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Abstract

We consider the problem of stochastic monotone submodular function maximization, subject
to constraints. We give results on adaptivity gaps, and on the gap between the optimal offline and
online solutions. We present a procedure that transforms a decision tree (adaptive algorithm) into
a non-adaptive chain. We prove that this chain achieves at least τ times the utility of the deci-
sion tree, over a product distribution and binary state space, where τ = mini,j Pr[xi = j]. This

proves an adaptivity gap of 1
τ (which is 2 in the case of a uniform distribution) for the problem of

stochastic monotone submodular maximization subject to state-independent constraints. For a
cardinality constraint, we prove that a simple adaptive greedy algorithm achieves an approxima-
tion factor of (1 − 1

eτ ) with respect to the optimal offline solution; previously, it has been proven
that the algorithm achieves an approximation factor of (1− 1

e ) with respect to the optimal adap-
tive online solution. Finally, we show that there exists a non-adaptive solution for the stochastic
max coverage problem that is within a factor (1− 1

e ) of the optimal adaptive solution and within
a factor of τ(1− 1

e ) of the optimal offline solution.

1 Introduction

We consider stochastic submodular function maximization, subject to constraints. This problem is
motivated by problems in application areas such as machine learning, social networks, and recom-
mendation systems.

In traditional (non-stochastic) submodular function maximization, the goal is to find a subset of
“items” with maximum utility, as measured by a submodular utility function assigning a real value
to each possible subset of items. In stochastic submodular function maximization, items have states.
For example, if each item is a sensor, the item might be either working or broken. The utility of
a subset of items depends not only on which items are in the subset, but also on their states. The
state of each item is initially unknown, and can only be determined by performing a “test” on the
item.

Algorithms for stochastic submodular maximization work in an on-line setting, sequentially choos-
ing which item to test next. The choice can be adaptive, depending on the outcomes of previous
tests. The state of each item is an independent random variable. The goal is to maximize the ex-
pected utility of the tested items. Previous work has sought to determine the adaptivity gap, which
is the ratio between the optimal adaptive and non-adaptive solutions. In this paper we present new
adaptivity gap results for discrete monotone submodular functions. We also consider another type
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of gap that has not been previously explored in the context of stochastic submodular maximization:
the ratio between the optimal offline solution and the optimal adaptive solution.

Our main result is an adaptivity gap of 2 for all state-independent constraints, when the state set
is binary and the item state distribution is uniform. More generally, for arbitrary product distri-
butions, we prove an adaptivity gap of 1

τ . Here τ is the minimum value of pi,j , where pi,j is the
probability that item i is in state j. We say that a constraint is state-independent if the restriction
on the items tested does not depend on their states. (A constraint requiring testing to stop when
an item is found to be in state 1 is not state-independent.) A standard knapsack constraint is state-
independent, and this is the first adaptivity gap for knapsack constraints. We prove the gap using
a simple, bottom-up procedure that transforms a decision tree (adaptive algorithm) into a single
non-adaptive chain corresponding to a root-leaf path in the tree.

Asadpour and Nazerzadeh previously showed an adaptivity gap of e
e−1 for a matroid constraint,

using a stronger monotonicity condition than the one we use here (their results also apply to con-
tinuous states) [3]. For a cardinality constraint, we show that the simple adaptive greedy algorithm
gives a (1 − 1

eτ )-approximation with respect to the optimal offline solution, and that a dependence
on τ in the approximation factor is necessary.

Finally, we consider the discrete stochastic version of the maximum coverage problem, which is a
special case of submodular maximization subject to a cardinality constraint. We modify an approx-
imation algorithm for the deterministic version of this problem, due to Ageev and Sviridenko [1, 2],
to prove that the optimal non-adaptive solution for this problem is within a factor of 1− 1

e of the
optimal adaptive solution. We also show that the optimal non-adaptive solution for this problem
is within a factor of τ(1− 1

e ) with respect to the optimal offline solution.

2 Preliminaries and Definitions

Let S = {0, . . . , ` − 1}, and Ŝ = S∪ {∗}. A partial assignment is a vector b ∈ Ŝn. Hence b can be viewed
as an assignment to variables x1, . . . ,xn. We will use these partial assignments to represent the
outcomes of tests giving the states of n items, where each item can be in one of ` states. We write
bi = s to indicate that item i has been tested and found to be in state s, and bi = ∗ to indicate that
the state of item i is unknown. We assume that the states of different items are independent.

