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ABSTRACT

Uncertainty refers to the language aspects that express hypotheses and speculations

where propositions are held as (un)certain, (im)probable, or (im)possible. Automatic un-

certainty analysis is crucial for several Natural Language Processing (NLP) applications

that need to distinguish between factual (i.e. certain) and nonfactual (i.e. negated or

uncertain) information. Typically, a comprehensive automatic uncertainty analyzer has

three machine learning models for uncertainty detection, a�ribution, and scope extrac-

tion. To-date, and to the best of my knowledge, current research on uncertainty auto-

matic analysis has only focused on uncertainty a�ribution and scope extraction, and has

typically tackled each task with a di�erent machine learning approach. Furthermore,

current research on uncertainty automatic analysis has been restricted to speci�c lan-

guages, particularly English, and to speci�c linguistic genres, including biomedical and

newswire texts, Wikipedia articles, and product reviews.

In this research project, I a�empt to address the aforementioned limitations of current

research on automatic uncertainty analysis. First, I develop a machine learning model for

uncertainty a�ribution, the task typically neglected in automatic uncertainty analysis.

Second, I propose a uni�ed framework to identify and extract uncertainty cues, holders,

and scopes in one-fell swoop by casting each task as a supervised token sequence labeling

ii



problem. �ird, I choose to work on the Arabic language, in contrast to English, the most

commonly studied language in the literature of automatic uncertainty analysis. Finally,

I work on the understudied linguistic genre of tweets.

�is research project results in a novel NLP tool, i.e., a comprehensive automatic un-

certainty analyzer for Arabic tweets, with a practical impact on NLP applications that rely

on uncertainty automatic analysis. �e tool yields an F1 score of 0.759, averaged across its

three machine learning models. Furthermore, through this research, the research com-

munity and I gain insights into (1) the challenges presented by Arabic as an agglutinative

morphologically-rich language with a �exible word order, in contrast to English; (2) the

challenges of the linguistic genre of tweets for uncertainty automatic analysis; and (3)

the type of challenges that my proposed uni�ed framework successfully addresses and

boosts performance for.
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CHAPTER 1

INTRODUCTION

Uncertainty refers to the language aspects that express hypotheses and speculations

where propositions are held as (un)certain, (im)probable, or (im)possible. Di�erent terms

have been used to refer - more or less - to the same concept: commi�ed belief (Diab

et al., 2009), epistemic modality (Palmer, 1986), evidentiality (Aikhenvald, 2004), factu-

ality (Saurı́ and Pustejovsky, 2009), speculation (Apostolova et al., 2011; Vincze et al.,

2011; Vlachos and Craven, 2010), and veridicality (de Marne�e et al., 2012). Automatic

uncertainty analysis is crucial for several Natural Language Processing (NLP) applica-

tions that need to distinguish between factual (i.e. certain) and nonfactual (i.e. negated

or uncertain) information, including:

• Rumor detectors that identify statements with unveri�ed truth values (Qazvinian

et al., 2011).

• Credibility analyzers that detect disinformers who endorse rumors and further

spread them (Castillo et al., 2011; Soni et al., 2014).

• �estion-answering systems that evaluate the truth value of Web-based informa-

tion to use as answers (Azari et al., 2003; de Marne�e et al., 2009).
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• Medical text analyzers that decide whether a given patient de�nitely su�ers, prob-

ably su�ers, or does not su�er from an illness (Szolovits, 1995; Mowery et al., 2012).

A comprehensive automatic uncertainty analyzer typically comprises three machine

learning models for:

• Uncertainty detection, i.e., the identi�cation and extraction of uncertainty lin-

guistic cues.

• Uncertainty attribution, i.e., the identi�cation and extraction of uncertainty hold-

ers.

• Uncertainty scope extraction, i.e., the identi�cation and extraction of uncer-

tainty propositions.

Current research on automatic uncertainty analysis has been limited to uncertainty

detection and scope extraction, whereas a�ribution has been either ignored (Baker et al.,

2012); or simplistically handled by either se�ing the text writer as the default holder (Diab

et al., 2009) or using a prede�ned set of prototypical holders (Wiegand and Klakow,

2011a). One reason for the less interest in uncertainty a�ribution is related to the types

of linguistic genres typically studied for automatic uncertainty analysis. Most current

research on uncertainty automatic analysis has focused on biomedical and newswire

texts (Li et al., 2010; Szarvas and Gurevych, 2013; Szarvas et al., 2008; Vlachos and Craven,

2010), Wikipedia articles (Tjong and Sang, 2010; Vincze, 2013), and product reviews (Dı́az,

2013) in which uncertainty can be ascribed to the text writer in most cases unless there

is a quote. Even for quotes, in many cases holders are limited to such prototypical noun
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phrases as experts, analyzers, and scientists (Wiegand and Klakow, 2011a). As a result, no

much a�ention has been given to uncertainty a�ribution. Besides, some researchers have

just decided to dedicate more time and e�ort to uncertainty detection and scope extrac-

tion for no clear reasons (Baker et al., 2012; Wei et al., 2013). With a highly interactive

linguistic genre such as tweets, default and prototypical holders are unlikely to work:

Twi�er users not only post about their own uncertainties, but also they post about the

uncertainties they think others may have, whether those others are their own followers

or some other third parties. As a result, uncertainty a�ribution is indispensable for au-

tomatic uncertainty analysis in tweets, especially if I want to use uncertainty automatic

analysis to detect rumor spreaders or to rank Twi�er users based on their credibility. �e

diversity of uncertainty holders makes the linguistic genre of tweets specially interest-

ing. Another reason that makes tweets interesting is that nowadays Twi�er is one of the

fastest growing information sources. As a result, it is crucial to develop machine learning

models that can process Twi�er-based information both accurately and fast.

Current research on automatic uncertainty analysis has also been limited in terms of

its approaches to uncertainty detection and scope extraction. None of the research that

tackles the two uncertainty-related tasks simultaneously uses a uni�ed framework. For

example, Ørelid et al. (2010), Yang et al. (2012), Apostolova et al. (2011), and Velldal et al.

(2010) use a token sequence labeling approach to uncertainty detection and then a rule-

based approach to uncertainty scope extraction. Zhao et al. (2010) de�ne both tasks as

token sequence labeling problems; yet use separate feature sets for each task and do not

use the output of one task to inform the other. �e absence of a uni�ed framework for all

uncertainty-related tasks consumes more time for feature extraction and deprives tasks
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from informing one another.

Current research on automatic uncertainty analysis has also been limited to speci�c

languages. �ere is a plethora of work on English (Matsuyoshi et al., 2010; Prabhakaran,

2010; Rubin, 2007; Rubinstein et al., 2013; Ruppenhofer and Rehbein, 2012; Saurı́ and

Pustejovsky, 2009; Szarvas et al., 2008; Tang et al., 2010; Vincze et al., 2011; Wei et al.,

2013), French (Goujon, 2009), Portuguese (Hendrickx et al., 2012; Avila and Mello, 2013),

and Swedish (Mowery et al., 2012), yet nothing for agglutinative morphologically-rich

languages except for Hungarian (Vincze, 2014). One reason for the li�le research on

agglutinative morphologically-rich languages with a �exible word order is the lack of

uncertainty-annotated corpora for such languages. Another reason is the signi�cant

challenges that those languages present for standard approaches designed for English.

First, agglutination and productive in�ectional morphology can package much uncer-

tainty information in the same token; so that information about the holder can be encoded

in the morphological in�ection of the cue; and a single token can be the uncertainty cue

and encode information about the scope simultaneously. Second, morphological richness

introduces a high number of variable tokens, leading to data sparsity. Finally, �exible

word order results in very long dependencies that are not usually present in the English

language. As a result, only Vincze (2014) has worked on uncertainty automatic analysis

for agglutinative morphologically-rich languages with a �exible word order, represented

by Hungarian; yet, she has limited her work to uncertainty detection.

In this research project, therefore, I a�empt to address the aforementioned limitations

as I build a comprehensive automatic uncertainty analysis system for Arabic tweets with

three machine learning models for uncertainty detection, a�ribution, and scope extrac-
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tion. �e novelty of the research does not only lie in working on an understudied un-

certainty task, i.e., a�ribution, an understudied linguistic genre, i.e., tweets, and an un-

derstudied language, i.e., Arabic, but also in my proposed uni�ed framework to build the

three aforementioned machine learning models. I propose a uni�ed framework to iden-

tify and extract uncertainty cues, holders, and scopes in one fell-swoop, by casting each

task as a supervised sequence labeling machine learning problem. �e three uncertainty-

related tasks are organized in a pipeline fashion starting with uncertainty detection, fol-

lowed uncertainty a�ribution, and then scope extraction, for each identi�ed cue, one cue

at a time. �e uni�ed framework relies on Support Vector Machines and a large set of

morphological, syntactic, lexical, semantic, pragmatic, dialectal, and genre-speci�c fea-

tures. Many features are shared across the three machine learning models; and hence,

the time needed for feature extraction is reduced to speed up the system. Furthermore,

the predictions of one model inform the predictions of the next model in the pipeline.

For instance, once a token is predicted as encoding an uncertainty holder, it is excluded

from candidate tokens for uncertainty scopes because a single token cannot encode in-

formation about uncertainty holders and scopes at the same time. �is exclusion process

boosts performance, especially that tweets are typically short texts with a few tokens.

�e rest of this thesis comprises six chapters. Chapter 2 describes my uncertainty-

annotated corpus, its annotation guidelines, results, and disagreement factors. Chap-

ters 3, 4, and 5, describe my three machine learning models for uncertainty detection,

a�ribution, and scope extraction, respectively, with information about classi�cation fea-

tures, experimental setup and results, errors, and comparisons with others’ related work.

Finally, Chapter 6 wraps up this entire thesis and highlights the most important �ndings
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and future work directions.
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CHAPTER 2

CORPUS DEVELOPMENT

2.1 Introduction

As I mentioned in Chapter 1, one reason for the li�le research on automatic uncertainty

analysis in agglutinative morphologically-rich languages with a �exible word order is

the lack of uncertainty-annotated corpora to train, test, and evaluate supervised machine

learning models. As a result, my �rst step for this research project is to develop such a

corpus for Arabic tweets. �e corpus is a novel NLP resource that I share with the com-

munity to trigger further research into the understudied areas of uncertainty a�ribution,

uncertainty automatic analysis for the linguistic genre of tweets and for agglutinative

morphologically-rich languages with a �exible word order 1.

�e remainder of this chapter is organized as follows: Section 2.2 describes raw cor-

pus harvesting, annotation scheme and results, the inter-annotator disagreement factors,

and statistics for the �nal annotated corpus; and Section 2.3 compares and contrasts my

corpus with others’ related work.
1 All resources developed throughout this research project are available at: www.rania-alsabbagh.com
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2.2 Corpus Development

2.2.1 Raw Corpus Harvesting and Description

I harvested 21,716 tweets with REST Twi�er API from June 2012 to June 2013. As search

queries, I used such hashtags as: #Egypt 2, #Jan25, #Ikhwan (i.e. the Muslim Brotherhood),

ú


æ�QÓ# mrsy (Morsi)3 , Pñ

�
J�YË@# #Aldstwr (the constitution), and ú



æ�J
�Ë@# #Alsysy (Elsisi),

among many others. Most of the used hashtags are of political interest. �is sets the

domain of the harvested corpus to politics.

�e harvested corpus comes from a variety of Twi�er users: (1) press users such as

newspapers, TV stations, and political campaigns; and (2) individual users, including

politicians, journalists, political activists, and other ordinary people. �is entails that

the corpus contains more than one variety of the Arabic language. �e �rst variety is

Modern Standard Arabic (MSA), which is the formal variety of Arabic mostly used by

the press users. �e other varieties include several local Arabic dialects used mostly by

the individual users. A quick look at the harvested corpus shows that the predominant

Arabic dialect is Egyptian Arabic (EA). �is is expected given that most of the hashtags

used for corpus harvesting discuss political issues of interest in Egypt.

�e �nal harvested corpus contains 521,786 word tokens and 64,445 word types, where

words are de�ned as strings delimited by white spaces.
2 English hashtags can be used with Arabic tweets.
3 Buckwalter’s Arabic Transliteration Scheme: h�p://www.qamus.org/transliteration.htm
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2.2.2 Annotation Tasks

Our annotation scheme comprises three tasks to annotate tokens encoding uncertainty

cues, holders, and scopes.

2.2.2.1 Annotating Uncertainty Cues

For the �rst annotation task, annotators are required to identify and extract Uncertainty

Cues (UCs) in each given tweet. Annotators are informed that:

• UCs express hypotheses and speculations where propositions are held as (un)certain,

(im)probable, or (im)possible.

• UCs are synonymous to our given set of prototypical UCs.

• UCs can be nominals, verbs, or particles.

• UCs can be unigrams or multiword expressions.

• �e components of multiword UCs are not necessarily adjacent.

�e �rst guideline depicts my generic de�nition of uncertainty that is not geared to

any speci�c NLP application or task. �is guideline is further supported by my second

guideline which casts uncertainty annotation as a synonymy judgement task. �is en-

ables annotators to check whether each tokens they mark as a UC truly con�nes to my

de�nition in the �rst guideline or not. �is simpli�cation of UC annotation as a syn-

onymy judgement task increases inter-annotator reliability rates and gives the annota-

tors the chance to revise their initial annotations as I show in my preliminary annotation
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study (Al-Sabbagh et al., 2014a). �e set of prototypical UCs comprises unambiguous

a�rmative and negative UCs of di�erent Arabic dialects, parts of speech, and morpho-

logical in�ections. Table 2.1 shows my set 4.

�e third guideline for this task instructs annotators that Arabic UCs, like in many

other languages including English, come in di�erent parts of speech: nominals, verbs,

and particles. Examples of nominal UCs are the common noun �
HBAÒ

�
Jk@ AHtmAlAt (gloss:

possibilities; English: there is a possibility), the present participle 	
­K
A

�
� $Ayf (gloss:

thinks.3.sg.msc.imprf; English: he thinks), the adjective Y»



ñÓ m&kd (gloss: sure.3.sg.msc;

English: surely), and the adverb AÖß.P rbmA (gloss: probably; English: probably), in exam-

ples 1-45 6, respectively. In example 5, Ð 	PB lAzm (gloss: must; English: must) is an example

of auxiliary verb UCs. Lexical verb UCs are like Y
�
®
�
JªK
 yEtqd (gloss: thinks.3.sg.msc.imprf;

English: he thinks) in example 6. �e emphatic particle Y
�
¯ qd (gloss: may; English: may)

in example 7 illustrates particle UCs.

