tag read by sensors are modeled by
a relation see(t, aId, tId), which denotes that the RFID tag tId is detected by
an antenna aId at time t. Since an RFID sensor can only identify a tag with
a certain probability within its working range, the PEEX system [10] outputs
an uncertain event such as meet(100, Alice, Bob, 0.4), which indicates that the
event that Alice and Bob meet at time 100 happens with probability 0.4.

Possible world semantics is widely used to interpret uncertain databases[5,
17]; however, it also brings efficiency and scalability challenges to uncertain SPM
problems. Meanwhile, applications in the areas of biology, Internet and business
informatics encounter limitations due to large scale datasets. While MapReduce
is a widely used programming framework for processing big data in parallel, its
basic framework can not directly be used in SPM because it does not support
the iterative computing model which is required by most SPM algorithms.

__

This is the author's manuscript of the article published in final edited form as:
Ge, J., Xia, Y., & Wang, J. (2015). Mining Uncertain Sequential Patterns in Iterative MapReduce. In Advances in
Knowledge Discovery and Data Mining (pp. 243-254). Springer International Publishing.
http://dx.doi.org/10.1007/978-3-319-18032-8_19

http://dx.doi.org/10.1007/978-3-319-18032-8_19

2 Towards Efficient SPM in Temporal Uncertain Databases

In this paper, we propose a sequential pattern mining algorithm in itera-
tive MapReduce for large scale uncertain databases. Our main contributions are
summarized as follows:
(1) We use possible world semantics to interpret uncertain sequence databases
and analyze the naturally correlated possible worlds.
(2) We design a vertical format of uncertain sequence databases in which we
save and reuse intermediate computational results to significantly reduces the
time complexity.
(3) We design an iterative MapReduce framework to execute our uncertain al-
gorithm in parallel.
(4) Extensive experiments are conducted in both synthetic and real uncertain
datasets, which prove the efficiency and scalability of our algorithm.

2 Related works

A lot of traditional database and data mining techniques have been extended to
be applied to uncertain data [2]. Muzammal and Raman propose the SPM algo-
rithm in probabilistic database using expected support to measure pattern fre-
quentness, which has weakness in mining high quality sequential patterns[14, 15].
Zhao et al. define probabilistic frequent sequential patterns using possible world
semantics and propose their complimentary uncertain SPM algorithm UPrefixS-
pan [17, 18]; however, it uses the depth-first strategy to search frequent patterns
and cannot be directly extended to MapReduce framework. A dynamic pro-
gramming approach of mining probabilistic spatial-temporal frequent sequential
patterns is introduced in [11]; Wan et al. [16] propose a dynamic programming
algorithm of mining frequent serial episodes within an uncertain sequence. How-
ever, dynamic programming also cannot be directly extended to MapReduce.

Jeong et al. propose a MapReduce framework for mining sequential patterns
in DNA sequences with only four distinct items [8], in contrast to this paper
where unlimited number of items are allowed; Chen et al. extend the classic
SPAM algorithm to its MapReduce version SPAMC [7]. However, SPAMC relies
on a global bitmap and it is still not scalable enough for mining extremely large
databases. Miliaraki et al. propose a gap-constraint frequent sequence mining
algorithm in MapReduce [13]. However, all these algorithms are applied in the
context of deterministic data, while our work aims to solve large scale uncertain
SPM problems.

3 Problem statement

3.1 Uncertain Model

An uncertain database contains a collection of uncertain sequences. An uncertain
sequence is an ordered list of uncertain events. An uncertain event is represented
by e = 〈sid, eid, I, pe〉. Here sid is the sequence id and eid is the event id.
〈sid, eid〉 identifies a unique event. I is an itemset that describes event e, and pe is

Mining Uncertain Sequential Patterns in iterative MapReduce 3

sid	
 eid	
I	
 Pe	

1	
 1	
 {A,B}	
 0.8
1	
 2	
 {C}	
 0.8
2	
 1	
 {B} 1
2	
 2	
 {C}	
 0.8
2	
 3	
 {C}	
 0.4

Fig. 1. An example of uncertain database

wid	
 Possible world	

1 <e11><e21, e22, e23>
2 <e11, e12><e21, e22>
3 <e11, e12><e21, e23>
4 <e11, e12><e21, e22, e23>
…	
 …

Fig. 2. possible worlds table

the existential probability of event e. Figure 1 shows an example of an uncertain
sequence database. Here, for instance, the uncertain event e11 = 〈1, 1, {AB}, 0.8〉
indicates that the itemset {AB} occurs in e11 with probability 0.8.

