
Principal Sensitivity Analysis

Sotetsu Koyamada12 Masanori Koyama1 Ken Nakae1 and Shin Ishii12

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
2 ATR Cognitive Mechanisms Laboratories, Kyoto, Japan

koyamada-s@sys.i.kyoto-u.ac.jp, ishii@i.kyoto-u.ac.jp

Abstract. We present a novel algorithm (Principal Sensitivity Analysis;
PSA) to analyze the knowledge of the classifier obtained from supervised
machine learning techniques. In particular, we define principal sensitivity
map (PSM) as the direction on the input space to which the trained
classifier is most sensitive, and use analogously defined k-th PSM to
define a basis for the input space. We train neural networks with artificial
data and real data, and apply the algorithm to the obtained supervised
classifiers. We then visualize the PSMs to demonstrate the PSA’s ability
to decompose the knowledge acquired by the trained classifiers.

Keywords: Sensitivity analysis, sensitivity map, PCA, dark knowledge, knowl-
edge decomposition.

1 Introduction

Machine learning is a powerful methodology to construct efficient and robust pre-
dictors and classifiers. Literature suggests its ability in the supervised context
not only to reproduce “intuition and experience” based on human supervision [1],
but also to successfully classify the objects that humans cannot sufficiently clas-
sify with inspection alone [2,3]. This work is motivated by the cases in which the
machine classifier eclipses the human decisions. We may say that this is the case
in which the classifier holds more knowledge about the classes than us, because
our incompetence in the classification problems can be attributed solely to our
lack of understanding about the class properties and/or the similarity metrics.
The superiority of nonlinear machine learning techniques strongly suggests that
the trained classifiers capture the “invisible” properties of the subject classes.
Geoff Hinton solidified this into the philosophy of “dark knowledge” captured
within the trained classifiers [4]. One might therefore be motivated to enhance
understanding of subject classes by studying the way the trained machine ac-
quires the information.

Unfortunately, trained classifiers are often so complex that they defy human
interpretation. Although some efforts have been made to “visualize” the classi-
fiers [5,6], there is still much room left for improvement. The machine learning
techniques in neuroimaging, for example, prefer linear kernels to nonlinear ker-
nels because of the lack of visualization techniques [7]. For the visualization

ar
X

iv
:1

41
2.

67
85

v2
 [

st
at

.M
L

]
 1

1
M

ar
 2

01
5

2

of high-dimensional feature space of machine learners, Zurada et al. [8,9] and
Kjems et al. [10] presented seminal works. Zurada et al. developed “sensitiv-
ity analysis” in order to “delete unimportant data components for feedforward
neural networks.” Kjems et al. visualized Zurada’s idea as “sensitivity map” in
the context of neuroimaging. In this study, we attempt to generalize the idea
of sensitivity analysis, and develop a new framework that aids us in extract-
ing the knowledge from classifiers that are trained in a supervised manner. Our
framework is superior to the predecessors in that it can:

1. be used to identify a pair of discriminative input features that act oppositely
in characterizing a class,

2. identify combinations of discriminative features that strongly characterize
the subject classes,

3. provide platform for developing sparse, visually intuitive sensitivity maps.

The new framework gives rise to the algorithm that we refer to as “Principal
Sensitivity Analysis (PSA),” which is analogous to the well-established Principal
Component Analysis (PCA).

2 Methods

2.1 Conventional sensitivity analysis

Before introducing the PSA, we describe the original sensitivity map introduced
in [10]. Let d be the dimension of the input space, and let f : Rd → R be the
classifier function obtained from supervised training. In the case of SVM, f may
be the discriminant function. In the case of nonlinear neural networks, f may
represent the function (or log of the function) that maps the input to the output
of a unit in the final layer. We are interested in the expected sensitivity of f
with respect to the i-th input feature. This can be written as

si :=

∫ (
∂f(x)

∂xi

)2

q(x)dx, (1)

where q is the distribution over the input space. In actual implementation, the
integral (1) is computed with the empirical distribution q of the test dataset.
Now, the vector

s := (s1, . . . , sd) (2)

of these values will give us an intuitive measure for the degree of importance that
the classifier attaches to each input. Kjems et al. [10] defined s as sensitivity
map over the set of input features.

3

2.2 Sensitivity in arbitrary direction

Here, we generalize the definition (1). We define s(v) as the sensitivity of f in

arbitrary direction v :=
∑d

i viei, where ei denotes the i-th standard basis in Rd:

s(v) :=

∫ (
∂f(x)

∂v

)2

q(x) dx. (3)

Recall that the directional derivative is defined by

∂f(x)

∂v
:=

d∑
i=1

vi
∂f(x)

∂xi
.