1. • .
	
à@QK
 @



ð 	áK
QjJ. Ë @

	á�
K.
�
éêk. @ñÓ

�
HBAÒ

�
Jk@ ¼A

	
Jë

• hnAk AHtmAlAt mwAjhp byn AlbHryn w <yrAn.

• there possibilities confrontation.sg.fm between Bahrain and-Iran.

• �ere is a possibility for a confrontation between Bahrain and Iran.

4 For every example, (1) I give the Arabic version, (2) Buckwalter’s transliteration, (3) a gloss that
mirrors Arabic morphology, semantics, and syntax, and (4) an English translation. For example,
think.1.sg.imprf means the Arabic equivalent of the verb think in�ected for the �rst person sin-
gular in the imperfective aspect; think.3.sg.msc.prf means the Arabic equivalent of the verb think
in�ected for the third masculine singular person in the perfective aspect; the-mostmeans the de�nite
article a�ached as a proclitic to the superlative adjective most.

5 For each example, the 1st line is the original Arabic tweet. �e 2nd line is the Buckwalter’s transliter-
ation. �e 3rd line is a gloss. �e 4th line is an English translation.

6 For all examples, uncertainty cues are in boldface; uncertainty holders are double underlined; and
uncertainty scopes are single underlined.
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2. • . AK
Pñ
�
JºJ


	
¯

�
èQ�
m

�'
.

	áÓ ú


j
.
J

�
J�
K. ÉJ


	
JË @

�
éJ
Ó

	áÓ % 85
	
à@




	
­K
A

�
�

	
àA¿ ú



æ�QÓ# ú



×Am×

• mHAmy #mrsy kAn $Ayf <n 85% mn myp Alnyl btyjy mn bHyrp fyktwryA.

• laywer #Morsi was.3.sg.msc.prf thinking.3.sg.msc.prf that 85% of water

the-Nile coming.3.sg.fm.imprf from Lake Victoria.

• #Morsi’s lawyer thought that 85% of the Nile comes from Lake Victoria.

3. • . ij.
	
JJ
k ú



æ�QÓ Y»



ñÓ

• m&kd mrsy HynjH.

• sure.sg.msc Morsi will-win.3.sg.msc.imprf.

• Surely, Morsi will win.

4. • . ÕºmÌ'@ úÎ« ZCJ

�
��CË

�
é�Q

	
®Ë @ ú




	
æ
�
J�Ó

	
àA¿

�
��
m.

Ì'@ AÖß.P

• rbmA Aljy$ kAn mstny AlfrSp llAstylA’ ElY AlHkm.

• Maybe, the-army was.3.sg.msc.prf waiting.3.sg.msc.imprf the-chance

to-the-seize on the-power.

• Maybe, the army was waiting for a chance to seize power.

5. • .
�
éJ
�AJ.ªË @ úÎ«

	á�
m
�'

 @P Ð 	PB ÈðX Q» A�ªË@

• AlEsAkr dwl lAzm rAyHyn ElY AlEbAsyp.

• the-police those must heading.3.pl.imprf to Abbasia.

• �ose riot police forces must be heading to Abbasia.

6. • . ø



Qº�ªË@ �Êj. ÖÏ @ 	áÓ
�
èQÓ@



ñÓ ¼A

	
Jë

	
à



@ Y

�
®
�
JªK


	
�ªJ. Ë @

• AlbED yEtqd >n hnAk m&Amrp mn Almjls AlEskry.

• some think.3.sg.msc.imprf that there conspiracy from the-council the-military.

• Some people think that the Military Council is conspiring.

7. • . 	áK
QîD
�
� 	áÓ Q�

�»


@ Pñ

�
J�YË@

�
éK. A

�
J»

	
Y

	
g



A
�
K Y

�
¯
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• qd t>xz ktAbp Aldstwr >kvr mn $hryn.

• may takes.3.sg.fm.imprf writing the-constitution more than months.dual.

• �e constitution write-up may take more than two months.

Like in many other languages, Arabic UCs can be either unigrams or multiword ex-

pressions. In my preliminary study (Al-Sabbagh et al., 2014b), I have identi�ed three

types of Arabic multiword UCs based on their morpho-syntactic and lexical �exibility:

• Type 1 comprises idiomatic expressions such as úæ�«ð ÉªË lEl wEsY (gloss: may

and-hopefully; English: maybe) andðYJ. K
 AÒJ

	
¯ fymAybdw (gloss: in-what seems.3.sg.

msc.imprf; English: seemingly). �ey are morphologically, syntactically, and lexi-

cally �xed. Furthermore, they do not allow insertions in-between their boundaries.

• Type 2 includes morphologically and syntactically productive multiword UCs such

as: 	
à



@ 	áÓ Y»



A
�
JK
 yt>kdmn>n (gloss: con�rms.3.sg.msc.imprf from that; English: he

makes sure that). �ey in�ect for gender, person, number, and aspect; hence, they

are morphologically productive. Furthermore, they are syntactically productive

because they allow several linguistic constituents to be inserted in-between their

boundaries. �ese linguistic constituents can be:

– Adverbial phrases such as AÓAÖ
�
ß tmAmA (gloss: completely; English: com-

pletely) in as in ú



	
¯ AÓAÖ

�
ß

�
�

�
K@ð wAvq tmAmA fy (gloss: con�dent.3.sg.msc com-

pletely in; English: is completely con�dent that).

– Noun phrases such as P@ñ
�
JË @ AlvwAr (gloss: the-revolutionists; English: the

revolutionists) in 	
à



@ 	áÓ P@ñ

�
JË @ Y»



A
�
JK
 yt>kdAlvwArmn>n (gloss: con�rms.3.sg.
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msc.imprf the-revolutionists from that; English: the revolutionists make sure

that).

– Prepositional phrases such as �
èY

�
��. b$dp (gloss: with-intensity; English: very

much) in 	
à



@

�
èY

�
��. ½

�
�



@ >$k b$dp >n (gloss: doubt.1.sg.imprf; English: I very

much doubt that).

• Type 3 comprises lexically and syntactically productive multiword UCs such as

- 	
à



@ ©

�
¯ñ

�
JÖÏ @ 	áÓ mn AlmtwqE >n (gloss: from the-expected that; English: it is ex-

pected that). �ey are lexically productive in the sense that their lexical meaning

and uncertainty degree rely on their head word. �us, with the same aforemen-

tioned syntactic structure, we can have 	
à



@ Y»



ñÖÏ @ 	áÓ mn Alm&kd >n (gloss: from

the-con�rmed that; English: it is con�rmed that), 	
à



@ lk

.
QÖÏ @ 	áÓ mnAlmrjH>n (gloss:

from the-probable that; English: it is probable that), and 	
à



@ ÉÒ

�
JjÖÏ @ 	áÓ mn AlmHtml

>n (gloss: from the-possible that; English: it is possible that), among many others.

Meanwhile, they are syntactically productive because they allow adverbial, noun,

and prepositional phrases within their boundaries as in Type 2.

As the aforementioned types of multiword UCs suggest, Arabic recognizes both con-

tinuous and discontinuous multiword UCs. For discontinuous UCs, annotators are in-

structed that they have to mark the entire UC including all intervening linguistic con-

stituents. �us, in example 8, the UC is 	
à



@ XP@ñË@ Q�


	
« 	áÓ mn gyr AlwArd >n (gloss: from

not the-likely that; English: it is unlikely that), with the negation particle included.

8. • .
�
é�A



KQË @

�
�AJ.� ú




	
¯ hñ

�
J
	
®Ë @ ñK.



@#

	
à@ñ

	
kB



@ Ñ«YK


	
à



@ XP@ñË@ Q�


	
« 	áÓ :

	
àB 	Q

	
«#
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• #gzlAn: mn gyr AlwArd >n ydEm Al<xwAn #>bw Al�wH fy sbAq Alr}Asp.

• #Ghizlaan: fromnot the-likely that supports.3.sg.msc.imprf Ikhwan #Abu Alfotoh

in competition the-presidency.

• #Ghizlaan: it is unlikely that the Muslim Brotherhood will vote for Abulfotoh for

presidency.

2.2.2.2 Annotating Uncertainty Holders

For my second annotation task, annotators are required to identify Uncertainty Holders

(UHs) and extract the linguistic constituents, typically noun phrases/clauses, that corre-

spond to them, if applicable. In my corpus, there are three possible types of UHs:

• Type 1 comprises UCs whose holders are the same as the users who posted the

uncertainty-laden tweets. Type 1 is encoded by:

– 1st person pronouns such as A
	
K @ AnA (gloss: I; English: I) in example 9:

9. ∗ . ¼PA
�

��
ë
�

�Ym× ú


ÍAJ
î

�
DÓ A

	
K @

∗ AnAmthyAly mHd$ hy$Ark.

∗ I think.1.sg.imprf not-one-not will-participate.3.sg.msc.imprf.

∗ I think no one will participate.

– UCs morphologically in�ected for the 1st person as in �
�

	
�

	
¢Ó mZn$ (gloss: not-

think.1.sg.imprf-not; English: I do not think) in example 10:

10. ∗ . ú


æ�QÖÏ

�
Hñ�@

�
�

	
�

	
¢Ó

∗ mZn$ ASwt lmrsy.
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∗ not-think.1.sg.imprf-not vote.1.sg.imprf for-Morsi.

∗ I do not think I will vote for Morsi.

– impersonal and passive voice UCs such as 	
à



@ Q

	
¢

�
J
	
JÖÏ @ 	áÓ mn AlmntZr>n (gloss: from

the-expected that; English: it is expected that) in example 11:

11. ∗ . ÐñJ
Ë @ AK. A¢
	

k ��



KQË @ ù




�
®ÊK


	
à



@ Q

	
¢

�
J
	
JÖÏ @ 	áÓ

∗ mn AlmntZr >n ylqy Alr}ys xTAbA Alywm.

∗ from the-waited that gives.3.sg.msc.imprf the-president speech.sg the-

day.

∗ It is expected that the president will give a speech today.

• Type 2 comprises UCs whose holders are the followers of the users who posted

the uncertainty-laden tweets. Type 2 is encoded by:

– 2nd person pronouns such as �
I

	
K


@ >nt (gloss: you.sg.msc; English: you) in

example 12:

12. ∗ .PAÔg é
	
®K
A

�
� A

	
K


@ð Y�



@ ú



æ�QÓ

	
­K
A

�
�

�
I

	
K@

∗ Ant $Ayf mrsy Asd wAnA. $Ayf h HmAr.

∗ you.sg.msc think.2.sg.msc.imprf Morsi lion and-I think.1.sg.msc.imprf-

him donkey.

∗ You thinkMorsi is as brave as a lion, but I think he is as stupid as a donkey.

– UCs morphologically in�ected for the 2nd person like @ñ
�
KQº

�
J
	
¯ @ A�krtwA (gloss:

thought.2.pl.prf; English: you thought) in example 13:

13. ∗ . Ñî
�
E@Q

�
®Ó ÐAj

�
J
�
¯@ YªK. @ñ

�
Jº��
ë

	
à@ñ

	
kB



@ @ñ

�
KQº

�
J
	
¯ @
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∗ A�krtwA Al<xwAn hysktwA bEd AqtHAm mqrAthm.

∗ thought.2.pl.prf the-brotherhood will-remain.silent.3.pl.imprf a�er br-

eaking.into headquarters-their.

∗ You thought that the Muslim Brotherhood members will not react against

breaking into their headquarters.

• Type 3 comprises UCs whose holders are neither Type 1 or Type 2 and are ex-

pressed as:

– noun phrases/clauses of directly cited holders such as ú


kAJ.� SbAHy (gloss

Sabbahy; English: Sabbahy - a masculine proper noun) in example 14:

14. ∗ . @QK. YÓ
	
àA¿

�
èPAJ
�Ë@

�
HXAg

	
à



AK. ¼ñº

�
� ø



YË : ú



kAJ.�

∗ sbAHy: ldy $kwk b>n HAdv AlsyArp kAn mdbrA.

∗ Sabbahy: for-me doubts with-that accident.sg.msc

the-car.sg.fm was.3.sg.msc.prf premeditated.sg.msc.

∗ Sabbahy: I suspect that the car accident was premeditated.

– noun phrases/clauses of indirectly cited holders such as ú


¾Ó YÔg



@>Hmdmky

(gloss: Ahmed Mekky; English: Ahmed Mekky - masculine proper nouns) in

example 15:

15. ∗ .
	á�
�ñJ. m

× É
	
®£ 114 éJ


	
¯

	
à



@

�
�

	
Q̄ªK
 AÓ é

	
K


@ Èñ

�
®J
K. ú



¾Ó YÔg



@

∗ >Hmd mky byqwl >nh mAyErf$ >n fyh 114 T� mHbwsyn.

∗ Ahmed Mekky saying.3.sg.msc.imprf that-henot knows.3.sg.msc.imprf-

not that there 114 kid arrested.pl.
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∗ Ahmed Mekky says that hedoes not know that there are 114 arrested kids.

– 3rd person pronouns such as ñë hw (gloss: he; English: he) in example 16:

16. ∗ .Pñ
	
JË @ Aî

	
D« ©¢

�
®
�
JK


�
�ª

	
®

	
JJ
Ó

	á» AÓ@ ú



	
¯

	
à@ ¼PYÓ

�
�Ó ñë

∗ hw m$ mdrk An fyh AmAkn mynfE$ ytqTE EnhA Alnwr.

∗ henot realizing.3.sg.msc.imprf that there places not-can-not cut.3.sg.msc

.imprf.passive o�-them the-electricity.

∗ He does not realize that there are places that cannot have an electricity

outage.