We use possible world semantics to interpret uncertain sequence databases.
A possible world is instantiated by generating every event according to its ex-
istential probability. The number of possible worlds grows exponentially to the
number of sequences and events. It is widely assumed that uncertain sequences
in the sequence database are mutually independent, which is known as the tuple-
level independence [9, 2] in probabilistic databases. Events are also assumed to be
independent of each other [5, 17], which can be justified by the assumption that
events are often observed independently in real world applications. Therefore,
we can compute the existential probability of a possible world w in Equation
(1).

Pe(w) =
∏
∀di∈w

{
∏
∀eij∈di

P (eij) ∗
∏

eij /∈di

(1− P (eij))} (1)

Where di ∈ w is a sequence in w and eij ∈ di is an event in di. Here eij is instanti-
ated from the original database and P (eij) is its existential probability. Figure 2
is a table which contains four possible worlds of the uncertain sequence database
in Figure 1. Then, for example, we can compute the existential probability of
possible world w1 by P (w1) = (0.8 ∗ 0.2) ∗ (1 ∗ 0.8 ∗ 0.4) = 0.0512.

When one or more uncertain event occurs multiple times in the sequence
such as C in e22 and e23, some possible worlds are correlated even under the
independent assumptions. For example, w1 and w3 in Figure 2 are correlated in
supporting a pattern, because each event in w1 is also present in w3.

3.2 Uncertain SPM problem

A sequential pattern α = 〈X1 · · ·Xn〉 is supported by a sequence β = 〈Y1 · · ·Ym〉,
denoted by α v β, if and only if there exists integers 1 ≤ k1 < · · · < kn ≤ m so
that Xi.I ⊆ Yki

.I, ∀i ∈ [1, n]. In deterministic databases, a sequential pattern s is
frequent if and only if it satisfies sup(s) ≥ ts, where sup(s) is the total number
of sequences that support s and ts is the user-defined minimal threshold. In
an uncertain database D, the frequentness of s is probabilistic and it can be

4 Towards Efficient SPM in Temporal Uncertain Databases

computed by Equation (2).

P (sup(s) ≥ ts) =
∑

∀w,sup(s|w)≥ts

P (w) (2)

Where w is a possible world in which s is frequent and P (w) is the existential
probability of w.

Then the uncertain sequential pattern mining problem is defined as follows.
Given an uncertain sequence database D, a minimal support threshold ts and
a minimal frequentness probability threshold tp, find every probabilistic frequent
sequential pattern s in D which has P (sup(s) ≥ ts) ≥ tp.

4 Solution

4.1 Approximation of Frequentness Probability

Suppose D = {d1, . . . , dn} is an uncertain database and s is a sequential pattern.
Because d1, . . . , dn in D are mutually independent, the probabilistic support of
s in D, denoted by sup(s), can be computed by Equation (3).

sup(s) =

n∑
i=1

sup(s|di) (3)

Where sup(s|di) (i = 1, . . . , n) are Bernoulli random variables, whose suc-
cess probabilities are P (sup(s|di) = 1) = P (s v di). And we will discuss the
computation of P (s v di) in section 4.2.

We find that sup(s) is a Poisson-Binomial random variable, because it is the
sum of n independent but non-identical Bernoulli random variables. And sup(s)
can be modeled by its probability mass function (pmf), denoted by sup(s) =
{sup(s)|0 : p0, 1 : p1, . . . , n : pn}. Here n = |D| is the number of sequences in D.

According to central limit theorem, sup(s) converges to the Gaussian distri-
bution when n goes to infinity. Therefore, in the large scale database D, we can
approximate the distribution of sup(s) by Equation (4).

sup(s) =

n∑
i=1

Xi −→ N(

n∑
i=1

pi,

n∑
i=1

pi ∗ (1− pi)) (4)

Here we approximate sup(s) by the Gaussian distribution N (µ, σ2), and then
the approximated frequentness probability P (sup(s) ≥ ts) can be computed in
linear time.

