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Abstract

Recent works on word representations mostly
rely on predictive models. Distributed word
representations (aka word embeddings) are
trained to optimally predict the contexts in
which the corresponding words tend to ap-
pear. Such models have succeeded in captur-
ing word similarities as well as semantic and
syntactic regularities. Instead, we aim at re-
viving interest in a model based on counts.
We present a systematic study of the use
of the Hellinger distance to extract semantic
representations from the word co-occurrence
statistics of large text corpora. We show that
this distance gives good performance on word
similarity and analogy tasks, with a proper
type and size of context, and a dimensional-
ity reduction based on a stochastic low-rank
approximation. Besides being both simple
and intuitive, this method also provides an
encoding function which can be used to in-
fer unseen words or phrases. This becomes a
clear advantage compared to predictive mod-
els which must train these new words.

1 INTRODUCTION

Linguists assumed long ago that words occurring in
similar contexts tend to have similar meanings (Har-
ris, 1954, Firth, 1957). Using the word co-occurrence
statistics is thus a natural choice to embed similar
words into a common vector space (Turney and Pantel,
2010, Pennington et al., 2014). Common approaches
calculate the frequencies, apply some transformations

(tf-idf, PPMI), reduce the dimensionality and calcu-
late the similarities (Lowe, 2001). Considering a fixed-
sized word dictionary D and a set of words W to em-
bed, the co-occurrence matrix C is of size |W| × |D|.
C is then dictionary size-dependent. One can apply
a dimensionality reduction operation to C leading to
C̄ ∈ R|W|×d, where d � |D|. Dimensionality reduc-
tion techniques such as Singular Value Decomposition
(SVD) are widely used (e.g. LSA (Landauer and Du-
mais, 1997), ICA (Väyrynen and Honkela, 2004)). In
Bullinaria and Levy (2007, 2012), the authors pro-
vide a full range of factors to use for properly ex-
tracting semantic representations from the word co-
occurrence statistics of large text corpora. While word
co-occurrence statistics are discrete distributions, an
information theory measure such as the Hellinger dis-
tance seems to be more appropriate than the Euclidean
distance over a discrete distribution space. In this re-
spect, Lebret and Collobert (2014) propose to perform
a principal component analysis (PCA) of the word co-
occurrence probability matrix to represent words in a
lower dimensional space, while minimizing the recon-
struction error according to the Hellinger distance. In
practice, they just apply a square-root transformation
to the co-occurrence probability matrix, and then per-
form the PCA of this new matrix. They compare the
resulting word representations with some well-known
representations on named entity recognition and movie
review tasks and show that they can reach similar or
even better performance.

This paper proposes an extension of the work of Le-
bret and Collobert (2014) by investigating the impact
of different factors. Mikolov et al. (2013b) show that a
subsampling approach to imbalance between the rare
and frequent words improves the performance. Recent
approaches for word representation have also shown
that large windows of context are helpful to capture se-
mantic information (Mikolov et al., 2013b, Pennington
et al., 2014). While, in Lebret and Collobert (2014),
only the 10,000 most frequent words from the dictio-
nary W are considered as context dictionary D, we
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investigate various types of context dictionaries, with
only frequent words or rare words, or a combination of
both. In this previous work, the co-occurrence counts
to build C are based on a single context word occur-
ring just after the word of interest. In this paper,
we analyse various sizes of context, with both sym-
metric and asymmetric windows. For deriving low-
dimensional vector representations from the word co-
occurrence matrix C, PCA can be done by eigenvalue
decomposition of the covariance matrix CTC or SVD
of C. Covariance-based PCA of high-dimensional ma-
trices can lead to round-off errors, and thus fails to
properly approximate these high-dimensional matri-
ces in low-rank matrices. And SVD will generally
requires a large amount of memory to factorize such
huge matrices. To overcome these barriers, we pro-
pose a dimensionality reduction based on stochastic
low-rank approximation and show that it outperforms
the covariance-based PCA.

Recently, distributed approaches based on neural net-
work language models have revived the field of learn-
ing word embeddings (Collobert and Weston, 2008,
Huang and Yates, 2009, Turian et al., 2010, Mnih and
Kavukcuoglu, 2013, Mikolov et al., 2013a). Such ap-
proaches are trained to optimally predict the contexts
in which words from W tend to appear. Baroni et al.
(2014) present a systematic comparison of these pre-
dictive models with the models based on co-occurrence
counts, which suggests that context-predicting models
should be chosen over their count-based counterparts.
In this paper, we aim at showing that count-based
models should not be buried so hastily. A neural net-
work architecture can be hard to train. Finding the
right hyperparameters to tune the model is often a
challenging task and the training phase is in general
computationally expensive. Counting words over large
text corpora is on the contrary simple and fast. With a
proper dimensionality reduction technique, word vec-
tor representations in a low-dimensional space can be
generated. Furthermore, it gives an encoding func-
tion represented by a matrix which can be used to en-
code new words or even phrases based on their counts.
This is a major benefit compared to predictive mod-
els which will need to train vector representations for
them. Thus, in addition to being simple and fast to
compute, count-based models become a simple, fast
and intuitive solution for inference.

2 HELLINGER-BASED WORD
VECTOR REPRESENTATIONS

2.1 Word Co-Occurrence Probabilities

“You shall know a word by the company it
keeps” (Firth, 1957). Keeping this famous quote in

mind, word co-occurrence probabilities are computed
by counting the number of times each context word
c ∈ D (where D ⊆ W) occurs around a word w ∈ W:

p(c|w) =
p(c, w)

p(w)
=

n(c, w)∑
c n(c, w)

, (1)

where n(c, w) is the number of times a context word c
occurs in the surrounding of the word w. A multino-
mial distribution of |D| classes (words) is thus obtained
for each word w:

Pw = {p(c1|w), . . . , p(c|D||w)} . (2)

By repeating this operation over all words from W,
the word co-occurrence matrix C is thus obtained:

C =


p(c1|w1) · · · p(c|D||w1)
p(c1|w2) · · · p(c|D||w2)

...
. . .

...
p(c1|w|W|) · · · p(c|D||w|W|)

 =


Pw1

Pw2

...
Pw|W|


(3)

The number of context words to consider around each
word is variable and can be either symmetric or asym-
metric. The co-occurrence matrix becomes less sparse
when this number is high. Because we are facing
discrete probability distributions, the Hellinger dis-
tance seems appropriate to calculate similarities be-
tween these word representations. The square-root
transformation is then applied to the probability dis-
tributions Pw, and the word co-occurrence matrix is
now defined as:

C̃ =


√

Pw1√
Pw2

...√
Pw|W|

 =
√
C . (4)

2.2 Hellinger Distance

Similarities between words can be derived by com-
puting a distance between their corresponding word
distributions. Several distances (or metrics) over dis-
crete distributions exist, such as the Bhattacharyya
distance, the Hellinger distance or Kullback-Leibler
divergence. We chose here the Hellinger distance for
its simplicity and symmetry property (as it is a true
distance). Considering two discrete probability distri-
butions P = (p1, . . . , pk) and Q = (q1, . . . , qk), the
Hellinger distance is formally defined as:

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 , (5)

which is directly related to the Euclidean norm of the
difference of the square root vectors:

H(P,Q) =
1√
2
‖
√
P −

√
Q‖2 . (6)
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Note that it makes more sense to take the Hellinger
distance rather than the Euclidean distance for com-
paring discrete distributions, as P and Q are unit vec-
tors according to the Hellinger distance (

√
P and

√
Q

are units vector according to the `2 norm).

2.3 Dimensionality Reduction

As discrete distributions are dictionary size-
dependent, using directly the distribution as a
word representation is, in general, not really tractable
for large dictionary. This is even more true in the
case of a large number of context words, distributions
becoming less sparse. We investigate two approaches
to embed these representations in a low-dimensional
space: (1) a principal component analysis (PCA) of
the word co-occurrence matrix C̃, (2) a stochastic
low-rank approximation to encode distributions

√
Pw.

2.3.1 Principal Component Analysis (PCA)

We perform a principal component analysis (PCA) of
the square root of the word co-occurrence probabil-
ity matrix to represent words in a lower dimensional
space, while minimizing the reconstruction error ac-
cording to the Hellinger distance. This PCA can be
done by eigenvalue decomposition of the covariance
matrix C̃T C̃. With a limited size of context word dic-
tionary D (tens of thousands of words), this opera-
tion is performed very quickly (See Lebret and Col-
lobert (2014) paper for details). With a larger size
for D, a truncated singular value decomposition of C̃
might be an alternative, even if it is time-consuming
and memory-hungry.