�e aforementioned description of the types of UHs in my corpus shows that the pro-

ductive in�ectional morphology of Arabic can package more than one piece of informa-

tion pertinent to uncertainty into a single token. As a result, �
�

	
�

	
¢Ó mZn$ (gloss: not-

think.1.sg.imprf-not; English: I do not think) in example 10 and @ñ
�
KQº

�
J
	
¯ @ A�krtwA (gloss:

thought.2.pl.prf; English: you thought) in example 13 are not only UCs but also they com-

prise UH information. �at type of challenge has not been considered in earlier work on

uncertainty annotation and automatic analysis because most earlier work focuses on the

English language in which cues and holders are typically represented by separate tokens.

Annotators are instructed that if the UH information is encoded in the morphology or

the semantics of the UC as in example 11, the text segment of the UC is to be the same for

the UH. Otherwise, if UHs are represented by separate tokens, annotators are instructed

to follow the maximal length principle from (Szarvas et al., 2008) so that the marked

text segment comprises all complements and adjuncts pertinent to the UH. According to

the maximal length principle, the UH in example 17 is ÐñJ
Ë @ ø



Qå�ÒÊË ú


kAJ.� SbAHy llmSry

19



Alywm (gloss: Sabbahy for-Almasry Alyoum; English: Sabbagh for Almasry Alyoum7)

not only ú


kAJ.� SbAhy (gloss: Sabbahy; English: Sabbahy).

17. • . ø



Pð
	Q 	
�m.
Ì'@ ©Ó 	á

	
�ÓQK
 I. K. Ag ú



æ�QÓ 	áºÖß
 : ÐñJ
Ë @ ø



Qå�ÒÊË ú



kAJ.�

• SbAHy llmSry Alywm: ymkn mrsy HAbb yrmDn mE Aljnzwry.

• Sabbahy for-Almasry Alyoum: maybe Morsi wants.3.sg.msc.imprf spend.Ramadan

.3.sg.msc.imprf with Elganzoury.

• Sabbahy for Almasry Alyoum: maybe Morsi wants to spend Ramadan with

Elganzoury.

2.2.2.3 Annotating Uncertainty Scopes

Uncertainty scope annotation identi�es the text segments that encode the propositions

modi�ed by the UCs. Annotators are instructed to use the same maximal length principle

used for annotating UHs so that the marked text segment includes all the complements

and adjuncts related to the scope.

Scope annotation involves several challenges that annotators are instructed to deal

with. Nesting, where a UC and its scope are embedded in another UC’s scope, is common.

In example 18, 	á�
ª
	
J
�
J
�
®Ó mqtnEyn (gloss: convinced.pl; English: are convinced) and its scope

P@ñmÌ'@ øðYm.
�'

. bjdwY AlHwAr (gloss: with-usefulness the-talk; English: that the talk is

useful) are both embedded in the scope of �
�

	
�

	
¢Ó mZn$ (gloss: not-think.1.sg.imprf-not;

English: I do not think).

18. • . P @ñmÌ'@ øðYm.
�'

.
	á�
ª

	
J
�
J
�
®Ó Ñî

	
E @

�
�

	
�

	
¢Ó

• mZn$ Anhm mqtnEyn bjdwY AlHwAr.

7 An Egyptian newspaper
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• not-think.1.sg.imprf-not that-they convinced.pl with-usefulness the-talk.

• I do not think they are convinced that it is important to talk.

A single UC may have one or more scopes. In example 19, the scope of ÑêË


AJ
î

�
DJ
K. bythy>-

lhm (gloss: imagine.3.pl.imprf; English: they imagine) comprises two coordinating com-

plement clauses.

19. • .
�
é¢Ê�Ë@ ©Ó P



A
�
K ÑëY

	
J«

	
à@



ð PYë h@P Ñî

�
E@ñ

	
k



@ ÐX

	
à@



ÑêË



AJ
î

�
DJ
K. A

	
KXBð



@

• >wlAdnA bythy>lhm <n dm >xwAthm rAH hdr w<n Endhm v>r mE ElslTp.

• kids-our imagine.3.pl.imprf that brothers-their blood went.3.sg.msc.prf in.vain

and-that have.3.pl.imprf-they revenge with the-authorities.

• Our kids imagine that their brothers were killed in vain and that they have to

take revenge from the authorities.

Two or more UCs - typically conjoined by a coordinating conjunction - can share

the same scope. In example 20, the coordinating UCs 	
¬PA«ð ÑëA

	
¯ fAhm wEArf (gloss:

knows.3.sg.msc.imprf and-understands.3.sg.msc.imprf; English: knows and understands)

share the same complement clause scope.

20. • .
�

�J

	
®

�
�# ÐA

	
¢

	
JË @ H. A

	
K

	
X @ 	áÓ é

	
K @

	
¬PA«ð ÑëA

	
¯ I. ª

�
�Ë@

• Al$Eb fAhm wEArf Anh mn A*nAb AlnZAm. #$fyq

• the-people knows.3.sg.msc.imprf and understands.3.sg.msc.imprf that-he

from followers the-regime. #Sha�q

• �e people know and understand that he is part of the old regime. #Sha�q

Scopes are not necessarily adjacent to their UCs. In example 21, the scope starts three

words to the right of the UC ©
	
J
�
J
�
®K. bAqtnE (gloss: convinced.1.sg.imprf; English: get con-
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vinced) given that the adverbial phrase Q�
�» @ð Q�

�» @ Aktr wAktr (gloss: more and-more; En-

glish: more and more) falls in-between the UC and its scope.

21. • . ÈXA« ú



	
æ£ð Pñ

�
KA

�
JºK
X

	á�
g. A
�
Jm× A

	
J» A

	
J
	
K @ Q�

�» @ð Q�
�» @ ©

	
J
�
J
�
¯AK. ÐñK
 É¿

• kl ywm bAqtnE Aktr wAktr AnnA knA mHtAjyn dyktAtwr wTny EAdl.

• every day convinced.1.sg.imprf more and-more that-we were.1.pl.prf

needing.pl dictator.sg.msc patriotic.sg.msc fair.sg.msc.

• Every day, I get more and more convinced that we needed a patriotic and fair

dictator.

Scopes can precede, follow, or surround their UCs. Many of the aforementioned ex-

amples have the scopes following their UCs. In example 22, the scope surrounds its UC

(i.e. ðYJ. K
 ybdw (gloss: seems.1.sg.msc.imprf; English: seems)). In example 23, the scope

precedes its UC ðYJ. K
 AÒJ

	
¯ fymA ybdw (gloss: in-what seems.3.sg.msc.imprf; English: seem-

ingly). Annotators are instructed to mark all scope-encoding tokens, including comple-

ments and adjuncts, following the maximal length principle; whether those scopes are

continuous or discontinuous (i.e. they are interrupted by their UCs).

22. • . éJ
Ê« A
	
JK
X ðYJ. K
 AÒJ


	
¯

�
I��
Ë ú



æ�QÓ Xñ«ð

• wEwd mrsy lyst fymA ybdw dynA Elyh.

• Morsi promises not in-what seems.3.sg.msc.imprf debt on-him.

• Morsi’s promises are not doable, seemingly.

23. • .ðYJ. K
 AÒJ

	
¯

�
H



@YK. Z @PñÊË

�
é«A�Ë@ H. PA

�
®«

�
èXA«@



ð QK
A

	
JK


�
èPñ

�
K éK
ñ

�
�

�
�

�
éÊÔg

• Hmlp t$wyh vwrp ynAyr bd>t fymA ybdw .

• campaign distortion Revolution January started.3.sg.fm.prf in-what seems.3

.sg.msc.imprf.
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• A campaign to distort the image of January’s revolution has started, seemingly.

2.2.3 Annotation Results

I hired two annotators, both of whom are native speakers of Arabic and have studied

linguistics at a university level. I had the annotators extensively trained on my guidelines,

before asking each one of them to work independently on the entire corpus.

To measure inter-annotator reliability, I use α Coe�cient (Krippendor�, 2004) that

relies on the di�erence between observed and expected disagreement, unlike Kappa κ

Coe�cient that works on observed and expected agreement. �e main advantages of α

Coe�cient are that:

• It is suitable for any number of annotators.

• It can be used for any size of data and with missing or incomplete data.

• It is easily interpretable as 1 means perfect reliability and 0 means no reliability.

For those reasons, α Coe�cient is used to measure inter-annotator reliability in the

most recent work on uncertainty annotation, including Rubinstein et al. (2013), Cui and

Chi (2013), and my own preliminary work to create this Arabic uncertainty-annotated

corpus (Al-Sabbagh et al., 2014a). For a full comparison between α, κ, and other coef-

�cients, we refer the reader to Artstein and Poesio (2008). Table 2.2 shows the inter-

annotator reliability rates per annotation task.

I �nally acted as an adjudicator to se�le the disagreements between the two annotators

and come up with the �nal corpus. �e �nal annotated corpus comprises 7,461 out of the
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Task Alpha

Cues 0.930

Holders 0.856

Scopes 0.825

Table 2.2: Inter-annotator reliability alpha rates per annotation task

initially-harvested 21,716 tweets that do not have any uncertainty information. �e rest

of the tweets comprise 17,317 uncertainty cues, of which 3,697 are unigrams and 13,620

are multiword expressions. Each cue is annotated for holders, of which 7,992 are encoded

in the morphological in�ections of the cues, whereas the rest are represented via personal

pronouns or any other base or complex noun phrases. Each cue is also annotated for

scopes, of which 3,857 are discontinuous8.

2.2.4 Discussion and Disagreement Analysis

One reason for my high inter-annotation reliability rates is my set of prototypical UCs.

It helps annotators avoid annotation inconsistencies resulting from their own personal

interpretations of what hypotheses and speculations are. Another reason is the simplic-

ity of the genre of tweets, where sentences are typically short and straightforward. Short

sentences entail that annotators do not have many linguistic constituents to annotate

and not many choices per annotation task; besides, long dependencies between UCs and

their scopes become less common with short sentences. Furthermore, the majority of

the uncertainty in my corpus is held by the Twi�er users themselves, which suggests
8 �e corpus is available at www.rania-alsabbagh.com
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that Twi�er users are more likely to post about their own uncertainties than about oth-

ers’. Type 1 UHs are the easiest to label. Hence, the inter-annotator reliability rate for

annotating UHs is considerably high.

For each annotation task, I manage to identify the major disagreement factors. For

UCs, disagreement is mainly a�ributed to opinionated evidential and highly polysemous

UCs. Opinionated evidential UCs, such as Ñ« 	QK
 yzEm (gloss: claims.3.sg.msc.imprf; En-

glish: he claims) and ú


«YK
 ydEy (gloss: alleges.3.sg.msc.imprf; English: he alleges), do not

only mark reported speech, but also they communicate the reporter’s own speculation

about the truth value of the reported proposition. �ey entail that from the reporter’s

perspective the proposition is nonfactual (i.e. false or uncertain). Hence, annotators dis-

agree as to whether these cues should be labeled as UCs or not.

Highly polysemous UCs, such as 	áºÖß
ymkn (gloss: enables.3.sg.msc.imprf/can/possible;

English: he enables/can/it is possible) and Õæ�
�
®K
 yqsm (gloss: assures.3.sg.msc.imprf/promis-

es.3.sg.msc.imprf; English: he swears), result in disagreement because in many cases even

the context is ambiguous. In example 24, both interpretations of it is unlikely to and it is

not doable to seem to be acceptable. Similarly, in example 25 Õæ�
�
®K
 yqsm can be interpreted

as an a non-UC, meaning promises, or as a UC, meaning assures.

24. • . ÕºmÌ'@
	
àñ

	
Jk. ð

�
èQ�
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�
HA

�
Q̄å�

	á�
K. A
�
J» ÉÓ



A
�
JK. B@



ú


æ�QÓ# H. A

�
J» Ñê

	
¯ 	áºÖß
 B

• lA ymkn fhm ktAb mrsy <lA bt>ml ktAbyn srqAt Sgyrp wjnwn AlHkm.

• not likely to/not doable to understanding book #Morsi except by-contemplating

books.dual robberies small and-mania the-ruling.

• It is unlikely to /it is not doable to understand Morsi’s book without reading the

other two books of Small Robberies and Ruling Mania.
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25. • . ¡
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@ ðQÔ«

• Emr >dyb yqsm >n mSr ln tsqT.

• Amr Adeeb assures.3.sg.msc.imprf/promises.3.sg.msc.imprf that Egypt not

falls.3.sg.fm.imprf.

• Amr Adeeb assures/promises that Egypt will not fall.

UH-related disagreement is a�ributed mainly to long, syntactically complex clauses

encoding holders. Syntactic complexity results from multiple coordinating phrases as in

example 26, recursive descriptive relative clauses as in example 27, and apposition9 as in

example 28, among many other linguistic structures.
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• mbArk wTnTAwy wAlmjls AlEskry wm&ydynhm wAtbAEhm wAlly yt$dd lhm

$Ayfyn <n Al$yEp >xTr mn Alyhwd.

• Mubarak and-Tantawy and-the-council the-military and-supporters-their

and-followers-their and-who supports.3.sg.msc.imprf-them think.3.pl.imprf that

the-Shiites more.dangerous than the-Jews.

• Muabarak, Tantawy, the Military Council, their followers, and their supporters

think that the Shiites are more dangerous than the Jews.
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• AlnAs Ally m$ EAjbhA klAmy wAlly b�ryq ElyAmqtnEyn An mrsy kAn $gAl fy

nAsA.

9 Apposition is a linguistic structure in which two noun phrases are placed side by side with one phrase
serving to identify the other in a di�erent way.
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• the-people who not like.3.sg.fm.imprf talk-my and-who mock.3.sg.fm.imprf on-me

convinced.pl that Morsi was.3.sg.msc.prf working.3.sg.msc.imprf in NASA.

• �e people, who do not like my argument and are mocking me, are convinced that

Morsi was working for NASA.
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�
�ÖÏ @ 	áÓ

• $Ady Hmyd mdyr brwkngz fy qTr: mn gyr AlmrjH >n ykwn Al<xwAn Almslmwn

jz’A mn Alm$hd AlsyAsy mstqblA.

• Shady Hamdy manager Brookings in Qatar: from not the-likely that be the-

Brotherhood the-Muslim part from the-scene the-political future.

