Skip to main content

Exploring a Resolution Method Based on an Evolutionary Game-Theoretical Model for Minimizing the Machines with Limited Workload Capacity and Interval Constraints

  • Conference paper
  • 1286 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 360))

Abstract

We present an extension of the machines minimization for scheduling jobs with interval constraints, adding a limited machines workload capacity. We are motivated by the fixed-speed processors minimization problem subject to energy constraints, in which the time resolution is a critical factor for the quality of service in the system. We propose a mixed integer linear programming (MILP) model for an exact solution and explore an alternative resolution method based on a non-cooperative evolutionary theoretical-game model. Our resolution method guarantees a feasible solution to the problem and the computational experiments with a timeout of 3 minutes show that it finds a solution with a number of machines less than or equal to the number of machines for a 97,19% of instances in comparison with the MILP solution over CPLEX 12.6.1.0, in only deciseconds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniadis, A., Huang, C.-C.: Non-preemptive speed scaling. Journal of Scheduling 16(4), 385–394 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bampis, E., Letsios, D., Lucarelli, G.: Speed-scaling with no preemptions. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 257–267. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Chuzhoy, J., Codenotti, P.: Resource minimization job scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 70–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling jobs with interval constraints. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 81–90. IEEE (2004)

    Google Scholar 

  5. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling with release times and deadlines on a minimum number of machines. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) Exploring New Frontiers of Theoretical Informatics. IFIP, vol. 155, pp. 209–222. Springer, Boston (2004)

    Chapter  Google Scholar 

  6. Dürr, C., Jeż, Ł., Vásquez, Ó.C.: Mechanism design for aggregating energy consumption and quality of service in speed scaling scheduling. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 134–145. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Dürr, C., Jeż, Ł., Vásquez, O.C.: Scheduling under dynamic speed-scaling for minimizing weighted completion time and energy consumption. Discrete Applied Mathematics (2014)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Kao, M.-J., Chen, J.-J., Rutter, I., Wagner, D.: Competitive design and analysis for machine-minimizing job scheduling problem. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 75–84. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kolen, A.W.J., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval scheduling: A survey. Naval Research Logistics (NRL) 54(5), 530–543 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, S., Turner, J., Daskin, M.S., Homem-de Mello, T., Smilowitz, K.: Improving fleet utilization for carriers by interval scheduling. European Journal of Operational Research 218(1), 261–269 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sanlaville, E., Schmidt, G.: Machine scheduling with availability constraints. Acta Informatica 35(9), 795–811 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Vásquez, Ó.C., Sepulveda, J.M., Alfaro, M.D., Osorio-Valenzuela, L.: Disaster response project scheduling problem: A resolution method based on a game-theoretical model. International Journal of Computers Communications & Control 8(2), 334–345 (2013)

    Article  Google Scholar 

  14. Yu, G., Zhang, G.: Scheduling with a minimum number of machines. Operations Research Letters 37(2), 97–101 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vásquez, Ó.C., Osorio-Valenzuela, L., Quezada, F. (2015). Exploring a Resolution Method Based on an Evolutionary Game-Theoretical Model for Minimizing the Machines with Limited Workload Capacity and Interval Constraints. In: Le Thi, H., Pham Dinh, T., Nguyen, N. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Advances in Intelligent Systems and Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-18167-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18167-7_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18166-0

  • Online ISBN: 978-3-319-18167-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics