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Abstract. The social presence theory in social psychology suggests that
computer-mediated online interactions are inferior to face-to-face, in-
person interactions. In this paper, we consider the scenarios of organiz-
ing in person friend-making social activities via online social networks
(OSNs) and formulate a new research problem, namely, Hop-bounded
Maximum Group Friending (HMGF), by modeling both existing friend-
ships and the likelihood of new friend making. To find a set of atten-
dees for socialization activities, HMGF is unique and challenging due
to the interplay of the group size, the constraint on existing friendships
and the objective function on the likelihood of friend making. We prove
that HMGF is NP-Hard, and no approximation algorithm exists unless
P = NP . We then propose an error-bounded approximation algorithm
to efficiently obtain the solutions very close to the optimal solutions. We
conduct a user study to validate our problem formulation and perform
extensive experiments on real datasets to demonstrate the efficiency and
effectiveness of our proposed algorithm.

1 Introduction

With the popularity and accessibility of online social networks (OSNs), e.g.,
Facebook, Meetup, and Skout4, more and more people initiate friend gatherings
or group activities via these OSNs. For example, more than 16 millions of events
are created on Facebook each month to organize various kinds of activities5,
and more than 500 thousands of face-to-face activities are initiated in Meetup6.
The activities organized via OSNs cover a wide variety of purposes, e.g., friend
gatherings, cocktail parties, concerts, and marathon events. The wide spectrum
of these activities shows that OSNs have been widely used as a convenient means
for initiating real-life activities among friends.

On the other hand, to help users expand their circles of friends in the cy-
berspace, friend recommendation services have been provided in OSNs to suggest
candidates to users who may likely become mutual friends in the future. Many
friend recommendation services employ link prediction algorithms, e.g., [10,11],

4 http://www.skout.com/
5 http://newsroom.fb.com/products/
6 http://www.meetup.com/about/

http://arxiv.org/abs/1502.06682v2
http://www.skout.com/
http://newsroom.fb.com/products/
http://www.meetup.com/about/
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to analyze the features, similarity or interaction patterns of users in order to
derive potential future friendship between some users. By leveraging the abun-
dant information in OSNs, link prediction algorithms show high accuracy for
recommending online friends in OSNs.

As social presence theory [16] in social psychology suggests, computer-mediated
online interactions are inferior to face-to-face, in-person interactions, off-line
friend-making activities may be favorable to their on-line counterparts in cy-
berspace. Therefore, in this paper, we consider the scenarios of organizing face-
to-face friend-making activities via OSN services. Notice that finding socially
cohesive groups of participants is essential for maintaining good atmosphere for
the activity. Moreover, the function of making new friends is also an impor-
tant factor for the success of social activities, e.g., assigning excursion groups
in conferences, inviting attendees to housewarming parties, etc. Thus, for or-
ganizing friend-making social activities, both activity organization and friend
recommendation services are fundamental. However, there is a gap between ex-
isting activity organization and friend recommendation services in OSNs for the
scenarios under consideration. Existing activity organization approaches focus
on extracting socially cohesive groups from OSNs based on certain cohesive mea-
sures, density, diameter, of social networks or other constraints, e.g., time, spa-
tial distance, and interests, of participants [5,6,7,8]. On the other hand, friend
recommendation services consider only the existing friendships to recommend
potential new friends for an individual (rather than finding a group of people
for engaging friend-making). We argue that in addition to themes of common
interests, it is desirable to organize friend-making activities by mixing the ”po-
tential friends”, who may be interested in knowing each other (as indicated by
a link prediction algorithm), with existing friends (as lubricators). To the best
knowledge of the authors, the following two important factors, 1) the existing
friendship among attendees, and 2) the potential friendship among attendees,
have not been considered simultaneously in existing activity organization ser-
vices. To bridge the gap, it is desirable to propose a new activity organization
service that carefully addresses these two factors at the same time.