• Shady Hamdy, the manager of Brookings Qatar: it is unlikely that the Muslim

Brotherhood will be politically active in the future.

Scope-related disagreement is a�ributed �rst to scopes encliticized to their UCs. In 29,

the scope starts at the 3rd person object pronoun a�ached to the UC Qº
�
J
	
¯ @ A�kr (gloss:

thought.3.sg.msc.prf; English: it thought). For one annotator, those object pronouns are

not part of the scope. For the other, they are part of the scope.

29. • . ��
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« ÑëQº
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• Aljy$ A�krhm EyAl sys.

• the-army thought.3.sg.msc.prf-them kids idiots.

• �e army leaders thought they are some idiot kids.

Another reason for scope annotation disagreement is very long, syntactically complex

clauses such as the ones in example 30.
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• >Etqd >nh ln ytm AltwSl lAtfAq byn qwY AlmEArDp HtY lw mr 100 EAm HtY

lw mAt kl AlmSryyn.

• think.1.sg.imprf that not reach.3.sg.imprf.passive to-agreement among power

the-opposition even if passed.3.sg.msc.prf 100 year even if died.3.sg.msc.prf all

the-Egyptians.

• I think that the opposition will not get to an agreement, even if they spend

a 100 years trying, even if all Egyptians die.

2.3 Related Work

As I mentioned earlier in Chapter 1, there is a plethora of work on uncertainty annota-

tion for English (Rubin, 2007; Szarvas et al., 2008; Saurı́ and Pustejovsky, 2009; Matsuyoshi

et al., 2010; Farkas et al., 2010; Rubinstein et al., 2013; Wei et al., 2013), Japanese (Hen-

drickx et al., 2012), Chinese (Cui and Chi, 2013), Portuguese (Hendrickx et al., 2012; Avila

and Mello, 2013), and Hungarian (Vincze, 2014). However, prior to my own preliminary

work (Al-Sabbagh et al., 2014a) and the work I presented in this chapter, there are no Ara-

bic uncertainty-annotated corpora, to the best of my knowledge. In this section, I start

with a brief overview of some prior work on uncertainty annotation in other languages.

A�erwards, I compare and contrast my own work.

Rubin (2007) annotated 80 English newspaper articles from the New York Times Ser-

vice for explicitly-encoded certainty cues. She did not annotate holders or scopes. Re-

ported kappa κ inter-annotator agreement rate is only 0.33.
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Szarvas et al. (2008) developed the BioScope corpus that consists of biomedical ab-

stracts and full papers. �ey annotated the corpus for negation and uncertainty cues

and their scopes, but not their holders. �e annotation process was carried out by two

independent linguist annotators and a chief linguist - also responsible for se�ing up the

annotation guidelines - who resolved cases of disagreement. �e resulting corpus com-

prises more than 20K sentences, of which 10% contain at least one negation/uncertainty

cue and its scope. No kappa κ or alpha α rates are reported.

Saurı́ and Pustejovsky (2009) annotated factuality as explicitly-encoded by epistemic

and evidential modality triggers in 208 English documents from the TimeBank and the

TimeML corpora. �ey achieved kappa κ inter-annotator agreement rates of 0.88 for cues,

0.95 for holders, and 0.81 for labeling cues as fact, counterfact, probable, not probable,

possible, not certain, certain but unknown output, and unknown or uncommi�ed.

Farkas et al. (2010) created the WikiWeasel corpus that contains English Wikipedia

paragraphs annotated for weasels. According to Farkas et al., a word is a weasel if it cre-

ates an impression that something important has been said, but what is really commu-

nicated is vague, misleading, evasive, or ambiguous. Weasel words do not give a neutral

account of facts, but rather an opinion without any backup or source. Example weasels

are some people, possibly, might, and many people, among others. �e WikiWeasel corpus

was used for the CoNLL 2010 shared task for detecting hedges.

Hendrickx et al. (2012) proposed an annotation scheme for Portuguese to annotate

knowledge, belief, doubt, and possibility. For each concept, they annotated cues, holders,

and scopes. In addition, they labelled each cue as either a�rmative or negative. Based

on 50 sentences, their annotation scheme achieved a kappa κ inter-annotator agreement
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rate of 0.85 for cues. With the same annotation scheme, Avila and Mello (2013) annotated

20 texts from the Brazilian Portuguese Spontaneous Speech corpus. No inter-annotator

agreement rates are reported.

Rubinstein et al. (2013) proposed a linguistically-motivated annotation scheme to

annotate epistemic beliefs, knowledge, and possibilities, among other concepts, in the

MPQA corpus of English texts (Wiebe et al., 2005). Information labelled for each con-

cept incorporates: (1) polarity (i.e. a�rmative vs. negative), (2) propositional arguments

(i.e. targets or scope spans), (3) sources (i.e. holders), (4) background (i.e. linguistic con-

stituents that describe the circumstances and priorities that the claim is based on), and

(5) degree indicators (i.e. linguistic constituents that indicate the degrees of possibili-

ties). �e reported alpha α inter-annotator reliability scores are 0.89 for cues and 0.65

for scopes. �e same scheme was applied to the Chinese Penn Treebank by Cui and Chi

(2013) who reported an inter-annotator agreement rate of 0.81 for cues.

Wei et al. (2013) annotated 4,743 English tweets so that each tweet is labelled as either

uncertain or certain, based on the annotators’ judgements about the author’s intended

meaning rather than the presence of uncertainty cues. For those tweets annotated as

uncertain, sub-class labels are also required to label uncertainty as either epistemic (i.e.

possible or probable) or hypothetical (i.e. condition, doxastic, dynamic, external, or ques-

tion). �e kappa κ coe�cient indicating inter-annotator agreement is 0.907 for the cer-

tain/uncertain binary classi�cation and 0.827 for the �ne-grained annotation of uncer-

tainty types.

Vincze (2014) manually annotated Hungarian texts for uncertainty from two domains:

(1) 9,722 sentences from the Hungarian Wikipedia, and (2) 5,481 sentences from the Hun-

30



garian criminal news portal. She categorizes uncertainty cues into: epistemic, dynamic,

doxastic, investigation, condition, weasel, hedge, and peacock. �e corpus is only anno-

tated for uncertainty cues. No inter-annotator agreement/reliability rates are reported.

�is brief overview shows that there are subtle di�erences among the uncertainty-

annotated corpora in terms of:

• the annotated languages, genres, and domains: most corpora are for the En-

glish language (Rubin, 2007; Szarvas et al., 2008; Saurı́ and Pustejovsky, 2009; Farkas

et al., 2010; Rubinstein et al., 2013; Wei et al., 2013), except for a few annotation

projects for Portuguese (Hendrickx et al., 2012; Avila and Mello, 2013), Chinese (Wei

et al., 2013), and Hungarian (Vincze, 2014). �e most widely covered domains and

genres for uncertainty annotation are Wikipedia (Farkas et al., 2010; Vincze, 2014),

biomedical texts (Szarvas et al., 2008; Vincze, 2014), and newswire texts (Rubin,

2007; Szarvas et al., 2008; Vincze, 2014). Only Wei et al. (2013) work on tweets.

• the de�nition of uncertainty: for some annotation projects uncertainty com-

prises beliefs, knowledge, hypotheses, and possibilities. Yet, for others, uncertainty

also comprises conditionals, questions, investigations (Wei et al., 2013; Vincze,

2014). Some annotation projects annotate negation and uncertainty simultane-

ously, others label each independently.

• the linguistic encoding of uncertainty: some annotation projects annotate un-

certainty at the token level looking for such cues as epistemic and evidential modal-

ity triggers, hedges, and/or weasels. Other projects annotate uncertainty at the

sentence level where a sentence is labeled as (un)certain if it has at least one un-
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certainty cue.

• the annotation targets: some annotation schemes focus only on annotating un-

certainty cues. Other schemes annotate cues, holders, and scopes. Some other

schemes annotate more a�ributes for the uncertainty cues such as polarity (Ru-

binstein et al., 2013; Cui and Chi, 2013), tense, or intensity (Saurı́ and Pustejovsky,

2009).

• the annotation procedure: in some annotation projects, two or more annotators

worked independently and then inter-annotator agreement/reliability was mea-

sured. For other projects, there is a chief annotator who resolves disagreements

and thus no inter-annotator agreement/reliability rates are reported (Szarvas et al.,

2008).

�e subtle di�erences among uncertainty annotation projects make corpora of the

same domain with intersecting data minimally comparable. Vincze et al. (2011) com-

pared the negation and speculation annotations of the biomedical Genia Event (GE) and

BioScope (BS) corpora. Although the two corpora intersect in 958 abstracts and 8,942

sentences, the agreement rate between them is only 0.48 because each corpus de�nes

uncertainty cues and their scopes in a di�erent way. In GE, uncertainty can be encoded

by a verb, an adjective, or a noun. Yet, in BS uncertainty is linguistically encoded by the

predicate and its arguments where the role of the predicate can be ful�lled by a verb, a

noun, or an adjective. In GE, scopes include subjects, yet in BS, scopes are only comple-

ments. �ese di�erences motivated Szarvas et al. (2012) to propose a uni�ed approach to

annotate uncertainty.
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My work is orthogonal to this extensive literature on uncertainty annotation. I de�ned

uncertainty as hypotheses and speculations, following most of uncertainty annotation

schemes. I annotated uncertainty cues, holders, and scopes, that are also considered in

many previous annotation schemes. I hired two independent annotators to label my

corpus and measured inter-annotator reliability rates so as to give more credibility for

my newly developed Arabic NLP resource. I followed the uni�ed annotation approach

of Szarvas et al. (2012) and labeled all continuous and discontinuous cues and scopes,

regardless of their part of speech or their grammatical function.

2.4 Conclusion

In this chapter, I presented my novel uncertainty-annotated corpus of Arabic tweets. �e

corpus is annotated for uncertainty cues, holders, and scopes. �e development of this

corpus provides the necessary resource to build a comprehensive uncertainty automatic

analyzer for Arabic tweets, whose �rst machine learning model for uncertainty detection,

starts in the next chapter.
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CHAPTER 3

UNCERTAINTY DETECTION

3.1 Introduction

In Chapter 2, I built an adequately large corpus annotated for uncertainty cues, holders,

and scopes in Arabic tweets. �e main target of developing this corpus was to provide

the necessary resource to train, test, and evaluate supervised machine learning models

for Arabic uncertainty automatic analysis. With this corpus now in hand, I start in this

chapter the �rst machine learning model in my comprehensive automatic uncertainty

analyzer. �e model is to identify and extract uncertainty linguistic cues.

�e remainder of this chapter is organized as follows: Section 3.2 describes my ap-

proach to Arabic uncertainty detection, including features, experimental setup, results,

and a detailed error analysis; Section 3.4 concludes the chapter and gives a future outlook.

3.2 Approach

3.2.1 Task Description

I de�ne uncertainty detection as a token sequence labelling problem and apply Support

Vector Machines (SVMs) as my machine learning method. I use the YamCha implemen-
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tation1 that has been used for multiple sequence labeling problems, especially in the lit-

erature of Arabic NLP, including Shaalan et al. (2009); Habash and Roth (2011); Alkuhlani

and Habash (2011). SVMs and Conditional Random Fields (CRFs) have been both used in

the literature of uncertainty automatic analysis. To the best of my knowledge, only Prab-

hakaran (2010) has compared the performance of the two machine learning methods in

the context of English uncertainty detection to �nd out that CRFs marginally improve

prediction accuracy. I keep the comparison between the two machine learning methods

for my three uncertainty-related tasks for a future work.

For uncertainty detection, the classi�er is trained to label each token as the beginning

of an uncertainty cue (B-C), inside an uncertainty cue (I-C), or outside any uncertainty

cues (O-C). With this BIO scheme, I manage to identify both unigram and multiword

uncertainty cues as in Table 3.1.

3.2.2 Classi�cation Features

I use a rich set of nine feature categories illustrated in Table 3.2.

Contextual Features (CFs) describe the lexical and morpho-syntactic contexts of

each given token. �e lexical context is the sequence of tokens around each given to-

ken; whereas the morpho-syntactic context is the sequence of Part-of-Speech (POS) tags.

�e morpho-syntactic CFs are extracted via MADAMIRA v1.0 Pasha et al. (2014), a com-

prehensive toolkit for Arabic morphological analysis, tokenization, and POS tagging.

Dialectal Features (DFs) identify the Arabic dialect of each given token and each

given tweet, as to whether it is Modern Standard Arabic (MSA) or Egyptian Arabic (EA).
1 h�p://chasenorg/ taku/so�ware/yamcha
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A Unigram UC

Arabic Trans. Gloss English BIO

A
	
K


@ >nA I I O-C

	á
	

£


@ >Zn think.1.sg.imprf think B-C

�
��


	
®Ó mfy$ not-there-not there is no O-C

�
èYK
A

	
¯ fAydp bene�t bene�t O-C

	áÓ mn from from O-C
�
éª£A

�
®ÖÏ @ AlmqATEp the-boyco� the boyco� O-C

A Multiword UC

Arabic Trans. Literal Gloss BIO

	áÓ mn from It is B-C

©
�
¯ñ

�
JÖÏ @ AlmtwqE the-expected expected I-C

	á�
J
ª
�
K tEyyn appointing to appoint O-C

	
àAK
QªË@ AlEryAn Aleryan Aleryan O-C

A��



KP r}ysA prime as a Prime O-C

Z @P 	PñÊË llwzrA’ minister Minister O-C

Table 3.1: UCs represented in the BIO scheme and forma�ed based on YamCha
requirements

DFs can be informative for uncertainty detection because some words can function as

uncertainty cues in one Arabic variety but not the other. For example, A
	
JÊ¾

�
� $klnA func-

tions as an uncertainty cue only in EA where it means it seems that, but in MSA it is either

a common noun encliticized to a possessive pronoun meaning our look, or a perfective

verb conjugated for the 1st person plural meaning we formed. Likewise, the particle Y
�
¯

qd functions as an uncertainty cue only in MSA, in which it means either indeed if fol-

lowed by a perfective verb, or may if followed by an imperfective verb. Yet, in EA Y
�
¯ qd
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No Feature Description

Contextual Features (CFs)

1 lexical token sequences around each token

2 morpho-syntactic POS sequences around each token

Dialectal Features (DFs)

3 token-dialect the Arabic dialect of each token

4 tweet-dialect the Arabic dialect of each tweet

Lexicon Feature (LFs)

5 token-in-lexicons the presence/absence of each token in the Arabic un-

certainty lexicons

Semantic Features (SemFs)

6 gender the gender of each token, if applicable

7 number the number of each token, if applicable

8 person the person of each token, if applicable

Syntactic Features (SynFs)

9 base-phrase-type the type of the base phrase of which each token is a

part

10 position-in-base-phrase the position of each token within its base phase

11 syntactic-dependencies syntactic dependencies of each token

Twitter Features (TFs)

12 tweet-length the number of tokens per tweet

13 token-position the position of each token within its tweet

14 hashtag-count the number of hashtags within each tweet, if any

15 URL-count the number of URLs within each tweet, if any

Table 3.2: Classi�cation features for uncertainty detection
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is only a comparative particle meaning as … as. Furthermore, DFs can be informative

for uncertainty a�ribution: we assume that users are more likely to use their native local

Arabic dialect, i.e., EA, when they are tweeting casually about their own speculations

and hypotheses. DFs are extracted via the Arabic dialect identi�er, AIDA (Elfardy et al.,

2014).