If b′ ,b ∈ Ŝn and b′i = bi for all bi , ∗, then we call b′ an extension of b, which we will write as b′ � b.
We will use bj←s to denote the extension of b setting the j-th bit of b to s.

As is standard in the literature, given a set N = {1, . . . ,n}, we say a function g : 2N → R>0 is a utility
function. We will use the notation gS (j) to denote g(S ∪ {j})− g(S).

We extend the notion of a utility function to the stochastic setting, wherein we have g : Ŝn→ R>0
defined on partial assignments. In this case, we will write g(S,b) := g(b′) where b′ is a partial
assignment consistent with b on all entries i where i ∈ S, and bi = ∗ whenever i < S. The notation
gS,b(j) will denote g(S ∪ {j},b)− g(S,b). If S ′ is a set, then gS (S ′) will mean g(S ∪ S ′)− g(S).

Utility function g : Ŝn → R>0 is called submodular if g(bi←s) − g(b) > g(b′i←s) − g(b′) when b′ � b,
b′i = bi = ∗, and s ∈ S. We say g is monotone if g(bi←s) > g(b) when bi = ∗. That is, testing a bit can
only increase the utility.

We will work with product distributions over the vectors Sn: for i ∈ N , j ∈ S, we use pi,j to mean
the probability of the i-th coordinate being j (so that for each i,

∑
j pi,j = 1). Many of our results

are with respect to τ = mini,j pi,j . We use E[gS,b(j)] to denote the expected increase in utility from
testing the j-th bit.
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We define the Stochastic Submodular Maximization problem as the problem of maximizing a mono-
tone submodular function, in the stochastic setting with a discrete state space, subject to one or
more constraints. More specifically, in this problem, we are given as input a monotone submodular
g : Ŝn→ R>0, the constraints, and the parameters of a product distribution over Ŝn.

Solving a Stochastic Submodular Maximization problem entails finding an adaptive solution that
builds a set Q ⊆ N item by item, testing each item after selecting it, that maximizes E[g(Q,b)]
subject to the constraints. This is effectively a decision tree, whose nodes are labeled with j ∈ N ,
and we branch depending on the outcome of bj . A chain is a balanced tree such that the labels
are the same for all nodes at the same level. A chain is a non-adaptive procedure. We also consider
the so-called offline solution, which knows a priori the outcomes of the random bits, and takes the
optimal set with respect to said outcome.

A knapsack constraint has the form
∑
j∈Q cj 6 B where each cj > 0, and B > 0. The cj are called

costs, and B is a budget. A special case is when cj = 1 for all j and B is an integer; this is a cardinality
constraint. (A cardinality constraint is also a special case of a matroid constraint.)

The Stochastic Max Coverage problem is a special case of the Stochastic Submodular Maximization
problem with a cardinality constraint. The utility function g : Ŝ → R>0 in the Stochastic Max
Coverage problem is defined as follows: let E = {e1, . . . , em} be a ground set of elements, and for
i ∈ N and r ∈ S, Si,r ⊆ E. For convenience of notation, we will also write Si,a to mean Si,ai where
a ∈ Sn. Then g(S,b) = |

⋃
i∈S Si,b |. If b is a partial assignment, then we say ej is covered with respect

to b if ej ∈
⋃
i:bi,∗Si,b. This function g is clearly submodular and monotone.

The expected values of the optimal adaptive, non-adaptive, and offline solutions will be denoted
by ADAPT, NONADAPT, and OFFLINE. We are interested in the adaptivity gap ADAPT

NONADAPT , as well as
the ratios OFFLINE

ADAPT and OFFLINE
NONADAPT .

3 Related Work

The submodular maximization problems studied in this paper were all initially studied in the
deterministic setting. Feige showed that for all of these problems, under the assumption of P ,NP,
no polynomial time algorithm can achieve an approximation factor better than (1 − 1

e ) [5]. For
the problem of maximizing a monotone submodular function subject to a cardinality constraint,
Nemhauser et al. showed that the natural greedy algorithm achieves an approximation factor of
(1 − 1

e ) [8]. For the problem with a knapsack constraint, Sviridenko subsequently showed that an
algorithm of Khuller et al. also achieves an approximation factor of (1 − 1

e ) [7, 10]. The results
of Golovin and Krause achieve the same approximation factor for a cardinality constraint in the
stochastic setting [6].