4.2 Support Probability

The support probability P (s v d) is the probability that a sequential pattern s
is supported by an uncertain sequence d and it can be computed in (5) according
to possible world semantics.

Mining Uncertain Sequential Patterns in iterative MapReduce 5

P (s v d) =
∑
∀w,svw

P (w) (5)

Where w is a possible world of d which supports s and p(w) is its existential
probability. However, suppose each item in a k-length pattern s has m multiple
occurrences in d in average, there are O(km) possible worlds that may support
s in the worst case. And directly enumerating all of them is usually too complex
in practice.

Therefore, we design an incremental approach to compute support probabil-
ity efficiently. Let l be the last item of sequential pattern s. In uncertain sequence
d, suppose there are q possible occurrences of l in events ek1

, . . . , ekq
, then all

the possible worlds that may support s can be divided into q disjoint subsets
(g1, . . . , gq) by the most recent occurrence of item l.

Let P (gi) be the probability that the latest occurrence of item l (the last
item of s) is in eki

, then it can be computed by Equation (6).

P (gi) = P (l ∈ eki) ∗
q∏

t=i+1

P (l /∈ ekt) (6)

The amortized cost of Equation (6) is O(1), when events are pre-sorted by
their eids. And the support probability P (s v d) can be computed in (7).

P (s v d) =

q∑
i=1

P (s v d|gi) ∗ P (gi) = P (s v d ∩ gi) (7)

For example, given d =
〈
(B : 0.5)(C1 : 0.4)(C2 : 0.4)

〉
and s = 〈BC〉, accord-

ing to possible world semantics, there are three possible worlds of d that may
support s: w1 = {BC1}, w2 = {BC2} and w3 = {BC1C2}, and we divide them
into two disjoint groups by the latest occurrence of item C in the possible worlds
as g1 = {w1} and g2 = {w2, w3}. We first compute P (g1) = 0.4 ∗ 0.6 = 0.24 and
P (g2) = 0.4, then we have P (s v d) = 0.5 ∗ 0.24 + 0.5 ∗ 0.4 = 0.22.

Suppose l is the last item of s, then s′ = s−{l} is a (k−1)-length sequential
pattern. P (s v d|gi) in (7) can be computed by (8).

P (s v d|gi) =

p∑
j=1

P (s′ v d|gj) ∗ P (gj |gi) =

p∑
j=1

P (s′ v d ∩ gj) ∗ δ(gi, gj) (8)

Where gj (∀j ∈ [1, p]) are p disjoint subsets of possible worlds in which the latest
occurrence of the last item of s′ in the event ekj

. And δ(gj , gi) = 1, if the last
item of s′ occurs before the last item of s; otherwise, δ(gj , gi) = 0.

By substituting (8) into (7), we can compute the support probability in (9).

P (s v d) =

q∑
i=1

p∑
j=1

P (s′ v d ∩ gj) ∗ P (gi) ∗ δ(gi, gj) (9)

6 Towards Efficient SPM in Temporal Uncertain Databases

sid	
 tid	
 I	

1	
 1	
 A:0.3	

1	
 2	
 A:0.5	

1	
 3	
 B:0.4	

2	
 1	
 A:0.4	

2	
 2	
 B:0.8	

2	
 3	
 B:0.7	

sid	
 1	
 2	

c	
 <A>	
 	
<A>	
 	

tid	
 1	
 2	
 3	
 1	
 2	
 3	

Pc	
 0.15	
0.5	
0.4	
 0.4	
 0.24	
0.7	

Pi	
 0.3	
 0.5	
0.4	
 0.4	
 0.8	
 0.7	

sid	
 1	
 2	

c	
 <AB>	
 <AB>	

tid	
 2	
 2	
 3	

Pc	
 0.26	
 0.096	
 0.28	

Pi	
 0.4	
 0.8	
 0.7	

D D1 D2

Fig. 3. An example of constructing the vertical data structure

Therefore, if we save and reuse the values of P (s′ v d ∩ gj), we can avoid
repeated computation which reduces the time complexity of support probability
computation from exponential to O(p ∗ q).