Lexicon Feature (LF) is a binary feature: if a given token is in the Arabic uncertainty

lexicons, the feature value is set to true; otherwise to false. For this feature, I built two

lexicons: the �rst is a manually-compiled lexicon of 3,289 unigram UCs (Al-Sabbagh et al.,

2013); and the second is an automatically-generated lexicon of 4,795 multiword UCs (Al-

Sabbagh et al., 2014b).

�e unigram lexicon is part of a larger lexicon that comprises unigrams expressing dif-

ferent types of modality: epistemic, evidential, obligative, permissive, commissive, abili-

tive, and volitive (Al-Sabbagh et al., 2013). Epistemic modality is de�ned as the speaker’s

judgment about the factual status of the proposition, whereas evidential modality is re-

stricted to hearsay and sensory expressions such as ÈA
�
¯ qAl (gloss: said.3.sg.msc.prf; En-

glish: he said) and ©ÖÞ� smE (gloss: heard.3.sg.msc.prf; English: he heard), respectively. As

a result, I only use epistemic modality expressions from that lexicon as they are the clos-

est to my de�nition of uncertainty in this research project. �e entire lexicon is manually

generated as I compiled unigram modality expressions from several theoretical studies,

including (Mitchell and Al-Hassan, 1994; Brustad, 2000; Badawi et al., 2004), and then I

manually generated the morphological in�ections and derivations of each compiled ex-

pression. Furthermore, I manually added the English translation for each entry. �e

epistemic modality portion of this lexicon is 3,289 unigrams.
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Arabic Transliteration Gloss English

	á
	

£


@ >Zn think.1.sg.imprf I think

	á
	

¢
	
� nZn think.1.pl.imprf we think

	á
	

¢�
 yZn thinks.3.sg.msc.imprf he thinks
	

¬PA« EArf know.1.sg.imprf/knows.3.sg.msc.imprf I/he know(s)
�
é
	
P̄ A« EArfp know.1.sg.imprf/knows.3.sg.fm.imprf I/she know(s)

	á�

	
P̄ A« EArfyn know.1.pl.imprf/know.2.pl.imprf/know.3.pl.imprf we/you/they know

Table 3.3: An excerpt from the lexicon of unigram UCs

�e second lexicon is also part of a larger project to identify multiword modality ex-

pressions Al-Sabbagh et al. (2014b), including multiword expressions for epistemic, ev-

idential, obligative, permissive, commissive, abilitive, and volitive modality. I also used

the epistemic modality multiword expressions only for my research project here. �is is

because epistemic modality was also de�ned as the speaker’s judgement about the fac-

tual status of the proposition; whereas evidential modality is restricted to hearsay and

sensory expressions. �e number of multiword expressions that denote epistemic modal-

ity, and hence, uncertainty is 4,795 expressions. �e lexicon is automatically generated

using a k-means clustering algorithm and a large number of morphological, syntactic,

and lexical features. For more details on both lexicons, I refer the reader to Al-Sabbagh

et al. (2013) and Al-Sabbagh et al. (2014b). Excerpts from both lexicons are illustrated in

Tables 3.3 and 3.4, respectively.

Semantic Features (SemFs) describe the gender, number, and person features for

each token, if applicable. SemFs are especially informative for uncertainty a�ribution.

According to Arabic syntax, if the cue is a verb, a present participle, a noun, or an adjec-
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Arabic Transliteration Gloss English

	
à



@ Y»



ñÖÏ @ 	áÓ mn Alm&kd >n from the-sure that it is sure that

	
à



AK. Pñª

�
� ø



YË ldy $Ewr b>n have-me feeling with-that I have a feeling that

�K.
�
é«A

	
J
�
¯ úÎ« ElY qnAEp b>n on conviction with (be) absolutely sure that

	
à



@ ú




	
¯

	á�

�
®K
 ú



Î¿ kly yqyn fy >n all-me con�dence in that I am all con�dent that

Table 3.4: An excerpt from the lexicon of multiword UCs

tive, I have to expect its holder to have the same gender, number, and person features. To

extract SemFs, I rely on a few resources:

• �e ATB tagset: MADAMIRA v1.0 (Pasha et al., 2014) uses the Penn Arabic Tree-

Bank (ATB) tagset (Maamouri et al., 2009), which explicitly encodes gender, num-

ber, and person if and only if they are morphologically marked by such a�xes

as: the feminine plural su�x �
H@ At as in �

HA
	
JK. bnAt (gloss: girls.pl.fm; English:

girls), the feminine singular su�x �
è p as in �

é
	
JK. @ Abnp (gloss: daughter.sg.fm; En-

glish: a daughter), the 3rd person imperfective pre�x ø


y as in Y

�
®
�
JªK
 yEtqd (gloss:

thinks.3.sg.msc.imprf; English: he thinks), and the 1st person plural pre�x 	
à n (n)

as in Y
�
®
�
Jª

	
K nEtqd (gloss: think.1.pl.imprf; English: we think), among many other.

• Since gender, number, and person are not always morphologically represented, I

also use the Arabic lexicon of semantic features from Elghamry et al. (2008) that

comprises 30,000 entries labeled for gender and number.

• I also use the database from Alkuhlani and Habash (2011) that comprises the words

of the Penn Arabic TreeBank labeled for gender and number, among other semantic

features.
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Syntactic Features (SynFs) comprise two types of features: (1) shallow parsing

features that describe the type of the base phrase of which each token is a part, and

the position of each token within its base phase; and (2) dependency parsing features

that describe the syntactic dependencies among the parts of complex clauses. Many cues,

holders, and scopes are base phrases. Example base phrase cues are: the prepositional

phrase I. Ê
	
«



B@ úÎ« ElY Al>glb (gloss: on the-most; English: most probably) and the ad-

verbial phase AÖß.P rbmA (gloss: maybe; English: maybe). Likewise, holders and scopes can

be base phrases such as the base noun phrase holder ��



KQË @ Alr}ys (gloss: the-president;

English: the president), and the base deverbal noun scope hAm.
�

	
' njAH (gloss: success;

English: success) in examples 1 and 2, respectively.

1. • . A
	
J
	
KñÊ¿



A��


�
é
	
Kñ

	
mÌ'@

	
à



@ ��




KQË @ Y

�
®
�
JªK


• yEtqd Alr}ys >n Alxwnp sy>klwnnA.

• thinks-3.sg.msc.imprf the-president that the-traitors will-eat.3.pl.imprf-us.

• �e president thinks that we will be defeated by the traitors.

2. • ú


æ�QÓ hAm.

�
	
' 	áÓ

�
�

�
K@ð Q�


	
« I. ª

�
�Ë@

• Al$Eb gyr wAvq mn njAH mrsy

• the-people not sure.sg.msc from success Morsi

• �e people are not sure that Moris can succeed.

Complex cues, holders, and scopes are not uncommon, however, especially that the

annotation guidelines of the corpus I use are based on Szarvas et al. (2008)’s maximal

length principle, according to which the marked text segments for holders and scope must

include all related complements and adjuncts. Consequently, I decide to use both base

phrase and syntactic dependency information. Shallow parsing features are extracted via
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the Arabic shallow parser of AMIRA v2.0 Diab (2009). Dependency parsing features are

extracted via the CATiB dependency parser (Marton et al., 2013).

Twitter Features (TFs) describe for each tweet (1) its length (i.e. number of tokens),

(2) the number of hashtags, if any, (3) the number of URLs, if any, and (4) the position

of each token in the tweet. Twi�er-based features have been found useful for English

uncertainty detection Wei et al. (2013).

3.2.3 Experimental Setup and Results

I use the same experimental setup for each task in my comprehensive automatic uncer-

tainty analyzer. To �nd my optimal machine learning model per uncertainty-related task,

I implement a 10-fold cross validation method in which the whole corpus is partitioned

into 10 disjoint segments: for each fold I train on 9 segments and test on the 10th. All

reported accuracy, precision, recall, and F1 score rates are averaged across the 10 folds.

For each task, I run my experiments to �nd the optimal:

• Feature category combination, using a greedy algorithm. For the �rst round of

the algorithm, I start by evaluating each feature category on its own, and then I

select the highest performing feature category, compared to the baseline. For the

second round of the algorithm, I combine the best category from the �rst round

with each of the rest feature categories, making 2-feature-category combinations;

and then I select the highest performing 2-feature-category combination. For the

third round, I use the best combination from the second round, and combine it

with one feature category at a time, forming 3-feature-category combinations; and
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then I select the highest performing 3-feature-category combination. I continue

the algorithm until I reach the largest best combination of feature categories.

• Linear context width, which is the window of tokens whose features are con-

sidered. For instance, a linear context width of ±2 means that the feature vector

for any given token includes, in addition to its own features, those of the 2 tokens

before and a�er it as well as the predictions of the 2 tokens before it.

• Polynomial degree, starting with 2, the default polynomial degree of YamCha

SVMs implementation.

• Parsing direction: forward (le� to right) vs. backward (right to le�).

• Multiclass method: one-against-the-rest vs. pairwise.

As a baseline, I use a lexicon look-up model given that lexicons of Arabic uncer-

tainty cues do exist. �is baseline is the same as the lexicon feature number 5 from

Table 3.2. A similar lexicon look-up baseline has been used for Hungarian uncertainty

detection (Vincze, 2014).

My experiments show that one-against-the-rest multiclass classi�cation in a forward

parsing direction (i.e. le� to right) is the best con�guration with the default YamCha

polynomial kernel degree of 2. �e optimal linear context width is found to be ±4.

3.2.4 Discussion

According to Table 3.5, my greedy algorithm for feature selection �nds that the best

stand-alone feature category, compared to the baseline, is the CFs category. �is is ex-
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No Feature Category Combinations Accuracy Precision Recall F1

0 Baseline 0.451 0.428 0.538 0.477

1 CFs 0.778 0.748 0.723 0.735

2 CFs+SynFs 0.835 0.799 0.782 0.790

3 CFs+SynFs+LF 0.856 0.832 0.791 0.811

4 CFs+SynFs+LF+SemFs 0.888 0.848 0.793 0.819

5 CFs+SynFs+LF+SemFs+DFs* 0.904 0.854 0.813 0.838

6 CFs+SynFs+LF+SemFs+DFs+TFs 0.909 0.849 0.830 0.839

Table 3.5: Results for uncertainty detection with the best feature category combination
marked with an asterisk

pected. About 78.65% of the cues in my corpus are multiword expressions that consist

of a head verb/noun/adjective and (1) a complementizer as in 	
à@




	
¬QªK
 yErf <n (gloss:

knows.3.sg.msc.imprf that; English: he knows that), (2) a preposition as in ú



	
¯

�
�

�
K@ð wAvq

fy (gloss: sure.sg.msc in; English: sure that), or (3) a preposition and a complementizer as

in 	
à



AK.

	áÓ



ñK
 y&mn b>n (gloss: believes.3.sg.msc.imprf in-that; English: he believes that).

CFs contribute to identifying such cue-distinguishing subcategorization frames starting

with complementizer and prepositions.

In the second round of the feature selection algorithm, the optimal 2-feature category

combination comprises the CFs and SynFs, with an F1 increase of 0.055. compared to

the �rst round of the algorithm. Out of 13,620 multiword cues in my corpus, 10,544 do

not have any linguistic constituents in-between their parts, 1,875 have one in-between

linguistic constituent, 710 have two in-between constituents, 260 have three in-between

constituents, and the rest have four or more in-between constituents. As a result, SynFs

signi�cantly improve performance for uncertainty detection, by detecting base phrase
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UCs and relating the di�erent non-adjacent parts to the heads of the multiword UCs.

SemFs introduce a small precision increase, which is statistically signi�cant according

to my paired t-test on the 10-fold cross validation runs (p-value = 0.01228). Similarly, DFs

increase the recall rate with a p-value of 0.0093, that is also statistically signi�cant.

In the last round of my greedy feature selection algorithm, the highest performing

feature category combination includes the TFs. Yet, the di�erence between the F1 scores

of combinations numbers 5 and 6 is only 0.001, which is not statistically signi�cant (p-

value = 0.768). Consequently, I stop my search for the optimal combination of feature

categories and consider combination number 5 as my best for uncertainty detection.

3.2.5 Error Analysis

In the output of my uncertainty detector, I identify �ve main error triggers, arranged

below from the most to the least frequent. �e �rst error trigger is tokens that occur in

the same lexical and morpho-syntactic context, whether they convey uncertainty or not.

Although �
HQº

�
J
	
¯ @ A�kr in example 3 denotes uncertainty (gloss: thought.1.sg.prf; English:

I thought) and in 4 it does not (gloss: remembered.1.sg.prf; English: I remembered), in

both examples it comes at a tweet-initial position followed by a complementizer. Simi-

larly, �
IÒÊ« Elmt in example 5 is a UC (gloss: realized.3.sg.fm.imprf; English: they realized)

and in example 6 is not a UC (gloss: taught.3.sg.fm.prf; English: it taught). Yet, in both

examples it occurs in the same lexical and morpho-syntactic context.