As mentioned earlier, Asadpour and Nazerzadeh showed an adaptivity gap of e
e−1 for Stochastic

Submodular Maximization with a matroid constraint, using a stronger definition of monotonic-
ity. In their definition of monotonicity, for any partial assignment b and s ∈ S, they require that
g(bi←s) > g(b) if either bi = ∗ or s > bi , whereas we only require that g(bi←s) > g(b) if bi = ∗. Their
proof is based on Poisson clocks and pipage rounding [3], and applies to continuous state spaces.
Our adaptivity gap results do not apply to continuous state spaces, but our proofs are combinato-
rial.

Chan and Farias studied the related Stochastic Depletion problem and gave a 1
2 -approximation for

the problem with respect to what they call the offline solution in their model [4]; in our model,
their algorithm translates to a 1

2 -approximation with respect to ADAPT for Stochastic Submodular
Maximization with a cardinality constraint.
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Knapsack Constraint Cardinality Constraint Max Coverage

Deterministic (1− 1
e )OPT [10] (1− 1

e )OPT [9] (1− 1
e )OPT [7]

Stochastic:
Adaptive OPEN

(1− 1
e )ADAPT [6, 3]

(1− 1
eτ )OFFLINE

(1− 1
e )ADAPT [6, 3]

(1− 1
eτ )OFFLINE

Stochastic:
Non-
Adaptive

τADAPT
(1− 1

e )ADAPT† [3]

τADAPT

(1− 1
e )ADAPT† [3]

(1− 1
e )ADAPT

τ(1− 1
e )OFFLINE

Table 1: Bounds for Stochastic Submodular Maximization

Table 1 summarizes approximation bounds for stochastic discrete monotone submodular function
maximization with a knapsack constraint, a cardinality constraint, and for max-coverage. Results
from this paper are in bold. We denote with a † bounds relying on the stronger definition of
monotonicity of [3].

The entries in the first row give the best bounds known for polynomial-time algorithms solving
the deterministic versions of the problems, assuming oracle access to the utility function g. The
bounds are given in terms of OPT, the optimal solution to the deterministic problem. As noted
above, these are the best bounds possible, assuming P ,NP [5].

The entries in the second row refer to the best nontrivial bounds achieved by polynomial-time
algorithms for the stochastic versions of the problems, assuming polynomial-time access to g.
Both bounds are achieved by the Adaptive Greedy algorithm (described in Section 5). We note
that Golovin and Krause give a randomized version of the algorithm for the knapsack constraint
achieving an approximation factor of (1− 1

e ), but with the relaxation that the budget only needs to
be met in expectation [6]. The last row refers to the bounds achieved by the respective best possible
non-adaptive solutions for the problems in the stochastic setting (irrespective of running time).

4 An Adaptivity Gap for State-Independent Constraints

In this section we present an adaptivity gap for Stochastic Submodular Maximization with state-
independent constraints. We use a technique that takes a decision tree and outputs a root-leaf
path by collapsing the tree bottom up in a greedy manner; at each step, one child chain of a node
replaces the other, leaving a single longer chain.

We show that under a product distribution over {0,1}n, this gives a non-adaptive procedure that is
a τ-approximation of expected utility of the original tree, where τ = mini,j pi,j . This gives a bound
on the adaptivity gap for the problem: ADAPT

NONADAPT 6 1
τ for binary states.

Theorem 1. For binary states, the Stochastic Submodular Maximization problem with state-independent
constraints has an adaptivity gap of at most 1

τ .

Proof. Let T be a decision tree corresponding to a solution to an instance of Stochastic Submodular
Maximization with state-independent constraints, and binary states. We show that if T achieves
expected utility U , then there exists a chain, corresponding to a root-leaf path in T , that achieves
expected utility τ ·U . Since the constraints are state-independent, this root-leaf path must obey the
constraints, and the theorem follows.
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We use a recursive procedure to turn T into a chain. At any intermediate step, we have a subtree
consisting of a parent node whose child subtrees are chains. We show that when performing the
procedure on this subtree, the loss incurred in expected utility is at most 1− τ times the expected
utility contributed by the parent node. Since the expected utility of a decision tree is a weighted
sum of the expected utility contributed by its nodes, the total loss from the entire procedure is at
most 1− τ times the expected utility of the whole tree.