In this paper, we aim to investigate the problem of selecting a set of can-
didate attendees from the OSN by considering both the existing and potential
friendships among the attendees. To capture the two factors for activity organi-
zation, we propose to include the likelihood of making new friends in the social
network. As such, we formulate a new research problem to find groups with
tight social relationships among existing friends and potential friends (i.e., who
are not friends yet). Specifically, we model the social network in the OSN as
a heterogeneous social graph G = (V,E,R) with edge weight w : R → (0, 1],
where V is the set of individuals, E is the set of friend edges, and R is the set
of potential friend edges (or potential edges for short). Here a friend edge (u, v)
denotes that individuals u and v are mutual friends, while a potential edge [u′, v′]
indicates that individuals u′ and v′ are likely to become friends (the edge weight
w[u′, v′] quantifies the likelihood). The potential edges and the corresponding
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Fig. 1. Illustrative Example.

edge weights can be obtained by employing a link prediction algorithm in friend
recommendation.

Given a heterogeneous social graph G = (V,E,R) as described above, we
formulate a new problem, namely, Hop-bounded Maximum Group Friending
(HMGF), to find a group that 1) maximizes the likelihood of making new friends
among the group, i.e., the group has the highest ratio of total potential edge
weight to group size, 2) ensures that the social tightness, i.e., hop count on
friend edges in G between each pair of individuals is small, and 3) is a suffi-
ciently large group, i.e., too small a group may not work well for socialization
activities.

Figure 1 illustrates the social graph and the interplay of the above factors.
Figure 1(a) shows a social graph, where a dash line, e.g., [a, b] with weight 0.6, is
a potential edge and a solid line, e.g., (c, d), is a friend edge. Figure 1(b) shows
a group H1:{a, e, f, g} which has many potential edges and thus a high total
weight. However, not all the members of this group have common friends as
social lubricators. Figure 1(c) shows a group H2:{c, d, f, g} tightly connected by
friend edges. While H2 may be a good choice for gathering of close friends, the
goal of friend-making in socialization activities is missed. Finally, Figure 1(d)
shows H3:{d, e, f, g} which is a better choice than H1 and H2 for socialization
activities because each member of H3 is within 2 hops of another member via
friend edges in G. Moreover, the average potential edge weight among them is
high, indicating members are likely to make some new friends.

Processing HMGF to find the best solution is very challenging because there
are many important factors to consider, including hop constraint, group size and
the total weight of potential edges in a group. Indeed, we prove that HMGF is an
NP-Hard problem with no approximation algorithm. Nevertheless, we prove that
if the hop constraint can be slightly relaxed to allow a small error, there exists a
3-approximation algorithm for HMGF. Theoretical analysis and empirical results
show that our algorithm can obtain good solutions efficiently.

The contributions made in this study are summarized as follows.

– For socialization activity organization, we propose to model the existing
friendship and the potential friendship in a heterogeneous social graph and
formulate a new problem, namely, Hop-bounded Maximum Group Friending
(HMGF), for finding suitable attendees. To our best knowledge, HMGF is
the first problem that considers these two important relationships between
attendees for activity organization.
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– We prove that HMGF is NP-Hard and there exists no approximation al-
gorithm for HMGF unless P = NP . We then propose an approximation
algorithm, called MaxGF, with a guaranteed error bound for solving HMGF
efficiently.

– We conduct a user study on 50 users to validate our argument for consider-
ing both existing and potential friendships in activity organization. We also
perform extensive experiments on real datasets to evaluate the proposed
algorithm. Experimental results manifest that HMGF can obtain solutions
very close to the optimal ones, very efficiently.

2 Problem Formulation

Based on the description of heterogeneous social graph described earlier, here we
formulate the Hop-bounded Maximum Group Friending (HMGF) tackled in this
paper. Given two individuals u and v, let dEG(u, v) be the shortest path between
u and v via friend edges in G. Moreover, given H ⊆ G, let w(H) denote the total

weight of potential edges in H and let average weight, σ(H) = w(H)
|H| denote the

average weight of potential edges connected to each individual in H7. HMGF is
formulated as follows.

Problem: Hop-bounded Maximum Group Friending (HMGF).
Given: Social network G = (V,E,R), hop constraint h, and size constraint p.
Objective: Find an induced subgraph H ⊆ G with the maximum σ(H), where
|H | ≥ p and dEG(u, v) ≤ h, ∀u, v ∈ H .