3. • .Pñ
�
J
�
Jk I. K


	
Yª

�
JË @

	
¬ñ

�
�

�
�k �A

	
JË @ AÖÏ

	
à@

�
HQº

�
J
	
¯ @

• A�krt An lmA AlnAs Ht$wf AltEzyb Htvwr.
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• thought.1.sg.prf that when the-people will-witness.3.sg.fm.imprf the-torture

will-rebel.3.sg.fm.imprf.

• I thought that the people will rebel when they witness the torture.

4. • .
�

I
�
Jº�ð Éj�

�
�
�
JK.

�
I

	
�K.

�
I

	
¯A

�
� �A

	
JË @

	
à@

�
HQº

�
J
	
¯ @

• A�krt An AlnAs $A� bnt b�sHl wsk�.

• remembered.1.sg.prf that the-people witnessed.3.sg.fm.prf girl.sg.fm tortured.3.sg

.fm.prf.passive and-remained.silent.3.sg.fm.prf.

• I remembered that the people witnessed a girl being tortured and remained silent.

5. • .
�
éJ
£@Q

�
¯ñÖß
YË@ øñ� ÉJ
�.� B é

	
K @ �A

	
JË @

�
IÒÊ«

• Elmt AlnAs Anh lA sbyl swY AlDymwqrATyp.

• realized.3.sg.fm.prf the-people that no way but the-democracy.

• �e people realized that democracy is the only option.

6. • . ÕÎ�
	

¬A
	

g 	áÓ
	
à@ �A

	
JË @

�
IÒÊ«

�
éK
Pñ

�
KA

�
JºK
YË@

• AldyqtAtwryp Elmt AlnAs An mn xAf slm.

• the-tyranny taught.3.sg.fm.prf the-people that who scared.3.sg.msc.prf safe.sg.msc.

• Tyranny taught the people that it is be�er afraid than sorry.

�e second error trigger is highly-biased tokens such as Ð 	PB lAzm .In 97.4% of its oc-

currences, it denotes obligation as in example 7, and in the rest it denotes uncertainty as

in example 8.

7. • .
	
à@ð



B@

�
H@ñ

	
¯ ÉJ.

�
¯

�
�ñ

	
®K
 I. ª

�
�Ë@ Ð 	PB

• lAzm Al$Eb yfwq qbl fwAt Al>wAn.

• must the-people wake-up.3.sg.msc.imprf before missing the-opportunity.
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• �e people must wake up before it is too late.

8. • . ©K. @ñ�Ë@ 	áÓ
	

­K
A
	

g ú


æ�QÓ Ð 	PB

• lAzm mrsy xAyf mn AlSwAbE.

• must Morsi afraid.sg.msc of the-�ngers.

• It must be that Morsi is afraid of conspiracies.

�e third error trigger is discontinuous multiword UCs with very long in-between lin-

guistic constituents. In example 9, the complementizer 	
à



@>n (gloss: that; English: that) is

nine tokens apart to the right of its head verb �
HYªJ.

�
��@AstbEdt (gloss: excluded.3.sg.fm.prf;

English: she excluded the possibility), because the noun phrase that represents the holder

falls in-between.

9. • 	
àñºK


	
à



@

�
éJ




KAÖ

	
ß



B@

�
HA�@PYÊË

	
àðYÊ

	
g 	áK. @

	Q»QÖÏ ø



	
YJ


	
®

	
J
�
JË @ QK
YÖÏ @

�
èXAK


	P AJ
Ë @X
�

HYªJ.
�
��@

. ú


¾K
QÓ



B@ Q�


	
®�Ë@ ñë XPñ

	
¯

�
HQK. ðP

• AstbEdt dAlyA zyAdp Almdyr Altnfyzy lmrkz Abn xldwn lldrAsAt Al<nmA}yp >n

ykwn rwbrt fwrd hw Alsfyr Al>mryky.

• excluded.3.sg.fm.prf Mai Zeyada the-executive the-manager for-center Ibn

Khaldwn for-the-studies the-developmental that be Robert Ford the-ambassador

the-American.

• Mai Zeyada, the executive manager of Ibn Khaldwn Center for Developmental

Studies, excluded the possibility that Robert Ford is the (coming) American

ambassador.

�e fourth error trigger is UCs with incomplete subcategorization frames. As we men-

tioned earlier, one reason that CFs and SynFs yield high results for uncertainty detection
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is that they contribute to identifying cue-distinguishing subcategorization frames start-

ing with complementizers and/or prepositions. Sometimes, due to stylistic preferences,

such complementizers and prepositions are removed. Hence, cues miss one key identi-

fying feature as in example 10.

10. • . ø



X
�
èQÖÏ @

�
Iº�

�
�k

�
�Ó �A

	
JË @ ú



ÍAJ
î

�
DÓ

• mthyAly AlnAs m$ Htskt Almrp dy.

• think.1.sg.imprf the-people not will-remain.silent.3.sg.fm.imprf the-time this.

• I think people will not let it go this time.

Finally, tokenization and POS tagging errors contribute to the uncertainty detection

errors, especially that the current available version of MADAMIRA v1.0 does not fully

support Arabic dialects that make a good portion of my corpus.

3.3 Related Work

Approaches to automatic uncertainty detection are either token or sentence level. To-

ken level approaches de�ne uncertainty detection as a token sequence labeling problem,

where classi�ers label each token as Beginning-UC, Inside-UC, or Outside-UC. Sentence

level approaches train classi�ers to label each sentence as uncertain if it has at least one

UC, or as certain, otherwise.

Token level approaches may have some advantages over sentence level approaches.

First, they can process unigram and multiword UCs in one fell-swoop. Approaches that

de�ne uncertainty detection at the sentence level have to build post processing models

to process multiword UCs such as Täckström et al. (2010). Second, they facilitate further
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processing to identify and extract uncertainty holders and scopes by identifying the text

segments that represent the UCs. As a result, I use token level approaches for my uncer-

tainty detector. In this section, I present a brief overview of token level approaches to

uncertainty detection; and compare and contrast my work to others’.

Tang et al. (2010) participated in the CoNLL Shared Task 2010 (Farkas et al., 2010) and

used Conditional Random Fields (CRFs) to detect hedges in biological and Wikipedia

corpora. �ey used a rich linguistic feature set with some features as n-grams, POS

sequences, and token position. �ey reported a performance F1 score of 0.864 for the

biological corpus and of 0.551 for the Wikipedia corpus.

Prabhakaran (2010) compared the performance of SVMs and CRFs to detect English

UCs in the same CoNLL Shared Task 2010. He achieved an F1 score of 0.429 with a rich

feature set of three categories: lexical features, word list features, and syntactic features.

He found that syntactic features marginally improve performance. �is is because the

syntactic pa�erns that proved helpful for this task were fairly local. So, probably explor-

ing shallow syntactic features instead of deep syntactic features or using custom made

lexicons could also improve performance. As for the comparison between SVMs and

CRFs, he found that CRFs marginally improved the prediction accuracy while substan-

tially improved the speed.

Zhao et al. (2010) combined CRFs with POS information and a lexicon of English hedges

and weasels for the same CoNLL Shared Task 2010. Although their system yielded an F1

score of 0.753 for the biomedical genre, it only got an F1 score of 0.312 for the Wikipedia

genre. Yet, they assured that a lexicon of hedges and weasels is important for cross-

domain applicability.
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Szarvas et al. (2012) addressed uncertainty cue detection in a multi-domain se�ing,

using surface level, part-of-speech, and chunk-level features, and CRFs. �ey found that

cue words can be accurately detected in texts with various topics and stylistic properties.

�eir results suggest that simple cross training can be employed and it achieves a reason-

able performance (60 to 70% cue-level F1 score) when no annotated data is at hand for a

new domain. When some annotated data is available, domain adaptation techniques are

the best choice.

Vincze (2014) applied token level sequence labeling methods and a rich linguistic fea-

ture set to detect UCs in Hungarian, a morphologically-rich language. She got 0.396

and 0.449 for macro and micro F1 scores, respectively. Similar to Vincze, I work on a

morphologically-rich language, use a lexicon look-up baseline, apply sequence labeling

methods, and rely on a rich linguistic feature set. Unlike Vincze, however, I simplify

uncertainty detection so that the classi�er makes the three-way decision of whether a

given token is B-UC, I-UC, or O-UC, regardless of the UC type, whether that is an epis-

temic modality trigger, a hedge, or a weasel. �is simpli�cation is a main reason for

the higher performance that I obtain. Neither Vincze nor Wei et al. (2013), who use the

same �ne-grained classi�cation of UC types, discusses its practical implications for NLP

applications. Hence, my simpli�cation might be a be�er approach for uncertainty de-

tection. Other di�erences between my work and Vincze’s are that: (1) I use SVMs but

she uses CRFs; (2) she works on Wikipedia and newswire texts; and (3) unlike her I use

genre-speci�c features.

Although Wei et al. (2013) de�ne uncertainty detection at the sentence level, I am inter-

ested in mentioning their work because it is the only study that works on the linguistic
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genre of tweets in the context of uncertainty detection. With content-based, Twi�er-

based, and user-based features, they obtained an F1 score of 0.822. Similar to Wei et al.

(2013), I work on the linguistic genre of tweets and use genre-speci�c features. How-

ever, they de�ne uncertainty detection at the sentence level, where a sentence is labeled

as uncertain if it has at least one UC. I think token level uncertainty detection might

be more convenient to detect unigram and multiword UCs in one fell-swoop, instead of

developing post processing modules to process them as in Täckström et al. (2010). My

feature set is more linguistically elaborate compared to theirs although they use more

genre-speci�c features than me. �eir genre-speci�c features include the counts for the

URLs, hashtags, retweets, and replies per tweet as well as the counts for the followers,

lists, friends, tweets, and favorites per Twi�er user. In my opinion, to use linguistic fea-

tures pertinent to uncertainty itself, rather than to the genre which is being studied, is

to increase the applicability of my models to other genres. As a result, I did not want to

rely heavily on genre-speci�c features as in Wei et al. (2013).

3.4 Conclusion

In this chapter, I presented the �rst part of my comprehensive Arabic automatic uncer-

tainty analyzer, namely the uncertainty detector to identify and extract UCs in each given

tweet. Once UCs are identi�ed, I can further process them to identify and extract their

holders and scopes as I do in the next two chapters, respectively. For uncertainty detec-

tion, I used a rich feature set of linguistic and non-linguistic features. With SVM sequence

labeling and based on the average rates of 10-fold cross validation, I achieved an F1 score

51



of 0.838. �e result is promising given the reported results on uncertainty detection for

other languages.

52



CHAPTER 4

UNCERTAINTY ATTRIBUTION

4.1 Introduction

Once UCs are identi�ed, the second task in my comprehensive automatic uncertainty

analyzer is to ascribe each identi�ed cue, one cue at a time, to its holder. In this chapter,

I present my machine learning model for uncertainty a�ribution; which is an under-

studied task in uncertainty NLP research: some researchers such as Baker et al. (2012)

overlook holder annotation, identi�cation, and extraction; while others either set text

writers as the default holders (Diab et al., 2009), or use a prede�ned set of prototypical

holders (Wiegand and Klakow, 2011a).

Default and prototypical holders are unlikely to work for uncertainty a�ribution in the

highly-interactive linguistic genre of tweets in which uncertainty holders are not nec-

essarily the users who posted the uncertainty-laden tweets; instead, they can be some

other holders assumed or cited by the posting users. Furthermore, ignoring uncertainty

a�ribution a�ects the performance of NLP applications that are more concerned with

uncertainty holders than with uncertainty cues. Examples of those NLP applications are:

credibility analyzers that detect disinformers who endorse rumors and further spread

them (Castillo et al., 2011; Soni et al., 2014), and topical expertise �nders that select trust-
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ful holders with experience of speci�c topics (Wagner et al., 2012).

�e rest of this chapter is organized as follows: Section 4.2 describes my approach to

Arabic uncertainty a�ribution, including task description, classi�cation features, experi-

mental setup, experimental results, a discussion of the results, and an error analysis; and

Section 4.3 compares and contrasts my approach to closely-related approaches.

4.2 Approach

4.2.1 Task Description

Similar to uncertainty detection, uncertainty a�ribution is de�ned as a token sequence

labeling problem, in which the classi�er predicts for each given token whether it is the

beginning of a holder (B-H), inside a holder (I-H), or outside any holders (O-H). As I

mentioned in Section 2.2.2.2, there are three main types of holders in my corpus. For

holders encoded in the morphological in�ections or the semantics of their UCs, I place

the BIO-H labels on the UCs themselves as Table 4.1 shows. According to my corpus

statistics from Section 2.2.3, 7,992 out of 17,317 holders in my corpus are encoded in their

UCs.

4.2.2 Classi�cation Features

�e classi�cation features for uncertainty a�ribution comprise all the feature categories

used for uncertainty detection in Table 3.2, in addition to two new feature categories

described in Table 4.2: Pragmatic Features (PFs) and Uncertainty Cue Features (UCFs).
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Arabic Trans. Gloss English BIO

ú


æ�QÓ mrsy Morsi Morsi B-H

Q» A
	
¯ fAkr thinks.3.sg.msc.imprf thinks O-H

é�
	
®

	
K nfsh himself he is O-H

éË @



<lh god a god O-H

�
�

	
�

	
¢Ó mZn$ not-think.1.sg.imprf-not I do not think B-H

	
à



@ >n that that I-H

QÔ« Emr Omar Omar O-H
	
àAÒJ
Ê� slymAn Suleiman Suleiman O-H

PXA
�
¯ qAdr capable.sg.msc is capable O-H

úÎ« ElY on of O-H
	

�ñ
	

k xwD �ghting �ghting O-H
�
é»QªÓ mErkp ba�le a ba�le O-H

Table 4.1: Uncertainty holders represented in the BIO scheme and forma�ed based on
YamCha requirements

Pragmatic Features (PFs) comprise two features: (1) a binary feature to determine

whether there are linguistic markers for (in)direct reported speech, including quotation

markers and the reported speech verbs of ÈA
�
¯ qAl (gloss: said.3.sg.msc.prf; English: he

said), Ñ« 	P zEm (gloss: claimed.3.sg.msc.prf; English: he claimed), hQå� SrH (gloss: de-

clared.3.sg.msc.prf; English: he declared), 	áÊ«


@ >Eln (gloss: announced.3.sg.msc.prf; En-

glish: he announced), Q�.« Ebr (gloss: expressed.3.sg.msc.prf; English: he expressed), H. Q«


@
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>Erb (gloss: stated.3.sg.msc.prf; English: he stated), conjugated for di�erent persons,

genders, numbers, and aspects; and (2) a binary feature to locate each token as either

occurring before or a�er the linguistic markers of (in)direct reported speech, if there are

any. Based on my corpus observations, when a direct quote has UCs, UHs come before

the colon (:), which is the typical punctuation marker used with direct reported speech

as in example 1. In contrast, when an indirect quote has UCs, the UHs typically come

a�er the linguistic marker of the indirect reported speech as in example 2.
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• >myr qTr: >&mn >n AlwTn AlErby jsd wAHd w>wSykm bAlvbAt ElY AlHq.

