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Abstract

In cost sharing games, the existence and efficiency of pure Nash equi-
libria fundamentally depends on the method that is used to share the
resources’ costs. We consider a general class of resource allocation prob-
lems in which a set of resources is used by a heterogeneous set of selfish
users. The cost of a resource is a (non-decreasing) function of the set

of its users. Under the assumption that the costs of the resources are
shared by uniform cost sharing protocols, i.e., protocols that use only lo-
cal information of the resource’s cost structure and its users to determine
the cost shares, we exactly quantify the inefficiency of the resulting pure
Nash equilibria. Specifically, we show tight bounds on prices of stabil-
ity and anarchy for games with only submodular and only supermodular
cost functions, respectively, and an asymptotically tight bound for games
with arbitrary set-functions. While all our upper bounds are attained
for the well-known Shapley cost sharing protocol, our lower bounds hold
for arbitrary uniform cost sharing protocols and are even valid for games
with anonymous costs, i.e., games in which the cost of each resource only
depends on the cardinality of the set of its users.

1 Introduction

Resource allocation problems are omnipresent in many areas of economics, com-
puter science, and operations research with many applications, e.g., in routing,
network design, and scheduling. Roughly speaking, when solving these prob-
lems the central question is how to allocate a given set of resources to a set of
potential users so as to optimize a given social welfare function. In many ap-
plications, a major issue is that the users of the system are striving to optimize
their own private objective instead of the overall performance of the system.
Such systems of users with different objectives are analyzed using the theory of
non-cooperative games.

A fundamental model of resource allocation problems with selfish users are
congestion games [15]. In a congestion game, each user chooses a subset of a
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given set of resources out of a set of allowable subsets. The cost of each resource
depends on the number of players using the particular resource. The private
cost of each user equals the sum of costs given by the cost functions of the
resources contained in the chosen subset. Congestion games can be interpreted
as cost sharing games with fair cost allocation in which the cost of a resource is
a function of the number of its users and each user pays the same cost share, see
also Anshelevich et al. [1]. Rosenthal showed that every congestion game has a
pure Nash equilibrium, i.e., a strategy vector such that no player can decrease
its cost by a unilateral change of her strategy.

This existence result depends severely on the assumption that the players
are identical in the sense that they contribute in equal terms to the congestion—
and, thus, the cost—on the resources, which is unrealistic in many applications.
As a better model for heterogeneous users, Milchtaich [13] introduced weighted

congestion games, where each player is associated with a positive weight and
resource costs are functions of the aggregated weights of their respective users.
It is well known that these games may lack a pure Nash equilibrium [4, 6, 12]. A
further generalization of weighted congestion games with even more modeling
power are congestion games with set-dependent cost functions introduced by
Fabrikant et al. [3]. Here, the cost of each resource is a (usually non-decreasing)
function of the set of its users. Set-dependent cost function can be used to model
multi-dimensional cost structures on the resources that may arise form different
technologies at the resources required by different users, such as bandwidth,
personal, machines, etc.

For the class of congestion games with set-dependent costs, Gopalakrish-
nan et al. [7] precisely characterized how the resources’ costs can be distributed
among its users such that the existence of a pure Nash equilibrium is guaran-
teed. Specifically, they showed that the class of generalized weighted Shapley
protocols is the unique maximal class of cost sharing protocols that guarantees
the existence of a pure Nash equilibrium in all induced cost sharing games. This
class of protocols is quite rich as it contains, e.g., weighted versions of the Shap-
ley protocol and ordered protocols as considered by Chen et al. [2]. Chen et al.
examined which protocols give rise to good equilibria for cost sharing games
where each resource has a fixed cost that has to be paid if the resource is used
by at least one player. In subsequent work, von Falkenhausen and Harks [19]
gave a complete characterization of the prices of anarchy and stability that is
achievable by cost sharing protocols in games with weighted players and ma-
troid strategy spaces. In this paper, we follow this line of research asking which
cost sharing protocols guarantee the existence of good equilibria for arbitrary

(non-decreasing) set-dependent cost functions and arbitrary strategy spaces.

Our Results. We study cost sharing protocols for a general resource alloca-
tion model with set-dependent costs that guarantee the existence of efficient
pure Nash equilibria. Our results are summarized in Table 1. Specifically, we
give tight and asymptotically tight bounds on the inefficiency of Nash equilibria
in games that use the Shapley protocol both in terms of the price of anar-
chy and the price of stability and for games with submodular, supermodular
and arbitrary non-decreasing cost functions, respectively. The lower bounds
that we provide hold for arbitrary uniform cost sharing protocols and even in
network games with anonymous costs in which the cost of a resource depends
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Table 1: The inefficiency of n-player cost sharing games.