Note that when we define the sensitivity inner product

〈ei, ej〉s :=

∫ (
∂f(x)

∂xi

)(
∂f(x)

∂xj

)
q(x) dx, (4)

we can rewrite s(v) with the corresponding sensitivity norm, as follows:

‖v‖2s := 〈v,v〉s

=

〈∑
i

viei,
∑
j

vjej

〉
s

=
∑
i,j

vivj 〈ei, ej〉s .

(5)

This inner product defines the kernel metric corresponding to the positive def-
inite matrix K with ij-th entry given by Kij := 〈ei, ej〉s. This allows us to
write

s(v) = vTKv. (6)

2.3 Principal sensitivity map and PSA

The classical setting (2) was developed in order to quantify the sensitivity of f
with respect to each individual input feature. We attempt to generalize this idea
and seek the combination of the input features for which f is most sensitive, or
the combination of the input features that is “principal” in the evaluation of the
sensitivity of f . We can quantify such combination by the vector v, solving the
following optimization problem about v:

maximize vTKv

subject to vTv = 1.
(7)

The solution to this problem is simply the maximal eigenvector ±v∗ of K. Note
that vi represents the contribution of the i-th input feature to this principal

4

combination, and this gives rise to the map over the set of all input features.
As such, we can say that v is the principal sensitivity map (PSM) over the
set of input features. From now on, we call s in the classical definition (2) as
the standard sensitivity map and make the distinction. The magnitude of vi
represents the extent to which f is sensitive to the i-th input feature, and the
sign of vi will tell us the relative direction to which the input feature influences
f . The new map is thus richer in information than the standard sensitivity map.
In Section 3.1 we will demonstrate the benefit of this extra information.

Principal Sensitivity Analysis (PSA) We can naturally extend our con-
struction above and also consider other eigenvectors of K. We can find these
vectors by solving the following optimization problem about V :

maximize Tr
(
V TKV

)
subject to vTi vj = δij ,

(8)

where V is a d × d matrix. As is well known, such V is given by the invertible
matrix with each column corresponding to K’s eigenvector. We may define k-
th dominant eigenvector vk as the k-th principal sensitivity map. These
sub-principal sensitivity maps grant us access to even richer information that
underlies the dataset. We will show the benefits of these additional maps in
Fig. 3. From now on, we will refer to the first PSM by just PSM, unless noted
otherwise.

Recall that, in the ordinary PCA, K in (8) is given by the covariance
E
[
xxT

]
, where x is the centered random variable. Note that in our particu-

lar case, if we put

r(x) :=

((
∂f(x)

∂x1

)
, . . . ,

(
∂f(x)

∂xd

))T

, (9)

then we may write K =
∫
r(x)r(x)Tq(x) dx = E

[
r(x)r(x)T

]
. We see that

our algorithm can thus be seen as the PCA applied to the covariance of r(x)
without centering.

Sparse PSA One may use the new definition (8) as a starting point to develop
sparse, visually intuitive sensitivity maps. For example, we may introduce the
existing techniques in sparse PCA and sparse coding into our framework. We
may do so [11] by replacing the covariance matrix in its derivation with our K.
In particular, we can define an alternative optimization problem about V and
αi:

minimize
1

2

N∑
i

‖r (xi)− V αi‖22 + λ

p∑
k

‖vk‖1

subject to ‖αi‖2 = 1,

(10)

where p is the number of sensitivity maps and N is the number of samples. For
the implementation, we used scikit-learn [12].

5

2.4 Experiments

In order to demonstrate the effectiveness of the PSA, we applied the analysis
to the classifiers that we trained with artificial data and MNIST data. Our
artificial data is a simplified version of the MNIST data in which the object’s
orientation and positioning are registered from the beginning. All samples in the
artificial data are constructed by adding noises to the common set of templates
representing the numerics from 0 through 9 (Fig. 1). We then fabricated the
artificial noise in three steps: we (1) flipped the bit of each pixel in the template
picture with probability p = 0.2, (2) added Gaussian noise N (0, 0.1) to the
intensity, and (3) truncated the negative intensities. The sample size was set to
be equal to that of MNIST. Our training data, validation data, and test data
consisted respectively of 50,000, 10,000, and 10,000 sample patterns. Using the

(a)

(b)
0.0

1.0

1.3

Fig. 1. (a) Templates. (b) Noisy samples. Each figure is of 28× 28 pixels.

artificial dataset above and the standard MNIST, we trained a feed forward
neural network for the classification of ten numerics. In Table 1, we provide the
structure of the neural network and its performance over each dataset. For either
dataset, the training was conducted via stochastic gradient descent with constant
learning rate. We also adopted a dropout method [13] only for the training on
the MNIST dataset. The output from each unit in the final layer is given by the
posterior probability of each class c. For computational purpose, we transform
this output by log:

fc(x) := logP (Y = c |x), (11)

where Y is, in the model governing the neural network, a random variable repre-
senting the class that the classifier assigns to the input x. We then constructed
the PSM and the standard sensitivity map for the fc given above.