Efficient processing of HMGF is very challenging due to the following reasons:
1) The interplay of the total weight w(H) and the size of H . To maximize σ(H),
finding a small H may not be a good choice because the number of edges in
a small graph tends to be small as well. On the other hand, finding a large H

(which usually has a high w(H)) may not lead to an acceptable σ(H), either.
Therefore, the key is to strike a good balance between the graph size |H | and the
total weight w(H). 2) HMGF includes a hop constraint (say h = 2) on friend
edges to ensure that every pair of individuals is not too distant socially from
each other. However, selecting a potential edge [u, v] with a large weight w[u, v]
may not necessarily satisfy the hop constraint, i.e., dEG(u, v) > h which is defined
based on existing friend edges. In this case, it may not always be a good strategy
to prioritize on large-weight edges in order to maximize σ(H), especially when
u and v do not share a common friend nearby via the friend edges.

In the following, we prove that HMGF is NP-Hard and not approximable
within any factor. In other words, there exists no approximation algorithm for
HMGF.

Theorem 1. HMGF is NP-Hard and there is no approximation algorithm for
HMGF unless P = NP .

Proof. Due to the space constraints, we prove this theorem in the full version of
this paper (available online [1]).

7 Note that σ(H) = 0 if H = ∅.
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3 Related Work

Extracting dense subgraphs or social cohesive groups among social networks is
a natural way for selecting a set of close friends for a gathering. Various social
cohesive measures have been proposed for finding dense social subgraphs, e.g.,
diameter [2], density [3], clique and its variations [4]. Although these social cohe-
sive measures cover a wide range of application scenarios, they focus on deriving
groups based only on existing friendship in the social network. In contrast, the
HMGF studied in this paper aims to extract groups by considering both the
existing and potential friendships for socialization activities. Therefore, the ex-
isting works mentioned above cannot be directly applied to HMGF tackled in
this paper.

Research on finding a set of attendees for activities based on the social
tightness among existing friends [5,6,7,8,9] have been reported in the literature.
Social-Temporal Group Query [5] checks the available times of attendees to find
the social cohesive group with the most suitable activity time. Geo-Social Group
Query [6,7] extracts socially tight groups while considering certain spatial prop-
erties. The willingness optimization for social group problem in [8] selects a set
of attendees for an activity while maximizing their willingness to participate. Fi-
nally, [9] finds a set of compatible members with tight social relationships in the
collaboration network. Although these works find suitable attendees for activi-
ties based on existing friendship among the attendees, they ignore the likelihood
of making new friends among the attendees. Therefore, these works may not be
suitable for socialization activities discussed in this paper.

Link prediction analyzes the features, similarity or interaction patterns among
individuals in order to recommend possible friends to the users [10,11,12,13,14].
Link prediction algorithms employ different approaches including graph-topological
features, classification models, hierarchical probabilistic model, and linear alge-
braic methods. These works show good prediction accuracy for friend recom-
mendation in social networks. In this paper, to estimate the likelihood of how
individuals may potentially become friends in the future, we employ link predic-
tion algorithms for deriving the potential edges among the individuals.

To the best knowledge of the authors, there exists no algorithm for activity
organization that considers both the existing friendship and the likelihood of
making new friends when selecting activity attendees. The HMGF studied in this
paper examines the social tightness among existing friends and the likelihood of
becoming friends for non-friend attendees. We envisage that our research result
can be employed in various social network applications for activity organization.

4 Experimental Results

We implement HMGF in Facebook and invite 50 users to participate in our user
study. Each user, given 12 test cases of HMGF using her friends in Facebook as
the input graph, is asked to solve the HMGF cases, and compare her results with
the solutions obtained by MaxGF. In addition to the user study, we evaluate the
performance of MaxGF on two real social network datasets, i.e., FB [15] and the
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Fig. 2. User Study Results.