Cost Functions
Price of stability Price of anarchy

Value Lower bd. Upper bd. Value Lower bd. Upper bd.

submodular Hn [1] Thm. 8 n [2] Thm. 9

supermodular n Pro. 10 Thm. 7 ∞ [19], Thm. 14 –
arbitrary Θ(nHn) Thm. 13 Thm. 6 ∞ [19], Thm. 14 –

only of the cardinality of the set of its users. Our upper and lower bounds are
exactly matching except for the price of stability in games with arbitrary non-
decreasing cost functions where they only match asymptotically. Nonetheless,
the lower bound of Θ(nHn) = Θ(n logn) for any uniform protocol is our tech-
nically most challenging result and relies on a combination of characterizations
of stable protocols for constant cost functions taken from [2] and set-dependent
cost functions from [7]. Our results imply that both for submodular and su-
permodular costs there is no other uniform protocol that gives rise to better
pure Nash equilibria than the Shapley protocol, in the worst case. As another
interesting side-product of our results, we obtain that moving from anonymous
costs (that depend only on the number of users) to set-dependent costs does not
deteriorate the quality of pure Nash equilibria in cost sharing games.

Related Work. To measure the inefficiency of equilibria, two notions have
evolved. The price of anarchy [11, 14] is the worst case ratio of the social cost
of an equilibrium and that of a social optimum. The price of stability [1, 17]
is the ratio of the social cost of the most favorable equilibrium and that of the
social optimum.

Chen et al. [2] initiated the study of cost sharing protocols that guaran-
tee the existence of efficient pure Nash equilibria. They considered the case of
constant resource costs and characterized the set of linear uniform protocols.
For uniform protocols (that solely depend on local information) they showed
that proportional cost sharing guarantees a price of stability equal to the n-th
harmonic number and a price of anarchy of n for n-player games. Von Falken-
hausen and Harks [19] studied cost sharing protocols for weighted congestion
games with matroid strategy spaces. They gave various tight bounds for the
prices of anarchy and stability that is achievable by uniform and more general
protocols. Among other results, they showed that even for a bounded number
of players, no uniform protocol can archive a constant price of anarchy. Kol-
lias and Roughgarden [10] studied weighted congestion games with arbitrary
strategy spaces. They recalled a result from Hart and Mas-Colell [8] to de-
duce that every weighted congestion game has a pure Nash equilibrium if the
cost of each resource is distributed according to the (weighted) Shapley value.
Furthermore, bounds on the price of stability for this cost sharing protocol are
given. Gopalakrishnan et al. [7] considered congestion games with arbitrary set-
dependent cost functions. They give a full characterization of the cost sharing
protocols that guarantee the existence of a pure Nash equilibrium in all such
games.
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Independently of our work, Roughgarden and Schrijvers [16] showed that
the price of stability of Shapley cost sharing games is Hn provided that the cost
of each resource is a submodular function of its users. They further showed
that the strong price of anarchy is Hn as well. In forthcoming work, Gkatzelis
et al. [5] examined optimal cost sharing rules for weighted congestion games
with polynomial cost functions. In particular, they showed that among the set
of weighted Shapley cost sharing methods, the best price of anarchy can be
guaranteed by unweighted Shapley cost sharing. Although in a similar vein,
their result is independent from ours since our results hold even for unweighted
players and arbitrary (submodular, supermodular, or arbitrarily non-decreasing)
costs, while their result holds for weighted players and convex and polynomial
costs. Yet, we believe that the combination of the results of Gkatzelis et al. and
ours give strong evidence that in multiple scenarios of interest, Shapley cost
sharing is the best way to share the cost among selfish users. Both papers thus
contribute to the quantitative justification of Shapley cost sharing, as opposed
to the axiomatic justification originally proposed by Shapley [18].