Table 1. Summary of training setups based on neural networks

Data set Architecture Unit type Dropout Learning rate Error[%]

Digital data 784-500-10 Logistic No 0.1 0.36
MNIST 784-500-500-10 ReLU Yes 0.1 1.37

6

3 Results

3.1 PSA of classifier trained on artificial dataset

We will describe three ways in which the PSA can be superior to the analysis
based on standard sensitivity map.

Fig. 2 compares the PSM and standard sensitivity map, which were both
obtained from the common neural networks trained for the same 10-class clas-
sification problem. The color intensity of i-th pixel represents the magnitude
of vi. Both maps capture the characters that the “colorless” rims and likewise
“colorless” regions enclosed by edges are insignificant in the classification. Note
that the (1st) PSM distinguishes the types of sensitivities by their sign. For each
numeral, the PSM assigns opposite signs to “the edges whose presence is crucial
in the characterization of the very numeral” and “the edges whose absence is
crucial in the numeral’s characterization.” This information is not featured in
the standard sensitivity map. For instance, in the sensitivity map for the nu-
meral 1, the two edges on the right and the rest of the edges have the opposite
sensitivity. As a result, we can verify the red figure of 1 in its PSM. We are able
to clearly identify the unbroken figures of 2, 4, 5 and 9 in their corresponding
PSM as well. We see that, with the extra information regarding the sign of the
sensitivity over each pixel, PSM can provide us with much richer information
than the standard counterpart.

(a)

0 1 2 3 4 5 6 7 8 9

(b)
0.2

0.0

0.2

Fig. 2. (a) The standard sensitivity maps. (b) The PSMs.

Next, we will show the benefits of sub-principal sensitivity maps computed
from PSA. Fig. 3(a) shows the 1st PSM through the 3rd PSM for the numerals 0
and 9.3 In order to show how this extra information benefits us in visualization
of the classification problem, we consider the following “local” sensitivity map
integrated over the samples from a particular pair of classes:

sc,c′(v) =

∫ (
∂fc(x)

∂v

)2

qc,c′(x)dx, (12)

where qc,c′ is the empirical distribution over the set of samples generated from
the classes c and c′. To get the intuition about this map, note that this value for

3 We list the PSMs for all the numerals (0, . . . , 9) in the Appendix.

7

(c, c′) = (9, 4) can also be pictorially written as

lim
ε→0

E{9,4}

(logP
(
Y = | + εv

)
− logP

(
Y = |

)
ε

)2
 , (13)

where v can be the 3rd PSM of class 9, , for example. If vk is the k-th PSM
of the classifier, then sc,c′(vk) quantifies the sensitivity of the machine’s answer
to the binary classification problem of “c vs c′” with respect to the perturbation
of the input in the direction of vk. By looking at this value for each k, we
may visualize the ways that the classifier deals with the binary classification
problem. Such visualization may aid us in learning from the classifiers the way
to distinguish one class from another. Fig. 3(b) shows the values of sc,c′(vk) for
c ∈ {0, 9} and k ∈ {1, . . . , 10}. We could see in the figure that, for the case
of (c, c′) = (9, 4), sc,c′(v3) was larger than sc,c′(v1). This suggests that the 3rd
PSM is more helpful than the 1st PSM for distinguishing 4 from 9. We can
actually verify this fact by observing that the 3rd PSM is especially intense
at the top most edge, which can alone differentiate 4 from 9. We are able to
confirm many other cases in which the sub-principal sensitivity maps were more
helpful in capturing the characters in binary classification problems than the 1st
PSM. Thus, PSA can provide us with the knowledge of the classifiers that was
inaccessible with the previous method based on the standard sensitivity map.

1st

0 9

2nd

3rd
0.2

0.0

0.2

(a)

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10

0

k

c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

9 c'

0

5

10

15

(b)

Fig. 3. (a) 1st ∼ 3rd PSMs of the classifier outputs fc for the numerals 0 and 9. (b)
sc,c′(vk) for c ∈ {0, 9}, k ∈ {1, . . . , 10}, and c′ ∈ {0, . . . , 9}\{c}.