2.3.2 Stochastic Low-Rank Approximation
(SLRA)

When dealing with large dimensions, the computation
of the covariance matrix might accumulate floating-
point roundoff errors. To overcome this issue and to
still fit in memory, we propose a stochastic low-rank
approximation to represent words in a lower dimen-
sional space. It takes a distribution

√
Pw as input,

encodes it in a more compact representation, and is
trained to reconstruct its own input from that repre-
sentation:

||V UT
√
Pw −

√
Pw||2 , (7)

where U and V ∈ R|D|×d. U is a low-rank approxima-
tion of the co-occurrence matrix C̃ which maps distri-
butions in a d-dimension (with d� |D|), and V is the
reconstruction matrix. UT

√
Pw is a distributed repre-

sentation that captures the main factors of variation
in the data as the Hellinger PCA does. U and V are
trained by backpropagation using stochastic gradient
descent.

3 EXPERIMENTS

3.1 Building Word Representation over
Large Corpora

Our English corpus is composed of the entire English
Wikipedia1 (where all MediaWiki markups have been
removed). We consider lower case words to limit the
number of words in the dictionary. Additionally, all
occurrences of sequences of numbers within a word are
replaced with the string “NUMBER”. The resulting
text is tokenized using the Stanford tokenizer2. The
data set contains about 1.6 billion words. As dictio-
nary W, we consider all the words within our corpus
which appear at least one hundred times. This re-
sults in a 191,268 words dictionary. Five scenarios
are considered to build the word co-occurrence prob-
abilities with context words D: (1) Only the 10,000
most frequent words within this dictionary. (2) All
the dictionary. Mikolov et al. (2013b) have shown that
better word representations can be obtained by sub-
sampling of the frequent words. We thus define the
following scenarios: (3) Only words whose appearance
frequency is less than 10−5, which is the last 184,308
words in W. (4) To limit the dictionary size, we con-
sider words whose appearance frequency is less than
10−5 and greater than 10−6. This results in 24,512
context words. (5) Finally, only words whose appear-
ance frequency is greater than 10−6, which gives 31,472
words.

3.2 Evaluating Word Representations

3.2.1 Word analogies

The word analogy task consists of questions like, “a is
to b as c is to ?”. It was introduced in Mikolov et al.
(2013a) and contains 19,544 such questions, divided
into a semantic subset and a syntactic subset. The
8,869 semantic questions are analogies about places,
like “Bern is to Switzerland as Paris is to ?”, or fam-
ily relationship, like “uncle is to aunt as boy is to
?”. The 10,675 syntactic questions are grammatical
analogies, involving plural and adjectives forms, su-
perlatives, verb tenses, etc. To correctly answer the
question, the model should uniquely identify the miss-
ing term, with only an exact correspondence counted
as a correct match.

1Available at http://download.wikimedia.org. We
took the January 2014 version.

2Available at http://nlp.stanford.edu/software/
tokenizer.shtml

http://download.wikimedia.org
http://nlp.stanford.edu/software/tokenizer.shtml
http://nlp.stanford.edu/software/tokenizer.shtml
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(d) Mikolov’s syntactic dataset
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(e) Mikolov’s semantic dataset

Figure 1: Performance on datasets with different types of context word dictionaries D (scenarios in the ascending
order of their number of words), and different window sizes (in the legend, sym1 is for symmetric window of 1
context word, asym1 is for asymmetric window of 1 context word, etc.). Spearman rank correlation is reported
on word similarity tasks. Accuracy is reported on word analogy tasks.

3.2.2 Word Similarities

We also evaluate our model on a variety of word
similarity tasks. These include the WordSimilarity-
353 Test Collection (WS-353) (Finkelstein et al.,
2002), the Rubenstein and Goodenough dataset (RG-
65) (Rubenstein and Goodenough, 1965), and the
Stanford Rare Word (RW) (Luong et al., 2013). They
all contain sets of English word pairs along with
human-assigned similarity judgements. WS-353 and
RG-65 datasets contain 353 and 65 word pairs re-
spectively. Those are relatively common word pairs,
like computer:internet or football:tennis. The RW
dataset differs from these two datasets, since it con-
tains 2,034 pairs where one of the word is rare or mor-
phologically complex, such as brigadier:general or cog-
nizance:knowing.

3.3 Analysis of the Context

As regards the context, two main parameters are in-
volved: (1) The context window size to consider, i.e.

the number of context words c to count for a given
word w. We can either count only context words that
occurs after w (asymmetric context window), or we
can count words surrounding w (symmetric context
window). (2) The type of context to use, i.e. which
words are to be chosen for defining the context dic-
tionary D. Do we need all the words, the most fre-
quent ones or, on the contrary, the rare ones? Figure
1 presents the performance obtained on the benchmark
datasets for all the five scenarios described in Section
3.1 with different sizes of context. No dimensionality
reduction has been applied in this analysis. Similar-
ities between words are calculated with the Hellinger
distance between the word probability distributions.
For the word analogy task, we used the objective func-
tion 3CosMul defined by Levy and Goldberg (2014),
as we are dealing with explicit word representations in
this case.
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WINDOW SIZE

1 10

baikal
(no37415)

mälaren lake

titicaca siberia

balaton amur

ladoga basin

ilmen volga

special-need
(no165996)

at-risk preschool

school-age kindergarten

low-income teachers

hearing-impaired schools

grade-school vocational

Table 1: Two rare words with their rank and their 5
nearest words with respect to the Hellinger distance,
for a symmetric window of 1 and 10 context words.

TYPE DIM. SIZE

1 5 10

Most frequent 10000 297 1158 1618
From 10−5 to 10−6 24512 132 674 1028
Up to 10−6 31472 396 1672 2408
From 10−5 184308 249 1305 2050
All 191268 513 2304 3430

Table 2: The average number of context words in the
co-occurrence matrix according to the type and the
size of context.

3.3.1 Window Size

Except for semantic analogy questions, best perfor-
mance are always obtained with symmetric context
window of size 1. However, performance dramatically
drop with this window size on the latter. It seems
that a limited window size helps to find syntactic sim-
ilarities, but a large window is needed to detect the
semantic aspects. The best results are thus obtained
with a symmetric window of 10 words on the semantic
analogy questions task. This intuition is confirmed by
looking at the nearest neighbors of certain rare words
with different sizes of context. In Table 1, we can
observe that a window of one context word brings to-
gether words that occur in a same syntactic structure,
while a window of ten context words will go beyond
that and add semantic information. With only one
word of context, Lake Baikal is therefore neighbor to
other lakes, and the word special-needs is close to other
words composed of two words. With ten words of con-

text, the nearest neighbors of Baikal are words in di-
rect relation to this location, i.e. these words cannot
match with other lakes, like Lake Titicaca. This also
applies for the word special-needs, where we find words
related to the educational meaning of this word. This
could explain why the symmetric window of one con-
text word gives the best results on the word similarity
and syntactic tasks, but performs very poorly on the
semantic task. Finally, the use of a symmetric window
instead of an asymmetric one always improves the per-
formance.

3.3.2 Type of Context

First, using all words as context does not imply to
reach the best performance. With the 10,000 most fre-
quent words, performance are fairly similar than with
all words. An in-between situation with words whose
appearance frequency is greater than 10−6 gives also
quite similar performance. Secondly, discarding the
most frequent words from the context distributions
helps, in general, to increase performance. The best
performance is indeed obtained with scenarios (3) and
(4). But all rare words are not necessarily essential
to achieve good performance, since results with words
whose appearance frequency is less than 10−5 and
greater than 10−6 are not significantly lower. These
two observations might be explained by the sparsity of
the probability distributions. Counts in Table 2 show
significant differences in terms of sparsity depending
on the type of context. Similarities between words
seem to be easier to find with sparse distributions. The
average number of context words (i.e. features) whose
appearance frequency is less than 10−5 and greater
than 10−6 with a symmetric window of size 1 is ex-
tremely low (132). Performance with these parameters
are still highly competitive on syntactic tasks. Within
this framework, it then becomes a good option for rep-
resenting words in a low and sparse dimension.

3.4 Dimensionality Reduction Models

The analysis of the context reveals that word similar-
ities can even be found with extremely sparse word
vector representations. But these representations lack
semantic information since they perform poorly on the
word analogy task involving semantic questions. A
symmetric window of five or ten context words seems
to be the best options to capture both syntactic and
semantic information about words. The average num-
ber of context words is much larger within these pa-
rameters, which justifies the need of dimensionality re-
duction. Furthermore, this analysis show that a large
number of context words is not necessary to achieve
significant improvements. Good performance on syn-
tactic and similarity tasks can be reached with the
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Figure 2: Performance on datasets with different dimensions using scenario (1). Dimensionality reduction has
been obtained with the Hellinger PCA. Spearman rank correlation is reported on word similarity tasks. Accuracy
is reported on word analogy tasks.

10,000 most frequent words as context. Using instead
a distribution of a limited number of rare words in-
creases performance on the semantic task while reduc-
ing performance on syntactic and similarity tasks. We
then focus on the two scenarios with the fewest num-
ber of context words: scenarios (1) and (4) with 10,000
and 24,512 words respectively. This reasonable num-
ber of context words allows for dimensionality reduc-
tion methods to be applied in an efficient manner.