Hence without loss of generality, suppose T is a tree with a root node labeled xi for some i ∈ N
whose two child subtrees are chains, as shown in Figure 1a. For convenience of notation, assume
the nodes on the left child chain are labeled xl1 through xlc , and the nodes on the right child chain
are labeled xr1 through xrd .

xi

xl1

xl2

...

xr1

xr2

...

0 1

U0
L U1

R

(a) T

xi

xl1

xl2

...

xl1

xl2

...

0 1

U0
L U1

L

(b) TL

xi

xr1

xr2

...

xr1

xr2

...

0 1

U0
R U1

R

(c) TR

Figure 1: T and its variants

Let L = {lm}cm=1 and R = {rm}dm=1. ForD ∈ {L,R} and fixed assignment b, monotonicity gives g∅,b({i}∪
D) > g∅,b(D), and submodularity gives g∅,b(D) > g{i},b(D). Thus, in expectation,

E[g∅,b({i} ∪L) | bi = 1] > E[g∅,b(L) | bi = 1] = E[g∅,b(L) | bi = 0] > E[g{i},b(L) | bi = 0] (1)

and similarly
E[g∅,b({i} ∪R) | bi = 0] > E[g{i},b(R) | bi = 1]. (2)

We introduce the following notation: Set U0
i = E[g∅,b(i) | bi = 0], U1

i = E[g∅,b(i) | bi = 1] (note that
g∅,b(i) is actually constant on all b with the same value for bi), and Ui = E[g∅,b(i)] = pi,0U

0
i +pi,1U

1
i .

So Ui is the expected utility contributed by the root node xi .

Set U0
L = E[g{i},b(L) | bi = 0], that is, the expected increase in utility from testing xl1 , . . . ,xlc after

testing xi and getting bi = 0. Similarly, we set U1
L = E[g{i},b(L) | bi = 1], U0

R = E[g{i},b(R) | bi = 0] and
U1
R = E[g{i},b(R) | bi = 1].

With this notation in mind, we can rewrite, respectively, (1) and (2) as U1
i > U0

L −U
1
L and U0

i >
U1
R −U

0
R, that is,

Ui > pi,0(U1
R −U

0
R) + pi,1(U0

L −U
1
L ). (3)

Consider the two variants TL and TR of T as follows: TL is the result of replacing the left child chain
of T with the right child chain, i.e, both the left and right child chains are labeled xl1 through xld ;
TR is instead the result of replacing the right child chain with the left. TL and TR are shown in
Figures 1b and 1c, respectively. Note that they are both fully non-adaptive, and thus can just as
easily be represented by pure chains.

5



Without loss of generality, we will assume

pi,0(U0
L −U

0
R) 6 pi,1(U1

R −U
1
L ) (4)

and substitute TR for T by replacing the left child chain of T with its right child chain (in the
symmetric setting, we have pi,0(U0

L −U
0
R) > pi,1(U1

R −U
1
L ) and substitute TL for T ). Set

S(b) =

{i} ∪L when bi = 0
{i} ∪R when bi = 1

.

Let ∆ be the expected loss in utility. We want to show that (1− τ)Ui > ∆. We compute ∆:

∆ = E[g(S(b),b)]−E[g({i} ∪R,b)]

= [pi,0(U0
i +U0

L ) + pi,1(U1
i +U1

R)]− [pi,0(U0
i +U0

R) + pi,1(U1
i +U1

R)]

= pi,0(U0
L −U

0
R).

There are two cases: (i) pi,0 6 pi,1 and (ii) pi,0 > pi,1.

In case (i) we show that 1
pi,1

∆6Ui , from which it follows that ∆6 (1− τ)Ui since τ 6 pi,0 = 1− pi,1.
We have

1
pi,1

∆ =
(
1 +

pi,0
pi,1

)
∆

6 ∆+ pi,0(U1
R −U

1
L )

= pi,0[(U0
L −U

0
R) + (U1

R −U
1
L )]

= pi,0[(U0
L −U

1
L ) + (U1

R −U
0
R)]

6 pi,0(U0
L −U

1
L ) + pi,1(U1

R −U
0
R)

6Ui

where the first inequality follows by (4), the second inequality since pi,0 6 pi,1, and the last in-
equality from (3).

In case (ii) we show instead that 1
pi,0

∆6Ui , from which again we have ∆6 (1−τ)Ui since τ 6 pi,1 =
1− pi,0. The computation is similar:

1
pi,0

∆ =
(
1 +

pi,1
pi,0

)
∆

6 ∆+ pi,1(U0
L −U

0
R)

6 pi,1[(U1
R −U

1
L ) + (U0

L −U
0
R)]

= pi,1[(U0
L −U

1
L ) + (U1

R −U
0
R)]

< pi,0(U0
L −U

1
L ) + pi,1(U1

R −U
0
R).