4.3 Vertical Data Structure

We develop a vertical data format Dk to save occurrences of k-length candidate
patterns. The schema of Dk is 〈sid, c, tid, Pc, Pi〉, where sid identifies an uncer-
tain sequence d, c is a candidate pattern and 〈tid, Pc, Pi〉 records an occurrence
of c in d. Suppose i is the last item of c and e is the event identified by (sid, tid),
then we have Pc = P (c v d ∩ gi), where gi is a subset of possible worlds in
which the latest occurrence of item i locates in event e. And Pi = P (i ∈ e) is
the existential probability of i in e.

We transform the original sequence database into its vertical format which
is a set of candidate occurrences. Figure 3 shows an example of constructing the
vertical data format Dk. Here D is the original database, and D1 is transformed
from D. For example, let s = 〈A〉, then we have two groups g1 and g2 of occur-
rences of s in sequence d1. We compute Pc1(s) = 1 ∗ P (g1) = 0.3 ∗ 0.5 = 0.15
and Pc2(s) = 0.5 and save the results in D1. Thereafter, we can compute the
support probabilities P (s v d1) = 0.65 and P (s v d2) = 0.4 from D1, which
are used to calculate the frequentness probability. In this example, if we set
minsup = 1 and minprob = 0.5, then 〈A〉 and 〈B〉 are two frequent pat-
terns. 2-length candidates are generated by self-joining 1-length frequent pat-
terns, and their occurrences are saved in D2. For example, let s′ = 〈AB〉, then
P (s′ v d1) = 0.65 ∗ 0.4 = 0.26. Since there are two occurrences of item B in
d2, we first compute P (g1) = 0.8 ∗ 0.3 = 0.24 and P (g2) = 0.7, then we have
Pc1(s′) = 0.4 ∗ 0.24 = 0.096 and Pc2(s′) = 0.4 ∗ 0.7 = 0.28. Thereafter, the
support probability P (s′ v d2) = 0.376.

In our approach, we only refer to Dk in searching k-length frequent patterns.
And Dk is usually in a much smaller size than the original database because it
only contains occurrences of potential frequent candidate patterns.

Mining Uncertain Sequential Patterns in iterative MapReduce 7

Dk+1	

Mapper	
 Mapper	
 Mapper	

Intermediate	
 dataset	
 Dk	

Write to DFS

Iterative

Iterative

	
 G
en

er
at
e	

ca
nd

id
at
es
	

reducer	
 Reducer	

K-­‐length	
 frequent	
 sequen=al	
 pa>ern	

Write to DFS

Fig. 4. Iterative MapReduce framework for uncertain sequential pattern mining

4.4 Uncertain SPM in Iterative MapReduce

Our iterative MapReduce framework helps to traverse a huge sequence tree[4] in
searching frequent patterns in parallel. In each iteration, we start a MapReduce
job to search k-length frequent patterns on a cluster of computers.

Fig. 4 shows our iterative MapReduce framework for uncertain SPM. In
the first iteration, the original database is split and input to mappers; in the
kth (k > 1) iteration, the input data of a mapper is a chunk of Dk−1. We
modify the data split function in MapReduce to make sure that all occurrences
in one sequence are input to the same map function. A set of k-length candidate
patterns are distributed to mappers, which is denote by Ck.
(1) Mapper function: The mapper function is shown in Algorithm 1. It first
constructs dk from dk−1 and Ck, where dk−1 ∈ Dk−1 contains occurrences of
(k − 1)-length frequent patterns in one uncertain sequence. Given a candidate
pattern c, the mapper computes the support probability p = P (c v dk) using
the newly updated data structure and outputs a key-value pair

〈
c,
〈
µ, σ2

〉〉
if

p = P (c v d) > 0. Here µ = p and σ2 = p ∗ (1− p) are the mean and variance of
the Bernoulli random variable sup(c|dk). Thereafter, dk is written to distributed
file system (DFS) to be used in the next iteration.
(2) Combiner function: We design a combiner function in Algorithm 2 to help
improve the performance. Suppose a mapper function emits n key-value pairs〈
c,
〈
µi, σ

2
i

〉〉
(i = 1, . . . , n) which are associated with the identical pattern c. As

the value filed of the mapper output is associative and commutative, they can
be condensed to a single pair