2 Preliminaries

We are given a finite set of players N = {1, . . . , n} and a finite and non-empty
set of resources R. For each player i, the set of strategies Pi is a non-empty
set of subsets of R. We set P = P1 × · · · × Pn and call P = (P1, . . . , Pn) ∈ P
a strategy vector. For P ∈ P and r ∈ R, let P r = {i : r ∈ Pi} denote the
set of players that use resource r in strategy vector P . For each resource r, we
are given a non-negative cost function Cr : 2N → R≥0 mapping the set of its
users to the respective cost value. We assume that all cost functions Cr are
non-decreasing, in the sense that Cr(T ) ≤ Cr(U) for all T ⊆ U with T, U ∈ 2N ,
and that Cr(∅) = 0. The function Cr is submodular if Cr(X ∪ {i})− Cr(X) ≥
Cr(Y ∪ {i}) − Cr(Y ) for all X ⊆ Y ⊆ N , i ∈ N \ Y and supermodular if
Cr(X ∪ {i})− Cr(X) ≤ Cr(Y ∪ {i})− Cr(Y ) for all X ⊆ Y ⊆ N , i ∈ N \ Y .
We call Cr anonymous if Cr(X) = Cr(Y ) for all X,Y ⊆ N with |X | = |Y |. For
anonymous cost functions, submodularity and supermodularity are equivalent
to concavity and convexity, respectively.

The tuple M = (N,R,P , (Cr)r∈R) is called a resource allocation model. For
the special case that R corresponds to the set of edges of a graph and for every i
the set Pi corresponds to the set of (si, ti)-paths for two designated vertices si
and ti, we call M a network resource allocation model.

The players’ private costs are governed by local cost sharing protocols that
decide how the cost of each resource is divided among its users. A cost sharing
protocol is a family of functions (cri )i∈N,r∈R : P → R that determines for each
resource r and each player i, the cost share cri (P ) that player i has to pay for
using resource r under strategy vector P . The private cost of player i under
strategy vector P is then defined as Ci(P ) =

∑

r∈Pi
cri (P ).

A resource allocation model M = (N,R,P , (Cr)r∈R) together with a cost
sharing protocol (cri )i∈N,r∈R thus defines a strategic game G with player set N ,
strategy space P and private cost functions (Ci)i∈N . For a strategic game G,
let PNE ⊆ P denote the set of pure Nash equilibria of G. The price of anarchy
of G is then defined as maxP∈PNE(G)C(P )/C(P̂ ), and the price of stability is
defined as minP∈PNE(G)C(P )/C(P̂ ), where C(P ) =

∑

r∈RC
r(P r) is the social
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cost of a strategy vector P and P̂ is a strategy vector that minimizes C. The
strategy vector P̂ is called socially optimal.

Throughout this paper, we impose the following assumptions on the cost
sharing protocol that have become standard in the literature, cf. [2, 19]:

– Stability: There exists at least one pure Nash equilibrium, i.e, there is
P ∈ P such that Ci(P ) ≤ Ci(P̃i, P−i) for all i ∈ N and P̃i ∈ Pi.

– Budget-balance: The cost of all used resources is exactly covered by the
cost shares of its users, i.e.,

∑

i∈P r cri (P ) = Cr(P r) and cri (P ) = 0 for all
i /∈ P r for all r ∈ R and P ∈ P .

– Uniformity: The cost shares depend only on the cost structure of the
resource and the set of users, i.e., cri (P ) = cr̃i (P̃ ) for all i ∈ N and all
resource allocation models (N,P , (Cr)r∈R), (N, P̃, (C̃ r̃)r̃∈R̃) with Cr ≡

C̃ r̃ and all strategy vectors P ∈ P , P̃ ∈ P̃ with P r = P̃ r.
With some abuse of notation, we henceforth write cri (P

r) instead of cri (P ).
In this work, we only consider cost sharing protocols that satisfy these as-

sumptions but it is worth noting that, except for the lower bound of Θ(nHn) on
the price of stability for arbitrary non-decreasing cost functions, all our results
are valid for a slightly weaker notion of uniformity where the cost shares may
depend on the identity of the resource.

A protocol that is stable, budget-balanced and uniform is the Shapley cost

sharing protocol. To give a formal definition, for a set S ⊆ N of players, let us
denote by Π(S) the set of permutations π : S → {1, . . . , |S|}. Let π ∈ Π(P r)
be a permutation of the players in P r and let P r

i,π = {j ∈ P r : π(j) < π(i)} be
the set of players that precede player i in π. The Shapley value of player i at
resource r with users P r is then defined as

φri (P
r) =







1
|P r |!

∑

π∈Π(P r)

Cr(P r
i,π ∪ {i})− Cr(P r

i,π), if i ∈ P r,

0 otherwise,
(1)

i.e., the Shapley cost share is the marginal increase in the cost due to player i
averaged over all possible permutations of the players in P r.

The following proposition is an immediate consequence of (1) and well known
in the literature. For the sake of completeness, we give a proof here.