Finally, we demonstrate the usefulness of formulation (8) in the construc-
tion of sparse and intuitive sensitivity map. Fig. 4 depicts the sensitivity maps
obtained from the application of our sparse PSA in (10) to the data above.
Note that the sparse PSA not only washes away rather irrelevant pixels from
the canvas, but it also assigns very high intensity to essential pixels. With these
“localized” maps, we can better understand the discriminative features utilized
by the trained classifiers.

8

0

1st 2nd 3rd

9

1st 2nd 3rd

0.2

0.0

0.2

Fig. 4. Results of the sparse PSA on the classifiers fc with p = 3 for the numerals
0 and 9. We ranked the 3 basis elements by the magnitude of s(v). We selected the
regularization term of λ = 5, and each PSM was normalized so that its L2 norm was
1.

3.2 PSA of classifier trained on MNIST dataset

We trained a nonlinear neural network-based classifier on the MNIST dataset,
which consists of hand-written digits from 0 through 9. We then analyzed the
trained classifier with our PSA. This dataset illuminates a particular challenge
to be confronted in the application of the PSA. By default, hand-written objects
do not share common displacement and orientation. Without an appropriate reg-
istration of input space, the meaning of each pixel can vary across the samples,
making the visualization unintuitive. This is typical in some of the real-world
classification problems. In the fields of applied science, standard registration pro-
cedure is often applied to the dataset before the construction of the classifiers. For
example, in neuroimaing, one partitions the image data into anatomical regions
after registration based on the standard brain, and represents each one of them
by a group of voxels. In other areas of science, one does not necessarily have to
face such problems. In genetics, data can be naturally partitioned into genes [14].
Likewise, in meteorology, 3D dataset is often translated into voxel structures,
and a group of voxels may represent geographical region of specific terrain [15].
In this light, the digit recognition in unregistered MNIST data may not be an
appropriate example for showing the effectiveness of our visualization method.
For the reason that we will explain later, registration of multiclass dataset like
MNIST can be difficult. We chose MNIST dataset here because it is familiar
in the community of machine learning. Fig. 5 summarizes the results. Both the
standard sensitivity map and the PSM were able to capture the character that
outer rims are rather useless in the classification.

Ave.

0

Standard 1st 2nd

PSA

3rd 1st 2nd

Sparse PSA

3rd

9
0.2

0.0

0.2

Fig. 5. Standard sensitivity map, PSA, and sparse PSA for c ∈ {0, 9}, k ∈ {1, 2, 3},
and c′ ∈ {0, . . . , 9}\{c}. Ave. stands for the average of the testing dataset for the
corresponding numerals.

9

Fig. 6 shows the values of sc,c′(vk). We can verify that small numbers of PSMs
are complementing each other in their contributions to the binary classifications.

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0

k

c'
0 1 2 3 4 5 6 7 8 9

9 c'

0

5

10

15

20

25

Fig. 6. sc,c′(vk) for c ∈ {0, 9}, k ∈ {1, . . . , 15}, and c′ ∈ {0, . . . , 9}\{c}.

We also applied sparse PSA to the classifier with p = 3 and λ = 40 (Fig. 5).
We see that the sparse PSA highlights the essential pixels much more clearly
than the normal PSA.

Since the orientation and position of each numeral pattern varies across the
samples in this dataset, input dimensions hold different meanings in different
samples. To perform more effective visualization, we would need registration
to adjust each numeral pattern to a common standard template. This problem
might not be straightforward, since one must prepare different templates for
different numeral patterns. An elegant standardization suitable for our PSA-
based visualization remains as a future study.

4 Discussion

We proposed a method to decompose the input space based on the sensitivity
of classifiers. We assessed its performance on classifiers trained with artificial
data and MNIST data. The visualization achieved with our PSA reveals at least
two general aspects of the classifiers trained in this experiment. First, note in
Fig. 3(b) and Fig. 6 that the first few (∼ 10) PSMs of the trained classifier dom-
inate the sensitivity for the binary classification problem. Second, we see that
the classifier use these few PSMs out of 784 dimensions to solve different binary
classification problems. We are thus able to see that the nonlinear classifiers of
the neural network solve vast number of specific classification problems (such as
binary classification problems) simultaneously and efficiently by tuning its sensi-
tivity to the input in a data-driven manner. One cannot attain this information
with the standard sensitivity map [8,9,10] alone. With PSA, one can visualize the

10

decomposition of the knowledge about the input space learnt by the classifier.
From the PSA of efficient classifier, one may obtain a meaningful decomposition
of the input space that can possibly aid us in solving wide variety of problems.
In medical science, for example, PSA might identify a combination of the bio-
logical regions that are helpful in diagnosis. PSA might also prove beneficial in
sciences using voxel based approaches, such as geology, atmospheric science, and
oceanography.

We may incorporate the principle of the PSA into existing standard statis-
tical methods. A group Lasso analogue of the PSA, which is currently under
our development, may enhance the interpretability of the visualization even fur-
ther by identifying sets of voxels with biological organs, geographical location,
etc. By improving its interpretability, PSA and the PSA-like techniques might
significantly increase the applicability of machine learning techniques to various
high-dimensional problems.

References

1. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2014) 1701–1708

2. Horikawa, T., Tamaki, M., Miyawaki, Y., Kamitani, Y.: Neural decoding of visual
imagery during sleep. Science 340 (2013) 639–642

3. Uberbacher, E.C., Mural, R.J.: Locating protein-coding regions in human DNA se-
quences by a multiple sensor-neural network approach. Proceedings of the National
Academy of Sciences 88 (1991) 11261–11265

4. Hinton, G.E.: Dark knowledge. Presented as the keynote in BayLearn (2014)

5. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Muller,
K.R.: How to explain individual classification decisions. The Journal of Machine
Learning Research 11 (2010) 1803–1831

6. Rasmussen, P.M., Madsen, K.H., Lund, T.E., Hansen, L.K.: Visualization of non-
linear kernel models in neuroimaging by sensitivity maps. NeuroImage 55 (2011)
1120–1131

7. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector
machines for temporal classification of block design fMRI data. NeuroImage 26
(2005) 317–329

8. Zurada, J.M., Malinowski, A., Cloete, I.: Sensitivity analysis for minimization of
input data dimension for feedforward neural network. In: Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS). Volume 6. (1994) 447–
450

9. Zurada, J.M., Malinowski, A., Usui, S.: Perturbation method for deleting redun-
dant inputs of perceptron networks. Neurocomputing 14 (1997) 177–193

10. Kjems, U., Hansen, L.K., Anderson, J., Frutiger, S., Muley, S., Sidtis, J., Rotten-
berg, D., Strother, S.C.: The quantitative evaluation of functional neuroimaging
experiments: mutual information learning curves. NeuroImage 15 (2002) 772–786

11. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component
analysis. In: Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS). Volume 9. (2010) 366–373

11

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. The Journal of Machine Learning Research 12 (2012) 2825–
2830

13. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012) 1–18

14. Yukinawa, N., Oba, S., Kato, K., Ishii, S.: Optimal aggregation of binary clas-
sifiers for multiclass cancer diagnosis using gene expression profiles. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 6 (2009) 333–343

15. Kontos, D., Megalooikonomou, V.: Fast and effective characterization for classifica-
tion and similarity searches of 2D and 3D spatial region data. Pattern Recognition
38 (2005) 1831–1846

Appendix

In this section we list the figures that we omitted in the main text.

1st

0 1 2 3 4 5 6 7 8 9

2nd

3rd
0.2

0.0

0.2

Fig. 7. 1st ∼ 3rd PSMs of the classifier trained on the artificial dataset.

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10

0

k

c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

1 c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

2 c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

3 c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

4 c'

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10

5

k

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10

6
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

7
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

8
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10

9

0

5

10

15

Fig. 8. sc,c′(vk) on the artificial dataset.

12

1st

0 1 2 3 4 5 6 7 8 9

2nd

3rd
0.2

0.0

0.2

Fig. 9. Results of the sparse PSA on the classifiers trained on the artificial dataset.

Ave.

0

Standard 1st 2nd

PSA

3rd 1st 2nd

Sparse PSA

3rd

1

2

3

4

5

6

7

8

9 0.2

0.0

0.2

Fig. 10. Average, standard sensitivity map, PSA, and sparse PSA on MNIST data.

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0

k

c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2 c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3 c'
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4 c'

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5

k

0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

6
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

7
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

8
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9

0

5

10

15

20

25

Fig. 11. sc,c′(vk) on MNSIT dataset.

	 Principal Sensitivity Analysis
	1 Introduction
	2 Methods
	2.1 Conventional sensitivity analysis
	2.2 Sensitivity in arbitrary direction
	2.3 Principal sensitivity map and PSA
	2.4 Experiments

	3 Results
	3.1 PSA of classifier trained on artificial dataset
	3.2 PSA of classifier trained on MNIST dataset

	4 Discussion