〈
c,
〈∑n

1 ui,
∑n

1 σ
2
i

〉〉
. Then each mapper sends only

one key-value pair to the reducer for each candidate pattern, which dramatically
reduce the total bandwidth cost of data shuffling.
(3) Reducer function: Algorithm 3 shows the reducer function. The input key-
value pair of the reducer is in the form of

〈
c,
〈
µi, σ

2
i

〉〉
, where µi =

∑
p and σ2

i =

8 Towards Efficient SPM in Temporal Uncertain Databases

ALGORITHM 1: Map(Key key, Value value, Context context)

dk−1 ← pase(value) /* dk−1 ∈ Dk−1 parsed from value */

Ck ← DistributedCache.file
dk ← construct from Ck and dk−1

foreach c ∈ Ck do
p← P (c v dk) /* computed by summing Pc(c) in dk */

key ← c;
value ← 〈p, p ∗ (1− p)〉 /* composited value */

context.collect(key, value)
end
DFS.file f = new DFSFile(“Dk”);
f .append(d);

ALGORITHM 2: Combine(Key key, Iterable values, Context context)

µ← 0, σ2 ← 0
foreach value ∈ values do

µ = µ+ value.µ
σ2 = σ2 + value.σ2

end
context.collect(key,

〈
µ, σ2

〉
)

∑
p ∗ (1− p) are the partially aggregated mean and variance of the probabilistic

support of candidate c. The reducer function accumulates the overall mean and
variance of c in the entire uncertain database and uses the Gaussian distribution
to approximate the distribution of overall support sup(c). Given minsup = ts
and minprob = tp, the reducer outputs the probabilistic frequent sequential
patterns to the file, if P (sup(c) ≥ ts) ≥ tp; otherwise, c is not probabilistic
frequent and is discarded by the reducer.

A MapReduce iteration is finished after all k-length probabilistic frequent
sequential patterns are discovered and written to DFS files. After that, we self-
join k-length frequent patterns to generate (k + 1)-length candidate patterns
for the next iteration. This process continues until all frequent patterns are
discovered.

5 Evaluation

In this section, we implement our uncertain SPM algorithm in iterative MapRe-
duce, denoted by IMRSPM, and evaluate its performance using both synthetic
and real world datasets in a 10-node Hadoop cluster.

A naive method directly enumerates possible worlds table without reusing
previous computational results. We implement this naive approach in Iterative
MapReduce as baseline, which is denoted by BL here. We also compare our al-
gorithm with the single-machine uncertain sequential pattern mining algorithm,
denoted by UPrefix [17, 18], to show the benefit from parallel computing.

Mining Uncertain Sequential Patterns in iterative MapReduce 9

ALGORITHM 3: Reduce(Key key, Iterable values, Context context)

c← key
µ← 0, σ2 ← 0
foreach value ∈ values do

µ = µ+ value.µ
σ2 = σ2 + value.σ2

end
sup(c) ∼ N(µ, σ2)
ts ← context.minsup, tp ← context.minprob
if P (sup(c) ≥ ts) ≥ tp then

DFS.file f = new DFSFile(“frequent pattern”);
f .append(c);

end

5.1 Synthetic Dataset Generation

The IBM market-basket data generator [3] uses the following parameters to
generate sequence datasets in various scales: (1) C : number of customers; (2)
T : average number of transactions per sequence; (3) L: average number of items
per transaction per sequence; (4) I : number of different items.

We assume that an event existential probability follows normal distribution
t ∼ N(µ, σ2), where µ is randomly drawn from range [0.7, 0.9] and σ is randomly
drawn from range [1/21, 1/12]. Then we draw a value from t and assign it to
an event in the original synthetic datasets as its existential probability. This
approach has been used in previous work [1] to generate synthetic uncertain
datasets. We name a synthetic uncertain dataset by its parameters. For example,
a dataset T4L10I10C10 indicates T = 4, L = 10, I = 10∗1000 and C = 10∗1000.

5.2 Scalability

In Figure 5, we evaluate the scalability of IMRSPM on synthetic datasets gen-
erated by different parameters. Here we set minsup = 0.2% and minprob = 0.7.
Fig. 5(a) shows the running time variations of IMRSPM when C varies from
10 000 to 10 000 000, where T = 4, L = 4, I = 10 000. Fig. 5(b) shows the run-
ning time variations of IMRSPM when T varies from 5 to 25, where C = 100 000,
L = 4, I = 10 000. Fig. 5(c) shows the running time variations of IMRSPM when
L varies from 2 to 32, where C = 100 000, T = 4, I = 10 000. Fig. 5(d) shows the
running time variations of IMRSPM when I varies from 2 000 to 32 000, where
C = 100 000, T = 4, L = 4.