• prince Qatar: believe.1.sg.imprf that the-world the-Arab body one and-ask.1.sg

.imprf-you.pl to-the-sticking on the-right.

• �e prince of Qatar: I believe that the Arab world is a unity and I ask you to stick

to what is right.
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• >Eln Almjls AlwTny AlAntqAly Allyby >nh ytwqE sqwT srt bAlkAml.

• declared.3.sg.msc.prf the-council the-national the-transitional the-Libyan that-it ex-

pects.3.sg.msc.imprf collapse Sert by-the-full.

• �e Libyan National Transitional Council declared that it expects the full collapse

of Sert.

Uncertainty Cue Features (UCFs) are extracted from the output of the machine

learning model for uncertainty detection from Chapter 3 and are used for the next two

tasks in the pipeline, namely uncertainty a�ribution and scope extraction. �is is the key

point of using a uni�ed framework for uncertainty automatic analysis: the predictions of
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No Feature Description

Pragmatic Features (PFs)

1 reported-speech the presence/absence of (in)direct reported speech lin-

guistic markers

2 token-location the location of each token as to whether it comes be-

fore or a�er the (in)direct reported speech linguistic

markers, if any

Uncertainty Cue Features (UCFs)

3 cue text segments representing identi�ed cues in each

tweet

4 cue-position the position of each identi�ed cue in its tweet

5 cue-length whether each identi�ed cue is a unigram or a multi-

word expression

6 cue-location whether each token comes before or a�er the identi-

�ed cue in each tweet

7 cue-distance the distance between each token and the identi�ed cue

in each tweet

Table 4.2: Two more classi�cation features for uncertainty a�ribution

one machine learning model inform the other models. For each identi�ed UC, I describe

the following UCFs:

• Cue: the text segment representing the cue.

• Cue-Length: whether the cue is a unigram or a multiword expression.

• Cue-Position: the position of the cue in the tweet. Typically, cues at tweet-initial

positions have their holders encoded in their morphological in�ections for person.
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• Cue-Location: whether each token comes before or a�er the identi�ed cue.

• Cue-Distance: the distance between each token and the identi�ed cue, de�ned as

a numeric value.

4.2.3 Experimental Setup and Results

I use the same experimental setup from Section 3.2.3: I split the corpus into 10 disjoint

segments and implement a 10-fold cross validation method, in which for each fold I train

on 9 segments and test on the 10th. All reported accuracy, precision, recall, and F1 results

are averaged across the 10 folds. I use the same greedy algorithm to select the best fea-

ture category combination and also examine the optimal linear context width, parsing

direction, multiclass method, and polynomial degree.

As a baseline, I use a simple bag-of-words model, based on token sequences around

each given token. �is baseline model is the same as the lexical contextual feature number

1 in Table 3.2.

Similar to uncertainty detection, one-against-the-rest multiclass classi�cation in a for-

ward parsing direction (i.e. le� to right) is the best con�guration with the default YamCha

polynomial kernel degree of 2. �e optimal linear context width is found to be -10 and

+4. It is expected for uncertainty a�ribution to need a larger linear context width to �nd

the holder of each identi�ed cue, one cue at a time, given the following three facts about

Arabic syntax: (1) the �exible word order of Arabic accepts UHs to precede or follow their

UCs; (2) long dependencies between UCs and their UHs occur more frequently when UHs

precede their UCs as in example 3; that is why the optimal le� linear context width for

uncertainty a�ribution is as large as -10; and (3) UHs tend to closely follow their UCs
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No Feature Category Combinations Accuracy Precision Recall F1

0 Baseline 0.468 0.413 0.489 0.448

1 CFs 0.664 0.698 0.708 0.703

2 CFs+SynFs 0.699 0.733 0.718 0.725

3 CFs+SynFs+UCFs 0.727 0.761 0.742 0.751

4 CFs+SynFs+UCFs+PFs 0.736 0.770 0.747 0.758

5 CFs+SynFs+UCFs+PFs+SemFs 0.742 0.776 0.750 0.763

6 CFs+SynFs+UCFs+PFs+SemFs+TFs* 0.750 0.784 0.762 0.773

7 CFs+SynFs+UCFs+PFs+SemFs+TFs+DFs 0.746 0.780 0.768 0.774

Table 4.3: Results for uncertainty a�ribution with the best feature category combination
marked with an asterisk

when the UHs follow their UCs as in example 4; as a result, the best right linear context

width is only +4.
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• jlAl >myn: Aldwlp Albwlysyp lyst dwlp qwyp bl dwlp fAsdp fy r>yy.

• Galal Ameen: the-state the-police not state strong but state corrupt in opinion-my.

• Galal Ameen: the police state is not a strong state, but a corrupt one, in my opin-

ion.
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• yHsb AlnAs >n ytrkwA dwn EqAb.

• think.3.sg.msc.imprf the-people that le�.3.pl.imprf.passive without punishment.

• �e people think that they will not be punished.

Similar to uncertainty detection, CFs and SynFs win the second round of the greedy
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feature selection algorithm. As per expectation, morpho-syntactic and syntactic features

abstract away from the surface tokens, that are highly variable given Arabic rich mor-

phology; and, hence they can capture phrase and clause structures encoding holders more

successfully.

UCFs signi�cantly improve performance with an F1 score increase of 0.026. One main

advantage of using UCFs is reducing the number of tokens to be considered for uncer-

tainty a�ribution. As we mentioned earlier, only 7,992 holders out of 17,317 are encoded

in the morphological in�ections of their UCs. �is entails that in the majority of cases a

token that has been labeled as B-C or I-C is unlikely to be considered for uncertainty at-

tribution. �is elimination process of noisy tokens is one main advantage of my proposed

uni�ed framework, in which the predictions of one machine learning model informs the

predictions of the next machine learning model in the pipeline.

PFs make it to the fourth round of the feature selection greedy algorithm. As I men-

tioned earlier, I have noticed that (in)direct reported speech is very systematically struc-

tured in my corpus: for indirect reported speech, UHs typically come a�er the reported

speech linguistic markers; and for direct reported speech, UHs tend to come before the

reported speech linguistic markers.

SemFs and TFs introduce small, yet statistically signi�cant, improvements with paired

t-test p-values of 0.0136 and 0.0345, respectively. Yet, DFs do not yield any signi�cant

improvements as I compare the outputs of the sixth and seventh rounds of my feature

selection greedy algorithm; paired t-test p-value = 0.837.
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4.2.4 Error Analysis

�ree main factors contribute to uncertainty a�ribution errors. �e �rst and the most

frequent is long, syntactically complex clauses encoding UHs as in example 5.
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• AstbEdt dAlyA zyAdp Almdyr Altnfyzy lmrkz Abn xldwn lldrAsAt Al<nmA}yp >n

ykwn rwbrt fwrd hw Alsfyr Al>mryky.

• excluded.3.sg.fm.prf Mai Zeyada the-executive the-manager for-center Ibn

Khaldwn for-the-studies the-developmental that be Robert Ford the-ambassador

the-American.

• Mai Zeyada, the executive manager of Ibn Khaldwn Center for Developmental

Studies, excluded the possibility that Robert Ford is the (coming) American

ambassador.

�e second factor contributing to uncertainty a�ribution errors is holders inserted in-

between the boundaries of multiword expressions as example 6 below.
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• >kd AlnA$T AlHqwqy njAd AlbrEy >nh lA ywjd sbb wADH llhjwm ElY AlmrAkz.

• assured.3.sg.msc.prf the-activist the-humanitarian Nijad Alborei that no

exists.3.sg.msc.imprf reason clear to-a�ack on the-headquarters.

• Nijad Alborei, the humanitarian activist, assured that there is no clear reason for

a�acking the headquarters.

�e third factor is long dependencies between UCs and their holders, even with base

phrase holders. In example 7, the holder is the base noun phrase AÓAÓ mAmA (gloss: mum;
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English: mum); yet it is six tokens apart from its UC due to the in-between verb phrase.
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• mAmA lsh mklmAny mn End AlsfArp btqwlmfy$ AHtmAl An AlnAs tdxl AlEmArp.

• Mum just called.3.sg.fm.prf-me of from the-embassy saying.3.sg.fm.imprf not-is-

not possibility that the-people break.into.3.sg.fm.imprf the-building.

• Mum has just called me from the embassy, saying it is unlikely that the people will

break in.

4.3 Related Work

Although there is no prior work speci�cally on uncertainty a�ribution, a�ribution has

been extensively considered in the context of opinion mining to ascribe opinions to their

holders.

Wiegand and Klakow (2011a) compiled a list of prototypical opinion holders, i.e., com-

mon noun phrases such as experts and analysts that describe particular groups of people

whose profession or occupation is to form or express opinions towards speci�c items.

�ey assume that since those prototypical holders are common nouns, they should occur

su�ciently o�en in a large text corpus.

Kim and Hovy (2006) used FrameNet data and semantic role labeling to extract opinion

holders and scopes. �ey used a rich feature set of (1) keywords expressing opinion,

(2) phrase types, (3) parse tree path, (4) position of the phrase (i.e. before or a�er the

keyword), (5) the voice of the sentence (i.e. active vs. passive), and (6) the frame name.

�ey obtained an F1 score of 0.398.
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Lu (2010) used dependency parsing to extract opinion holders in Chinese newswire

texts. �ey relied on a number of heuristic rules such as: (1) in the case of reported speech,

the subject of the reporting verb is the holder, (2) if the text is not reported speech, the

text author is then the opinion holder; and (3) for news headlines if no reporting verbs

are found, then the noun phrase before the colon is the holder, among other rules. �eir

approach yields an F1 score of 0.784. Likewise, Rosá et al. (2010) proposed a rule-based

system to extract opinion holders from Spanish newswire texts and achieved an F1 score

of 0.850.

Wiegand and Klakow (2011b) combined information about subjective expressions with

Levin’s verb classes to train a classi�er to extract noun phrases in unambiguous agentive

positions as the opinion holders. �eir classi�er gives a F1 score of 0.650. �ey proposed

that they can improve their classi�er by restricting holder candidates to persons.

Compared to the aforementioned studies my approach to uncertainty a�ribution does

not rely on prototypical holders or rules. I incorporate, instead, many features, including

information about the predicted uncertainty cues, so that my machine learning model

for uncertainty a�ribution can identify and extract new holder pa�erns beyond the ones

in the training corpus.

4.4 Conclusion

In this chapter, I presented the second machine learning model in my comprehensive

automatic uncertainty analyzer for Arabic tweets, namely uncertainty a�ribution. I used

similar features to the ones used for uncertainty detection in Chapter 3. Yet, I added
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more new features. I used the same token sequence labeling methods that I used for

uncertainty detection.
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CHAPTER 5

UNCERTAINTY SCOPE EXTRACTION

5.1 Introduction

With two machine learning models for uncertainty detection and a�ribution in Chap-

ters 3 and 4, respectively, the only remaining part of my comprehensive uncertainty an-

alyzer for Arabic tweets is a machine learning model to identify and extract uncertainty

scopes. Scopes are the linguistic constituents that encode the propositions modi�ed by

UCs. It is crucial for several NLP applications not only to identify and extract uncertainty

cues and holders, but also to know what the uncertainty is about.

�e remainder of this chapter is organized as follows: Section 5.2 describes my scope

extraction approach: task description, classi�cation features, experimental setup, results,

discussion, and error analysis; and Section 5.3 compares my approach to others’.

5.2 Approach

5.2.1 Task Description

Following my uni�ed framework, I cast uncertainty scope extraction as a token sequence

labeling problem, in which the classi�er predicts each token as the beginning of a scope
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(B-S), inside a scope (I-S), or outside any scopes (O-S). Table 5.1 shows a corpus excerpt

tagged with the BIO-S scheme.

Arabic Trans. Gloss English BIO
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@ >nA I I O-S

øP
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	áË ln not will not I-S
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K tntSr win.3.sg.fm.imprf win I-S

A
	
JÓXAÓ mAdmnA as.long.as-we as long as we I-S

ú



	
¯ fy in are in I-S
	

¬C
	

g xlAf dispute an ongoing I-S

QÒ
�
J�Ó mstmr ongoing dispute I-S

Table 5.1: Uncertainty scopes represented in the BIO scheme and forma�ed according
to the YamCha requirements

5.2.2 Classi�cation Features

I add the Uncertainty Holder Features (UHFs) from Table 5.2 to all the previous features

used for uncertainty detection and a�ribution. �at is, for uncertainty scope extraction

the feature set incorporates predictions from both uncertainty detection and a�ribution

in addition to contextual, dialectal, semantic, lexicon, syntactic, pragmatic, and Twi�er

features.
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No Feature Description

Uncertainty Holder Features (UHFs)

1 holder the text segment representing the holder of each

identi�ed cue

2 holder-location whether each token comes before or a�er the

identi�ed holder in each tweet

3 holder-distance the distance between each token and the identi-

�ed holder in each tweet

Table 5.2: One more classi�cation feature category for uncertainty scope extraction

5.2.3 Experimental Setup and Results

Similar to uncertainty detection and a�ribution, I use 10 fold cross validation to �nd the

optimal (1) feature category combination using a greedy selection algorithm, (2) linear

context width, (3) parsing direction, (4) multiclass method, and (5) polynomial degree.