This completes the proof.

5 The Gap Between ADAPT and OFFLINE

In this section, we consider the gap OFFLINE
ADAPT for Stochastic Submodular Maximization with a cardi-

nality constraint.
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We first define some notation. We use k to denote the number of items allowed by the cardinality
constraint. For consistency, any variant of b will refer to a partial assignment, and any variant
of a will refer to only a full assignment, that is, a ∈ Sn. For the sake of clarity, in this section
we will explicitly specify the assignments over which we are taking expectations, except with the
shorthand that when b is a fixed partial assignment, Ea�b[ · ] will mean Ea[ · | a � b]. If we have a
sequence {St}kt=0, we write gt(j) in place of gSt (j).

We use AGREEDY to denote the expected utility of the Adaptive Greedy algorithm of Golovin and
Krause [6] (also called Adaptive Myopic by Asadpour and Nazerzadeh [3]), which, starting with
Q0 = ∅, at each step t, based on the partial assignment bt−1 of bits tested so far, adaptively picks it
satisfying

it = argmax
i∈N\Qt−1

E
a�bt−1

[
gt−1,a(i)

]
,

sets Qt = Qt−1 ∪ {it}, and tests bit to get bt . This implicitly forms a decision tree of depth k that
branches based on the outcome of bit , and outputs Qk .

It is clear that AGREEDY6 ADAPT6OFFLINE. We show:

Theorem 2. AGREEDY> (1− 1
eτ ) ·OFFLINE for Stochastic Submodular Maximization with a cardinality

constraint.

In other words, OFFLINE
ADAPT 6 eτ

eτ−1 . Although this is bound is weak for small τ , we observe that some
dependence on τ is unfortunately unavoidable:

Proposition 3. ADAPT cannot achieve an approximation bound better than τ relative to OFFLINE.

The proof of Proposition 3 is by example, and is given in the appendix. We will note, however, that
τ and 1− 1

eτ are close: for 0 < τ 6 1
2 the difference between τ and 1− 1

eτ is at most ∼0.107, which is
achieved at τ = 1

2 .

We now prove Theorem 2. We use the following lemma due to Wolsey:

Lemma 4 ([11]). Let k be a positive integer, and s > 0, ρ1, ...,ρk > 0 be reals. Then∑k
i=1ρi

mint∈{1,...,k}
(
sρt +

∑t−1
i=1ρi

) > 1−
(
1− 1

s

)k
> 1− 1

ek/s
.

Next, letQ∗a be the optimal offline solution on assignment a, τ = mini,j pi,j , and (Qt ,bt) be the collec-
tion Qt given by the Adaptive Greedy algorithm at step t corresponding to the partial assignment
bt . Then:

Lemma 5. For t = 1,2, . . . , k,

E
a

[g(Q∗a, a)] 6 E
a

[
g(Qt−1, a)

]
+
k
τ
·E
a

[
g(Qt , a)− g(Qt−1, a)

]

Proof. Suppose Greedy chooses it at step t, that is, Qt \Qt−1 = {it}. By definition we have

E
a′�bt−1

[
gt−1,a′ (it)

]
=

∑̀
m=1

pit ,m

[
gt−1,bt−1

it←m
(it)

]
.
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Next, suppose j ∈Q∗a′ \Q
t−1 where a′ is a full assignment and a′ � bt−1. We can write Pr[a′] =

∏
i ψi

where ψi ∈ {pi,0, . . . ,pi,`−1}. If we then let a′j←m be the assignment a′ with the j-th bit set to m, we
have

gt−1,a′ (j) 6
1
ψj

 `−1∑
m=0

pj,m

[
gt−1,a′j←m

(j)
]6 1

τ

 `−1∑
m=0

pit ,m

[
gt−1,bt−1

it←m
(it)

] =
1
τ
· E
a′�bt−1

[
gt−1,a′ (it)

]
where the first inequality follows from the fact that ψj = pj,m for some m, and the second from the
definitions of τ and it .

Then since |Q∗a′ \Q
t−1|6 k we get∑

j∈Q∗
a′ \Q

t−1

gt−1,a′ (j) 6
k
τ
· E
a′�bt−1

[
gt,a′ (it)

]
. (5)

Next, we have

E
a

[g(Q∗a, a)] = E
bt−1

[
E

a′�bt−1

[
g(Q∗a′ , a

′)
]]

6 E
bt−1

[
E

a′�bt−1

[
g(Q∗a′ ∪Q

t−1, a′)
]]

6 E
bt−1

 E
a′�bt−1

g(Qt−1, a′) +
∑

j∈Q∗
a′ \Q

t−1

gt−1,a′ (j)




6 E
a

[
g(Qt−1, a)

]
+ E
bt−1

[
k
τ
· E
a′�bt−1

[
gt−1,a′ (it)

]]
= E
a

[
g(Qt−1, a)

]
+
k
τ
·E
a

[
gt−1,a(it)

]
where the first inequality follows from monotonicity, the second from submodularity, and the third
from (5).

In light of Lemma 4 we see that Theorem 2 follows from Lemma 5:

Proof of Theorem 2. Let ρi = Ea[g(Qi , a) − g(Qi−1, a)], then clearly we have Ea[g(Qt−1, a)] =
∑t−1
i=1ρi .

Since the Adaptive Greedy algorithm outputs Qk ,

AGREEDY
OFFLINE

=
∑k
i=1ρi

Ea[g(Q∗a, a)]
>

∑k
i=1ρi

mint∈{1,...,k}
(
k
τ ρt +

∑t−1
i=1ρi

) > 1− 1
eτ

as desired.

6 Gaps for Stochastic Max Coverage

In this section we consider the special case of Stochastic Max Coverage. We still achieve an adap-
tivity gap of e

e−1 , which is tight by an example given by Asadpour and Nazerzadeh [3, §3.1]. Fur-
thermore, we obtain a bound of e

τ(e−1) for OFFLINE
NONADAPT .
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We use of the following fact, which is easily seen by inspection or by calculus.

Lemma 6. For all x > 0, 1− (1− xk )k > x(1− 1
e ).

We give a combinatorial proof of the following result, which is adapted from work of Ageev and
Sviridenko on the deterministic version of the problem [1, 2].

Theorem 7. For the Stochastic Max Coverage problem, there exists a non-adaptive solution that achieves
coverage (1− 1

e )ADAPT.

Proof. For simplicity, we give the analysis for the uniform distribution over binary states; the anal-
ysis is similar for product distributions over ` > 2 states.

We make use of the neighbor property, which every adaptive algorithm satisfies by definition: given
two assignments a,a′ differing only in bit j, either bj is tested for both assignments, or for neither.
We denote the expected value of the optimal offline solution satisfying the neighbor property by
NBR. Clearly, NONADAPT6 ADAPT6 NBR6OFFLINE. We will prove that NONADAPT> (1− 1

e )NBR,
thus achieving the desired adaptivity gap. Let X denote the procedure giving the optimal offline
solution satisfying the neighbor property.

For each i ∈ N and assignment a we assign a variable xi,a such that xi,a = 1 if and only if Si,a is
included in Qa, the subcollection given by X . Correspondingly we assign to each ej ∈ E a variable
yj,a such that yj,a = 1 if and only if j ∈

⋃
i∈Qa Si,a. Since NBR denotes the expected number of ground

elements by the solution given by X , NBR =
∑
j Ea[yj,a].

Consider the following (randomized) algorithm for producing a non-adaptive solution from the
solution given by X : randomly pick k sets according to the following probability distribution: pick
i with probability 1

k

∑
aPr[a]

∑n
i=1 xi,a = 1

k2n
∑
a
∑n
i=1 xi,a.

For each ej we say i is a promising cover for j if either ej ∈ Si,0 or ej ∈ Si,1. We divide the promising
covers into two categories: i is of type B if ej ∈ Si,0 ∩ Si,1 and i is of type A otherwise. We abuse
notation slightly and let A = 1

2n
∑
i of type A

∑
a:ej∈Si,a xi,a, and similarly B = 1

2n
∑
i of type B

∑
a xi,a. By

definition A+B> Ea[yj,a].

In expectation, the probability that a random i produces a promising cover of type A for ej is 2A
k ;

hence the probability that, in expectation, at least one of the chosen i is a promising cover of type
A for ej is at least 1− (1− 2A

k )k > 2A(1− 1
e ). A promising cover of type A covers ej with probability

1
2 , so ej is covered by at least one promising cover of type A with probability at least A(1− 1

e ).