In Figure 5, we observe the following phenomenons:
(1) IMRSPM outperforms BL under every setting of the parameters, which
proves the effectiveness of our incremental temporal uncertainty management ap-
proach; meanwhile, IMRSPM is much more scalable than UPrefix, which demon-
strates the advantage of using iterative MapReduce framework.
(2) The running time increase with the increment of C, T , L, as increasing these

10 Towards Efficient SPM in Temporal Uncertain Databases

10 100 1000 5000 10000

0.5

1

1.5

2

x 10
4

C (K)

ru
n

n
in

g
 t

im
e

(s
)

IMRSPM

BL

UPrefix

(a) scale of C

5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

T

ru
n

n
in

g
 t

im
e

(s
)

IMRSPM

BL

UPrefix

(b) scale of T

2 4 8 16 32
0

1000

2000

3000

4000

5000

6000

7000

8000

L

ru
n

n
in

g
 t

im
e

(s
)

IMRSPM

BL

UPrefix

(c) scale of L

2 4 8 16 32

1000

2000

3000

4000

5000

I (K)

ru
n

n
in

g
 t

im
e

(s
)

IMRSPM

BL

UPrefix

(d) scale of I

Fig. 5. Scalability of IMRSPM-A algorithm

parameters generates larger scale datasets. Furthermore, when T or L are set
to larger values, there are more repeated items in uncertain sequences. And our
incremental uncertainty management approach shows its effectiveness in improv-
ing the efficiency especially in such cases.
(3) The running time slightly drops with the increment of I. When the value of
I grows, the number of repeated item in one sequence become less because items
are randomly selected from a fixed set of items.

5.3 Mining Customer Behavior Patterns from Amazon Reviews

We apply our IMRSPM algorithm in Amazon review dataset[12] to discover
customer behavior patterns. The Amazon review dataset includes 34 686 770
reviews of 2 441 053 products from 6 643 669 customers between June 1995 to
March 2013. Each review is scored by an integer between 1 to 5, which indicates
a user opinion toward a product. However, this score is a lose measurement of
subjective satisfaction. Suppose a customer gives a score t to a product, then we
believe that the probability that this customer likes this product is p = t/5. An
ordered list of user reviews is regarded as an uncertain sequence. A probabilistic
frequent sequential pattern 〈A,B〉 mined from this database can be explained as:
if a customer likes product A, then it is very likely that he/she will like product
B in the future.

For example, given minsup = 0.005% and minprob = 0.7, we have discovered
the sequential pattern 〈B000TZ19TC→ B000GL8UMI〉. Here B000TZ19TC is
the Amazon Standard Identification Number (ASIN) of the book Fahrenheit
451 published in 1953. And this pattern reveals that users who now like prod-
uct B000TZ19TC may also like B000GL8UMI in the future, which is a newer
edition of the same book published in 1963. We also discover other non-trivial
patterns as 〈B000MZWXNA→ B000PBZH6Q〉, where B000MZWXNA is asso-
ciated with the book The Martian Way and ASIN B000PBZH6Q identifies the
book Foundation.

Figure 6 and Figure 7 show the effect of user-defined parameters minsup
and minprob in Amazon dataset. We initially set minprob = 0.7 and minsup =
0.04%. In Figure 6(a) and 7(a), we vary the value of minsup from 0.02% to
0.04%; while minprob is varied from 0.5 to 0.8 in Figure 6(b) and 7(b). From
Figure 6 and Figure 7 , we observe that: (1) In Figure 6(a), the running time

Mining Uncertain Sequential Patterns in iterative MapReduce 11

1 2 4 8
0

1000

2000

3000

4000

5000

minsup(*0.01%)

ti
m

e
(s

)

shuffle
compute

(a) vary minsup

5 6 7 8

1000

2000

3000

4000

5000

6000

minprob(*0.1)

ti
m

e
(s

)

shuffle
compute

(b) vary minprob

Fig. 6. Effect of user-define parameters in efficiency

1 2 4 8
0

1

2

3

4

5
x 10

5

minsup(*0.01%)