3.4.1 Number of Dimensions

When a dimensionality reduction method is applied,
a number of dimensions needs to be chosen. This
number has to be large enough to retain the maxi-
mum variability. It also has to be small enough for
the dimensionality reduction to be truly meaningful
and effective. We thus analyse the impact of the num-
ber of dimensions using the Hellinger PCA of the co-
occurrence matrix from scenario (1) with a symmetric
context of five and ten words. Figure 2 reports perfor-
mance on the benchmark datasets described in Section
3.2 for different numbers of dimensions. The ability
of the PCA to summarize the information compactly
leads to improved results on the word similarity tasks,
where performance is better than with no dimensional-
ity reduction. On the WS-353 and RG-65 datasets, we
observe that the gain in performance tends to stabilize
between 300 and 1,200 dimensions. The increase in di-

mension leads to a small drop after 100 dimensions on
the RW dataset. However, adding more and more di-
mensions helps to increase performance on word anal-
ogy tasks, especially for the semantic one. We also ob-
serve that ten context words instead of five give better
results for word analogy tasks, while the opposite is
observed for word similarity tasks. This confirms the
results observed in Section 3.3.

3.4.2 Stochastic Low-Rank Approximation vs
Covariance-based PCA

In this section, we compare performance on both word
evaluation tasks using the two methods for dimen-
sionality reduction described in Section 2.3. Exper-
iments with symmetric window of five and ten con-
text words are run to embed word representations in
a d-dimensional vector, with d = {100, 200, 300}. All
results are reported in Table 3. Except for some iso-
lated results, performance is always much better with
the stochastic low-rank approximation approach than
with a Hellinger PCA approach. Calculating the re-
construction error of both approaches confirms that
the PCA fails somehow to properly reduce the dimen-
sionality. For a reduction from 10,000 to 100 dimen-
sions, the PCA reconstruction error is 532.2 compared
with 440.3 for the stochastic low-rank approximation.
This result is not really surprising, since it is well-
known that standard PCA is exceptionally fragile, and
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SLRA HPCA

Dimension 100 200 300 100 200 300

Window Size 5 10 5 10 5 10 5 10 5 10 5 10

Context dictionary = the 10, 000 most frequent words

WS-353 0.48 0.54 0.54 0.57 0.60 0.60 0.40 0.38 0.41 0.39 0.42 0.41
RG-65 0.55 0.50 0.49 0.56 0.46 0.52 0.33 0.32 0.36 0.33 0.37 0.36
RW 0.27 0.25 0.32 0.30 0.34 0.30 0.21 0.23 0.21 0.23 0.21 0.22
Syn. Ana. 46.3 51.0 58.6 61.0 61.7 59.2 35.0 39.5 39.8 44.2 43.4 47.4
Sem. Ana. 20.4 35.9 29.1 47.0 34.0 48.0 18.1 23.1 21.6 29.0 24.8 32.5

Context dictionary = words whose frequency is between 10−5 and 10−6

WS-353 0.46 0.47 0.54 0.54 0.54 0.55 0.28 0.27 0.23 0.26 0.22 0.25
RG-65 0.46 0.40 0.41 0.42 0.49 0.45 0.29 0.31 0.26 0.30 0.23 0.29
RW 0.24 0.24 0.27 0.24 0.27 0.29 0.19 0.21 0.15 0.16 0.11 0.14
Syn. Ana. 39.0 45.1 52.9 53.7 56.4 58.8 45.2 47.4 46.1 48.7 47.3 49.2
Sem. Ana. 24.1 36.7 38.0 54.3 47.3 62.5 28.8 37.7 33.9 42.3 38.9 46.4

Table 3: Performance comparison between dimensionality reduction with stochastic low-rank approximation
(SLRA) and Hellinger PCA (HPCA). A symmetric context of five or ten words with scenarios (1) and (4) have
been used. The best three results for each dataset are in bold, and the best is underlined. Spearman rank
correlation is reported on word similarity tasks. Accuracy is reported on word analogy tasks.

the quality of its output can suffer dramatically in the
face of only a few grossly corrupted points (Jolliffe,
1986). Covariance-based PCA as proposed in Lebret
and Collobert (2014) is thus not an approach offer-
ing a complete guarantee of success. An approach to
robustifying PCA must be considered. This is what
we propose with the stochastic low-rank approxima-
tion which, moreover, ensures a low memory consump-
tion. For a given dimension, a window of ten context
words outperforms, in general, a window of five context
words. This confirms once again the benefit of using
a larger window of context. Performance are globally
better with 300 dimensions, but performance with 200
dimensions is just slightly lower, or even better in cer-
tain cases. Finally, using a distribution of rare words
instead of frequent words (i.e. scenario (4) instead of
scenario (1) here) has only an impact on the semantic
word analogy task.

3.5 Comparison with Other Models

We compare our word representations with other avail-
able models for computing vector representations of
words: (1) the GloVe model which is also based on
co-occurrence statistics of corpora (Pennington et al.,

WS RG RW SYN. SEM.

Raw 0.37 0.31 0.10 56.8 83.0
SLRA 0.57 0.56 0.30 61.0 47.0

GloVe 0.57 0.57 0.38 82.2 84.1
CBOW 0.57 0.53 0.36 64.8 28.4
SG 0.66 0.53 0.42 72.7 66.9

Table 4: Comparison with raw distributions and other
models for 200-dimensional word vector representa-
tions. A symmetric context window of ten words is
used. Spearman rank correlation is reported on word
similarity tasks. Accuracy is reported on word analogy
tasks.

2014)3, (2) the continuous bag-of-words (CBOW) and
the skip-gram (SG) architectures which learn represen-
tations from prediction-based models (Mikolov et al.,
2013b)4. The same corpus and dictionary W as the
ones described in Section 3.1 are used to train 200-
dimensional word vector representations. We use a

3Code available at http://www-nlp.stanford.edu/
software/glove.tar.gz.

4Code available at http://word2vec.googlecode.com/
svn/trunk/.

http://www-nlp.stanford.edu/software/glove.tar.gz
http://www-nlp.stanford.edu/software/glove.tar.gz
http://word2vec.googlecode.com/svn/trunk/
http://word2vec.googlecode.com/svn/trunk/
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symmetric context window of ten words, and the de-
fault values set by the authors for the other hyperpa-
rameters. We also compare these models directly with
the raw distributions, computing similarities between
them with the Hellinger distance. Results reported in
Table 4 show that our approach is competitive with
prediction-based models. Using the raw probability
distributions yields good results on the semantic task,
while a dimension reduction with a stochastic low-rank
approximation gives a better solution to compete with
others on similarity and syntactic tasks.

3.6 Inference

NEW PHRASES NEAREST WORDS

british airways airlines, lufthansa, qantas,

klm, flights

chicago bulls celtics, lakers, pacers,

knicks, bulls

new york city chicago, brooklyn, nyc,

manhattan, philadelphia

president of the
united states

president, senator, bush,

nixon, clinton

Table 5: Examples of phrases and five of their nearest
words. Phrases representations are inferred using the
encoding matrix U with a symmetric window of ten
context words and 300 dimensions.

Relying on word co-occurrence statistics to represent
words in vector space provides a framework to eas-
ily generate representations for unseen words. This
is a clear advantage compared to methods focused on
learning word embeddings, where the whole system
needs to be trained again to learn representations for
these new words. To infer a representation for a new
word wnew, one only needs to count its context words
over a large corpus of text to build the distribution√

Pwnew . This nice feature can be extrapolated to
phrases. Table 5 presents some interesting examples
of unseen phrases where the meaning clearly depends
on the composition of their words. For instance, words
from the entity Chicago Bulls differ in meaning when
taken separately. Chicago will be close to other amer-
ican cities, and Bulls will be close to other horned
animals. However, it can be seen in Table 5 that our
model infers a representation for this new phrase which
is close to other NBA teams, like the Lakers or the
Celtics. This also works with longer phrases, such as
New York City or President of the United States.

4 CONCLUSION

We presented a systematic study of a method based
on counts and the Hellinger distance for building word
vector representations. The main findings are: (1) a
large window of context words is crucial to capture
both syntactic and semantic information; (2) a context
dictionary of rare words helps for capturing semantic,
but by using just a fraction of the most frequent words
already ensures a high level of performance; (3) a di-
mensionality reduction with a stochastic low-rank ap-
proximation approach outperforms the PCA approach.
The objective of the paper was to rehabilitate count-
vector-based models, whereas nowadays all the atten-
tion is directed to context-predicting models. We show
that such a simple model can give nice results on both
similarity and analogy tasks. Better still, inference of
unseen words or phrases is easily feasible when relying
on counts.
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