Similarly, picking a random set produces a promising cover of type B for j with probability B
k , so at

least one of the chosen i is a promising cover of type B for ej is at least 1− (1− B
k )k > B(1− 1

e ), and
a promising cover of type B covers ej with probability 1, so ej is covered by at least one promising
cover of type B with probability at least B(1 − 1

e ). Since the promising covers of type A and B are
disjoint, we conclude that ej is covered with probability at least (1− 1

e )(A+B) > (1− 1
e )Ea[yj,a].

Before finishing the proof, we note that for product distributions, we will actually have many more
such categories: for each i ∈ N we will have a different set of categories. Furthermore, when there
are ` > 2 states, there is a larger number of possible ways of covering each ej and hence a larger
number of categories. However, the analysis will be similar, so that it will still the case that ej is
covered with probability > (1− 1

e )Ea[yj,a].

We return to the proof at hand. By linearity of expectation, the expected number of elements
covered by this non-adaptive solution is equal to the sum of the probabilities that each j is covered,
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in other words,

E[# elements covered] =
∑
j

Pr[j is covered] >
(
1− 1

e

)∑
j

E
a

[yj,a] =
(
1− 1

e

)
NBR.

Since this randomized procedure achieves at least (1− 1
e )NBR in expectation, then there must exist

a non-adaptive solution that achieves at least (1 − 1
e )NBR > (1 − 1

e )ADAPT, thus completing the
proof.

A similar analysis gives the following result:

Theorem 8. For the Stochastic Max Coverage problem, there exists a non-adaptive solution that achieves
coverage τ(1− 1

e )OFFLINE.

Proof. The proof is similar to the proof of Theorem 7. Again we use variables xi,a such that xi,a = 1
if and only if Si,a is included in the optimal subcollection Qa for a, and yj,a such that yj,a = 1 if and
only if ej ∈

⋃
i∈Qa Si,a. Clearly

∑
i:ej∈Si,a xi,a > yj,a for each assignment a and OFFLINE =

∑
j Ea[yj,a].

Again we randomly pick k sets according to the following probability distribution: pick i with
probability 1

k

∑
aPr[a]

∑n
i=1 xi,a.

In expectation, the probability that picking a random i produces a promising cover for ej is

1
k

∑
a

Pr[a]
∑

i:ej∈Si,a

xi,a >
1
k

∑
a

Pr[a]yj,a =
Ea[yj,a]
k

hence the probability that at least one promising cover for j is chosen is

1−
(
1−

Ea[yj,a]
k

)k
>

(
1− 1

e

)
E
a

[yj,a].

Since each promising cover covers j with probability > τ , the probability that j is actually covered
is at least τ(1 − 1

e )Ea[yj,a]. The rest of the proof follows from analysis similar to the analysis used
in the proof of Theorem 7.
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A Appendix: Proof of Proposition 3

We construct a counterexample for which ADAPT ≈ (τ − ε)OFFLINE.

Example 9. Consider an instance of the stochastic submodular coverage with a cardinality con-
straint problem as follows: say ` = 2 (so this is over binary states), let t = 1

τ and set n = 1 + t2. Let
pi,1 = τ and pi,0 = 1− τ for all i ∈ N . Let B = 1, so the problem is to maximize the expected utility
of picking a single bit.

Consider the following stochastic monotone submodular function g defined over S: for all subcol-
lections Q ⊆N such that i <Q, let

gQ,a(i) =


1 if i = 1
t − ε if i ∈ {2, . . . ,n} and ai = 1
0 if i ∈ {2, . . . ,n} and ai = 0

where the monotonicity and submodularity of g follow from the fact that g is an additive utility
function.

For i < Q, E[gQ,b(i)] = 1 if i = 1 and E[gQ,b(i)] = t−ε
t if i ∈ {2, . . . ,n}. Due to the low probability of

any variable from the second group having a value of 1, no adaptive tree outperforms the greedy
choice of picking the first variable. Thus ADAPT = 1.

The optimal offline procedure, on the other hand, will pick any variable of the second group that
has a value of 1. With probability 1−(1− 1

t )t
2
, at least one variable of the second group will evaluate

to 1; hence, OFFLINE =
(
1− (1− 1

t )t
2) · (t − ε) + (1− 1

t )t
2 · 1.

It follows that for sufficiently large t, ADAPT ≈ (τ − ε)OFFLINE.
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