MS dataset from KDD Cup 20138. The FB dataset is extracted from Facebook
with 90K vertices, and MS is a co-author network with 1.7M vertices. We ex-
tract the friend edges from these datasets and identify the potential edges with
a link prediction algorithm [11]. The weight of a potential edge is ranged within
(0,1]. Moreover, we compare MaxGF with two algorithms, namely, Baseline and
DkS [3]. Baseline finds the optimal solution of HMGF by enumerating all the
subgraphs satisfying the constraints, while DkS is an O(|V |1/3)-approximation
algorithm for finding a p-vertex subgraph H ⊆ G with the maximum density
on E ∪ R without considering the potential edges and the hop constraint. The
algorithms are implemented in an IBM 3650 server with Quadcore Intel X5450
3.0 GHz CPUs. We measure 30 samples in each scenario. In the following, Fea-
Ratio and ObjRatio respectively denote the ratio of feasibility (i.e., the portion
of solutions satisfying the hop constraint) and the ratio of σ(H) in the solutions
obtained by MaxGF or DkS to that of the optimal solution.

4.1 User Study

Figure 2 presents the results of the user study. Figure 2(a) compares the required
time for users and MaxGF to solve the HMGF instances. Users need much more
time than MaxGF due to challenges brought by the hop constraint and trade-
offs in potential edge weights and the group size, as explained in Section 2. As
|V | or h grows, users need more time because the HMGF cases become more
complicated. Figure 2(b) compares the solution feasibility and quality among
users and MaxGF. We employ Baseline to obtain the optimal solutions and de-
rive FeaRatio and ObjRatio accordingly. The FeaRatio and ObjRatio of users
are low because simultaneously considering both the hop constraint on friend
edges and total weights on potential edges is difficult for users. As shown, users’
FeaRatio and ObjRatio drop when |V | increases. By contrast, MaxGF obtains
the solutions with high FeaRatio and ObjRatio. In Figure 2(c), we ask each user
to compare her solutions with the solutions obtained by MaxGF and DkS, to
validate the effectiveness of HMGF. 74% of the users agree that the solution of
MaxGF is the best because HMGF maximizes the likelihood of friend-making
while considering the hop constraint on friend edges at the same time. By con-
trast, DkS finds the solutions with a large number of edges, but it does not

8 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-
challenge/data
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Fig. 3. Comparisons with Optimal Solutions.

differentiate the friend edges and potential edges. Therefore, users believe that
the selected individuals may not be able to socialize with each other effectively.

4.2 Performance Evaluation

Baseline can only find the optimal solutions of small HMGF cases since it enu-
merates all possible solutions. Therefore, we first compare MaxGF against Base-
line and DkS on small graphs randomly extracted from FB. Figure 3(a) com-
pares the execution time of the algorithms by varying the size of input graph.
Since Baseline enumerates all the subgraphs H with |H | ≥ p, the execution
time grows exponentially. The execution time of MaxGF is very small because
the hop-bounded subgraphs and the pruning strategy effectively trim the search
space. Figures 3(b) and 3(c) present the FeaRatio and ObjRatio of the algo-
rithms, respectively. MaxGF has high ObjRatio because MaxGF iteratively re-
moves vertices with low incident weights from each hop-bounded subgraph Hv,
and extracts the solution SAPX with maximized σ(SAPX) among different sub-
graphs in different Hv to strike a good balance on total edge weights and group
sizes as describe in Section 2. Moreover, the high FeaRatio and ObjRatio also in-
dicate that the post-processing procedure effectively restores the hop constraint
and maximizes the average weight accordingly. By contrast, DkS does not con-
sider the hop constraint and different edge types in finding solutions and thus
generates the solutions with smaller FeaRatio and ObjRatio.

Figures 3(d)-(f) compare execution time, FeaRatio and ObjRatio again but
by varying h. When h increases, the execution time of MaxGF grows slowly
because the pruning strategy avoids examining the hop-bounded subgraphs that
do not lead to a better solution. The FeaRatio and ObjRatio of MaxGF with
different h are high because MaxGF employs hop-bounded subgraphs to avoid
generating solutions with large hop distances on friend edges, and the post-
processing procedure effectively restores the hop constraint and maximizes the
objective function.
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Fig. 4. Experimental Results on Different Datasets.