#
 o

f
p
a
tt
e
rn

s

(a) vary minsup

5 6 7 8

0.5

1

1.5

2

2.5

3
x 10

5

minprob(*0.1)

#
 o

f
p

a
tt

e
rn

s

(b) vary minprob

Fig. 7. Effect of user-define parameters in number of patterns

of IMRSPM decreases with the increment of minsup; meanwhile, the effect of
minsup to the computing time is more significantly than that to the shuffling
time. The reason is that fewer frequent patterns are mined when minsup is
larger, which can be proved by Figure 7(a).
(2) The performance remains relatively stable to the variation of minprob. The
probabilistic support of a sequential pattern is bounded to its expected value
(Chernoff bound). Thus, the frequentness of a large number of candidate patterns
becomes deterministic, and this explains why the running time and the number
of frequent patterns do not significantly fluctuate in Figure 6(b) and 7(b).

6 Conclusions

In this paper, we propose a SPM algorithm in an iterative MapReduce framework
for large scale uncertain databases to discover customer behavior patterns in
Amazon review dataset. In the future, we will continue to explore the facilitation
of other distributed platforms in solving uncertain SPM problems.

12 Towards Efficient SPM in Temporal Uncertain Databases

References

1. C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with
uncertain data. In SIGKDD, pages 29–38, 2009.

2. C. C. Aggarwal and P. S. Yu. A survey of uncertain data algorithms and applica-
tions. IEEE Trans. on Knowl. and Data Eng., 21(5):609–623, May 2009.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB, pages 487–499, 1994.

4. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a
bitmap representation. In SIGKDD, pages 429–435, 2002.

5. T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle. Probabilistic
frequent itemset mining in uncertain databases. In SIGKDD, pages 119–128. ACM,
2009.

6. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. In Annals of Mathematical Statistics, volume 23, pages
493–507, 1952.

7. M.-S. C. Chun-Chieh Chen, CHi-Yao Tseng. Highly scalable sequential pattern
mining based on mapreduce model on the cloud. In BigData Congress, pages
310–317, 2013.

8. B.-S. Jeong, H.-J. Choi, M. A. Hossain, M. M. Rashid, and M. R. Karim. A
mapreduce framework for mining maximal contiguous frequent patterns in large
dna sequence datasets. In IETE Technical Review, volume 29, pages 162–168, 2012.

9. J. Jestes, G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilis-
tic data. IEEE Transactions on Knowledge and Data Engineering, 23(12):1903–
1917, 2011.

10. N. Khoussainova, M. Balazinska, and D. Suciu. Probabilistic event extraction from
rfid data. In In Proceedings of the 24th IEEE International Conference on Data
Engineering, pages 1480–1482, 2008.

11. Y. Li, J. Bailey, L. Kulik, and J. Pei. Mining probabilistic frequent spatio-temporal
sequential patterns with gap constraints from uncertain databases. In IEEE In-
ternational Conference on Data Mining, pages 448–457, 2013.

12. J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding
rating dimensions with review text. In RecSys, 2013.

13. I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos. Mind the gap: Large-scale
frequent sequence mining. In SIGKDD, pages 797–808, 2013.

14. M. Muzammal and R. Raman. Mining sequential patterns from probabilistic
databases. In PAKDD, pages 210–221, 2011.

15. Y. Tong, L. Chen, Y. Cheng, and P. S. Yu. Mining frequent itemsets over uncertain
databases. In Proceeding of the VLDB Endowment, volume 5, pages 1650–1661,
2012.

16. L. Wan, L. Chen, and C. Zhang. Mining frequent serial episodes over uncertain
sequence data. In EDBT, pages 215–226, 2013.

17. Z. Zhao, D. Yan, and W. Ng. Mining probabilistically frequent sequential patterns
in uncertain databases. In EDBT, pages 74–85, 2012.

18. Z. Zhao, D. Yan, and W. Ng. Mining probabilistically frequent sequential pat-
terns in large uncertain databases. In IEEE Transactions on Knowledge and Data
Engineering, volume 26, pages 1171–1184, 2013.