Similar to uncertainty a�ribution, I use a simple bag-of-words model, based on token

sequences around each given token, as a baseline model, which is again the same as the

lexical contextual feature number 1 in Table 3.2. �e baseline model performs worse for

uncertainty scope extraction than it does for uncertainty a�ribution. �is is expected

given that linguistic structures encoding scopes are typically longer and more complex

than those encoding holders.

Similar to both uncertainty detection and a�ribution, one-against-the-rest multiclass

classi�cation in a forward parsing direction (i.e. le� to right) is the best con�guration

with the default YamCha polynomial kernel degree of 2. Although I mentioned earlier
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No Feature Category Combinations Accuracy Precision Recall F1

0 Baseline 0.405 0.359 0.381 0.369

1 CFs 0.584 0.531 0.492 0.511

2 CFs+SynFs 0.618 0.574 0.528 0.550

3 CFs+SynFs+UCFs 0.640 0.610 0.584 0.597

4 CFs+SynFs+UCFs+UHFs 0.683 0.655 0.642 0.648

5 CFs+SynFs+UCFs+UHFs+SemFs 0.699 0.669 0.650 0.659

6 CFs+SynFs+UCFs+UHFs+SemFs+TFs* 0.702 0.678 0.653 0.665

7 CFs+SynFs+UCFs+UHFs+SemFs+TFs+PFs 0.705 0.677 0.661 0.669

Table 5.3: Results for uncertainty scope extraction with the best feature category
combination marked with an asterisk

that in Arabic uncertainty scopes can precede or follow their cues, in my corpus, about

93.4% of the scopes follow their cues. As a result, the optimal right linear context width

for uncertainty scope extraction is as large as +11; whereas the optimal le� linear context

width is only -3.

CFs, SynFs, and UCFs make it right away to the third round of the greedy feature

selection algorithm similar to uncertainty a�ribution. UHFs, however, win the fourth

round of the algorithm, mainly because UHFs combined with the UCFs eliminate even

more tokens from being considered for scopes. �e e�ciency of the UCFs and UHFs is

supported by the typical short length of tweets: once some tokens are labeled as encoding

cues and others as encoding holders, a few tokens remain to be considered for scopes.

�is highlights one more time the advantage of the uni�ed framework that I propose in

this research project to identify and extract uncertainty cues, holders, and scopes in one

fell-swoop.
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SemFs and TFs introduce small improvements, with paired t-test p-values of 0.0342,

and 0.0629, respectively. Signi�cant performance improvements stop at the sixth round

of the feature selection greedy algorithm with PFs giving insigni�cant improvement (p-

value = 0.3079).

5.2.4 Error Analysis

Arranged based on their frequency, scope extraction errors include (1) scopes starting at

the enclitic pronouns a�ached to their UCs, (2) syntactically complex scopes, typically

comprising subordinate clauses, (3) scopes outside the sentence boundaries of their UCs,

and (4) scopes outside the tweets of their UCs.

As I mentioned earlier, given that Arabic is an agglutinative language, the �rst parts

of scopes can sometimes be enclitic object pronouns a�ached to the UCs as in example

1. Typically, the tokenizer should split those object pronouns. Yet, because the tokenizer

I use, MADAMIRA v1.0 (Pasha et al., 2014), does not fully support Arabic dialects, many

object pronouns go untokenized.
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• AlEskr fAkrynA hnxAf mnhm.

• the-army thinks.3.pl.imprf-us will-fear.3.pl.imprf from-them.

• �e army leaders think we are afraid of them.

Although tweets are typically short and syntactically simpler compared to texts from

other linguistic genres, some tweets can include complex sentences as in example 2 that

comprises two subordinate clauses, both of which are scopes for the UC Y
�
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(gloss: think.1.sg.imprf; English: I think).
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• >Etqd >nh ln ytm AltwSl lAtfAq byn qwY AlmEArDp HtY lw mr 100 EAm HtY lw

mAt kl AlmSryyn.

• think.1.sg.imprf that not reach.3.sg.imprf.passive to-agreement among power

the-opposition even if passed.3.sg.msc.prf 100 year even if died.3.sg.msc.prf

all the-Egyptians.

• I think that the opposition will not get to an agreement, even if they spend a 100

years trying, even if all Egyptians die.

Due to stylistic variations, scopes are not always in the same sentence of their UCs as

in example 3. Furthermore, scopes are not always in the same tweet as their UCs. Tweets

are like ongoing conversations among the users in which uncertainty information can be

sca�ered across several tweets. However, inter-tweets scopes are only 500 cases in my

corpus.
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• yEny Al<xwAn hysktwA ElY Hrq mqrAthm? … mZn$.

• meaning the-Brotherhood will-remain.silent.3.pl.imprf on burning headquarters

-their … not-think.1.sg.imprf-not.

• Is it that: the Brotherhood will not react against burning its headquarters? … I do

not think (so).
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5.3 Related Work

A number of scope extraction systems for English rely on manually-compiled lexico-

syntactic rules, e.g., Kilicoglu and Bergler (2008, 2010); Ørelid et al. (2010); Rei and Briscoe

(2010). Example rules are like: (1) the scope of a modal verb cue (e.g. may) is the verb

phrase to which it is a�ached; and (2) the scope of a verb cue (e.g. seems) followed by

an in�nitival clause extends to the whole sentence. �e F1 scores of such systems range

from 0.552 to 0.661 with all systems being trained and tested on English biomedical texts.

Manual creation of a comprehensive set of scope extraction rules is a laborious and

time-consuming process. As a result, Apostolova et al. (2011) proposed deriving such

rules automatically from a corpus annotated with speculation cues and their scopes, i.e.,

the BioScope corpus (Szarvas et al., 2008). �eir approach achieves signi�cantly higher

F1 scores of 0.756 for clinical papers, 0.789 for full papers, and 0.739 for abstracts.

Morante et al. (2010) dispensed with rule-based systems and used machine learning

techniques to extract scopes from the BioScope Corpus, casting scope extraction as a

token sequence labeling problem. �eir classi�er is trained to label each token as inside

or outside a scope. �ey obtained an F1 score of 0.809 with features such as word form,

POS tags, chunks, types of chunks, and named entities. �ey used a post-processing

algorithm to examine predicted discontinuous blocks of scopes and decide whether they

should be combined or not. Similarly, Zhou et al. (2010) de�ned scope extraction as a

token sequence labeling task and used CRFs for that purpose. �ey trained their classi�er

to decide for each given token whether it starts a scope, ends a scope, or none of these.

�eir feature set includes word, stem, chunk, and uncertainty cue features. �ey reported

an F1 score of 0.442. Both Morante et al. (2010) and Zhou et al. (2010) used post processing
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algorithms to �nd discontinuous scope chunks and join them together. According to the

annotation guidelines of the BioScope Corpus they used, scopes are only continuous

sequences of tokens.

5.4 Conclusion

In this chapter, I presented my machine learning model for uncertainty scope extraction

which is the third and last model in my comprehensive uncertainty automatic analyzer.

I used a rich feature set and obtained an F1 score that is orthogonal with the results

achieved in the NLP literature of scope extraction.
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CHAPTER 6

CONCLUSIONS AND FUTUREWORK

In this research project, I presented a comprehensive automatic system for uncertainty

analysis that is trained, tested, and evaluated for the Arabic language as used in the lin-

guistic genre of tweets. �e system comprises three machine learning models to identify

and extract uncertainty cues, holders, and scopes in a pipeline fashion starting with cues

and ending with scopes. My machine learning models yield F1 scores of 0.839, 0.773, and

0.665, for uncertainty detection, uncertainty a�ribution, and uncertainty scope extrac-

tion, respectively. �is makes the average F1 score of the system 0.759.

�e �rst contribution of my research project is that I work on an understudied uncer-

tainty task, i.e., a�ribution, an understudied language, i.e., Arabic, and an understudied

linguistic genre, i.e., tweets. Hence, I gain numerous insights. In the literature of Arabic

NLP, the properties of Arabic as an agglutinative morphologically-rich language with a

�exible word order are repeatedly claimed as challenges, not only for automatic uncer-

tainty analysis as I do here in Sections 2.2.2.2 and 2.2.2.3, but also for other NLP tasks,

including statistical machine translation (El-Kholy and Habash, 2012), parsing (Dehdari

et al., 2011), and sentiment analysis (Abdul-Mageed et al., 2014), among many others.

My empirical results, however, show that although such challenges do indeed exist and

contribute to the errors of my machine learning models, they are not too pervasive to
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hinder Arabic NLP research or to yield poorly-performing machine learning models. For

instance, in Section 2.2.2.2 I have mentioned that the rich morphology of Arabic packages

information about uncertainty cues and holders in the same token as in �
�Y

�
®
�
JªÓ mEtqd$

(gloss: not-think.1.sg.imprf-not; English: I do not think). Yet, the results show that only

7,992 out of 17,317 holders (i.e. 46.2%) are encoded in the morphological in�ections of

their UCs. In Section 2.2.2.3, I have also mentioned that agglutination can lead scopes to

start at the enclitic object pronouns a�ached to their UCs. �is is found to be true for

only 4,232 scopes out of 16,817 (i.e. 25.2%). In the same Section 2.2.2.3, I have mentioned

that Arabic long dependencies and �exible word order challenge both uncertainty detec-

tion and scope extraction. However, the results show that (1) 3,697 UCs are base phrase

unigrams; (2) 10,544 out of the 13,620 multiword UCs are continuous multiword expres-

sions; and (3) 15,708 out of 16,817 scopes immediately follow their cues. �erefore, my

results show that the challenges frequently ascribed to Arabic do not represent the ma-

jority of the instances at least in my corpus. One reason for that might be the type of the

linguistic genre I am working on, i.e., the genre of tweets. According to Badawi (2012),

the more informal the linguistic genre is, the more simplistic semantics and syntax are

used. �at is why, according to Badawi (2012), we do not �nd many long dependencies or

variable word orders in informal linguistic genres, such as tweets in my case. �is raises

an interesting future research question regarding the applicability of my machine learn-

ing models to more elaborate linguistic genres such as literary texts, scienti�c articles,

and newswire texts, among many others.

�e second contribution of my research project is that I use a uni�ed framework based

on sequence labeling methods to process the three tasks of uncertainty detection, a�ri-
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bution, and scope extraction. �e uni�ed framework enables using the predictions of one

task to inform the other, and hence it boosts performance for some hard tasks such as

scope extraction. Many researchers have worked simultaneously on both uncertainty de-

tection and scope extraction. Yet, they have not used a uni�ed framework for both tasks.

Some researchers cast uncertainty detection as a token sequence labeling problem, and

then use hand-cra�ed rules to extract scopes Ørelid et al. (2010); Yang et al. (2012); Apos-

tolova et al. (2011); Velldal et al. (2010). Others de�ne both uncertainty detection and

scope extraction as token sequence labeling problems; yet use separate feature sets for

each task or do not use the output of one task to inform the other Zhao et al. (2010). �e

importance of this uni�ed framework is that it can be applied to other NLP tasks such as

opinion mining and negation processing, for which researchers have also been interested

to identify cues, holders, and scopes.

Table 6.1 shows examples of raw tweets and how predictions are added up as my

pipeline proceeds from uncertainty detection to a�ribution and then to scope extrac-

tion. In the �nal output, tokens, that have been identi�ed as uncertainty cues and as

encoding the uncertainty holders in their morphology and/or semantics, are labelled as

B-CH or I-CH, for Beginning of a Cue/Holder and Inside of a Cue/Holder. Furthermore,

all tokens that have been labelled as O-Cue, O-Holder, and O-Scope are eventually given

the label O-UC for O-Uncertainty to indicate that they do not encode any uncertainty

information.

�ere are a few directions for future work that emerge from my research project. First,

I have not investigated the performance of the features within each feature category. Sec-

ond, I would like to test my machine learning models on di�erent linguistic genres. �ird,
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I used SVMs like many previous studies on uncertainty automatic analysis. Yet, it might

be a good idea to compare SVMs with Conditional Random Fields (CRFs). Only Prab-

hakaran (2010) did that and found out that CRFs marginally improve the accuracy of the

predictions, but substantially improve speed. Finally, I have built three di�erent machine

learning models for uncertainty detection, a�ribution, and scope extraction, and then

arranged them in a pipeline fashion. An interesting future research question is whether

the three models can be combined into one model.
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Input Tasks
Output

Arabic Trans. Gloss English Cues Holders Scopes
	

¬Q«@ AErf know.1.sg.imprf I know B-C B-H O-S B-CH

	
à@ An that that I-C I-H O-S I-CH

Qå�Ó mSr Egypt Egypt O-C O-H B-S B-S

ú



	
¯ fy in is in O-C O-H I-S I-S

�
éJ. �
�Ó mSybp trouble trouble O-C O-H I-S I-S

ÐA
	

¢
	
JË @ AlnZAm the-regime �e oppressive O-C B-H O-S B-H

ù


ªÒ

�
®Ë@ AlqmEy the-oppressive regime O-C I-H O-S I-H

	á
	

¢�
 yZn thinks.3.sg.msc.imprf thinks B-C O-H O-S B-C

	
à



@ An that that I-C O-H O-S I-C

I. ª
�

�Ë@ Al$Eb the-people the people O-C O-H B-S B-S

úæ�
	
J�
� synsY will-forget.3.sg.msc.imprf will forget O-C O-H I-S I-S

�
�Ó m$ not I do not O-C O-H O-S O-UC
�
é
	
P̄ A« EArfp know.1.sg.fm.imprf know O-C O-H O-S O-UC

É�jJ
ë hyHSl will-happen.3.sg.msc.imprf what will O-C O-H O-S O-UC

éK
 @



<yh what happen O-C O-H O-S O-UC

ú


ÍAJ
î

�
DÓ mthyAly think.1.sg.imprf I think B-C B-H O-S B-CH

�
éª£A

�
®ÖÏ @ AlmqATEp the-boyco� the boyco� O-C O-H B-S B-S

ù


ë hy is is O-C O-H I-S I-S

ÉmÌ'@ AlHl the-solution the solution O-C O-H I-S I-S

Table 6.1: Example output of my pipeline for uncertainty automatic analysis
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