Figure 4 compares MaxGF in different datasets, i.e., FB and MS. Figures
4(a) and 4(b) present the FeaRatio and the solution group sizes with different h.
As h increases, MaxGF on both datasets achieves a higher FeaRatio due to the
post-processing procedure adjusts SAPX and further minimizes dEG(u, v), ∀u, v ∈
SAPX . Moreover, it is worth noting that the returned group sizes grow when h in-
creases in MS. This is because MS contains large densely connected components
with large edge weights. When h is larger, MaxGF is inclined to extract larger
groups from these components to maximize the objective function. By contrast,
FB does not have large components and MaxGF thereby tends to find small
groups to reduce the group size for maximizing the objective function. In fact,
the solutions in FB are almost the same with different h. Finally, MaxGF needs
to carefully examine possible solutions with the sizes at least p, and thus Fig-
ure 4(c) shows that when p increases, the execution time drops because MaxGF
effectively avoids examining the candidate solutions with small group sizes.

5 Conclusion

To bridge the gap between the state-of-the-art activity organization and friend
recommendation in OSNs, in this paper, we propose to model the individu-
als with existing and potential friendships in OSNs for friend-making activity
organization. We formulate a new research problem, namely, Hop-bonded Max-
imum Group Friending (HMGF), to find suitable activity attendees. We prove
that HMGF is NP-Hard and there exists no approximation algorithms unless
P = NP . We then propose an approximation algorithm with guaranteed er-
ror bound, i.e., MaxGF, to find good solutions efficiently. We conduct a user
study and extensive experiments to evaluate the performance of MaxGF, where
MaxGF outperforms other relevant approaches in both solution quality and ef-
ficiency.

References

1. C.-Y. Shen, D.-N. Yang, W.-C. Lee, and M.-S. Chen. Maximizing Friend-Making
Likelihood for Social Activity Organization. arXiv:1502.06682, 2015.

2. S. Wasserman and K. Faust. Social Network Anlysis: Methods and Applications.
Cambridge University Press, 1994.

3. U. Feige, G. Kortsarz, and D. Peleg. The Dense k-Subgraph Problem. Algorithmica,
2001.

4. R. Mokken. Cliques, Clubs and Clans. Quality and Quantity: International Journal

of Methodology, 1979.



Maximizing Friend-Making Likelihood for Social Activity Organization 9

5. D.-N. Yang, Y.-L. Chen, W.-C. Lee, and M.-S. Chen. On Social-Temporal Group
Query with Acquaintance Constraint. VLDB, 2011.

6. D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On Socio-Spatial Group
Query for Location-based Social Networks. KDD, 2012.

7. Q. Zhu, H. Hu, J. Xu, and W.-C. Lee. Geo-Social Group Queries with Minimum
Acquaintance Constraint. arXiv:1406.7367v1, 2014.

8. H.-H. Shuai, D.-N. Yang, P. S. Yu, and M.-S. Chen. Willingness Optimization for
Social Group Activity. VLDB, 2014.

9. D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos. Recommending
People in Developers’ Collaboration Network. WCRE, 2011.

10. H. Kashima and N. Abe. A Parameterized Probabilistic Model of Network Evolu-
tion for Supervised Link Prediction. ICDM, 2006.

11. D. Liben-Nowell and J. Kleinberg. The Link Prediction Problem for Social Net-
works. Journal of the American Soceity for Information Science and Technology,
2007.

12. A. Clause, C. Moore, and M. Newman. Hierarchical Structure and the Prediction
of Missing Links in Network. Nature, 2008.

13. J. Kunegis and A. Lommatzsch. Learning Spectral Graph Transformations for Link
Prediction. ICML, 2009.

14. C. Leung, E.-P. Lim, D. Lo, and J. Weng. Mining Interesting Link Formation Rules
in Social Networks. CIKM, 2010.

15. B. Viswanath, A. Mislove, M. Cha, and K. Gummadi. On the Evolution of User
Interaction in Facebook. WOSN’09.

16. J. Short, E. Williams, and B. Christie. The Social Psychology of Telecommunica-
tions. London: Wiley, 1976.


	Maximizing Friend-Making Likelihood for Social Activity Organization