Proposition 1. The Shapley cost sharing protocol is budget-balanced and uni-

form.

Proof. Uniformity follows directly from (1), since the cost functions only depend
on P r and Cr. For budget-balance, it is easy to see that

∑

i∈P r

φri (P
r) =

∑

i∈P r

1

|P r|!

∑

π∈Π(P r)

Cr(P r
i,π ∪ {i})− Cr(P r

i,π)

=
1

|P r|!

∑

π∈Π(P r)

∑

i∈P r

Cr(P r
i,π ∪ {i})− Cr(P r

i,π)

= Cr(P r),

which gives the claimed result.

To show that Shapley cost sharing is also stable, we follow the road taken
by Kollias and Roughgarden [10], who gave a potential function for Shapley
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cost sharing for weighted congestion games. The following result can be proven
simply by verifying that each step in the proof by Kollias and Roughgarden
applies to set-dependent costs, too. For the sake of completeness, we give a
proof here.

Proposition 2. Let π ∈ Π(N) be arbitrary and let Φ : P → R with P 7→
∑

r∈RΦr(P ) and Φr(P ) =
∑

i∈P r φri (P
r
i,π ∪ {i}). Then, Φ is an exact potential

function for Shapley cost sharing games with set-dependent costs.

Proof. We first show that the resource potential Φr(P ) is independent of the
chosen permutation π. Let us fix r ∈ R and π ∈ Π(P r). We obtain

Φr(P ) =
∑

i∈P r

φri (P
r
i,π ∪ {i})

=
∑

i∈P r

1

|P r
i,π ∪ {i}|!

∑

p∈Π(P r
i,π

∪{i})

(

Cr(P r
i,p ∪ {i})− Cr(P r

i,p)
)

=
∑

i∈P r

∑

p∈Π(P r
i,π

∪{i})

Cr(P r
i,p ∪ {i})− Cr(P r

i,p)

|P r
i,π ∪ {i}|!

. (2)

We observe that (2) is a weighted sum of Cr(T ) for some sets T ⊆ P r. We set

∑

i∈P r

∑

p∈Π(P r
i,π

∪{i})

Cr(P r
i,p ∪ {i})− Cr(P r

i,p)

|P r
i,π ∪ {i}|!

=
∑

T⊆P r

αT · Cr(T )

and proceed to calculate the coefficients αT , T ⊆ P r. To this end, for a fixed
set T , we have to count how often Cr(T ) is in the sum of (2). Now let player
t ∈ T be the last player of T in π and let l = π(t). We know that there
are only positive contributions to αT from the Shapley value of player t and a
permutation p, where the players in T \ {t} come first, are followed by t and
all the other players come after t. There are (|T | − 1)!(l − |T |)! many of these
permutations and there are l! permutations in the Shapley value of player t in
total. That means we have a positive contribution to αT with amount

(|T | − 1)!(l − |T |)!

l!
. (3)

Now we consider the negative contribution. There is a negative contribution to
αT from the Shapley value of all players π−1(j) that come after t in πr, i.e.,
j ∈ {l + 1, . . . , |P r|}. For a fixed j we have to count the permutations where
all the players of T come first and are followed by π−1(j) immediately. We
know that there are |T |!(j−|T |− 1)! of these permutations in total, so the total
negative contribution for all players π−1(j) is

|P r |
∑

j=l+1

|T |!(j − |T | − 1)!

j!
. (4)
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Now we can calculate αT explicitly by subtracting (4) from (3):

αT =
(|T | − 1)!(l − |T |)!

l!
−

|P r|
∑

j=l+1

|T |!(j − |T | − 1)!

j!

= (|T |−1)!

(

(l − |T |)!

l!
−

|P r|
∑

j=l+1

|T |(j − |T | − 1)!

j!

)

= (|T |−1)!
((l − |T |)!

l!
−

|P r|
∑

j=l+1

(

(j − |T | − 1)!

(j − 1)!
−

(j − |T |)!

j!

)

)

= (|T |−1)!
((l − |T |)!

l!
−

(l + 1− |T | − 1)!

(l + 1− 1)!
+

(|P r| − |T |)!

|P r|!

)

= (|T |−1)!
((|P r| − |T |)!

|P r|!

)

. (5)

We derive that αT is independent of l and, thus, independent of the permutation
π.

To finish the proof, let P ∈ P , i ∈ N , and P̃i ∈ Pi be arbitrary. We have
shown that when calculating Φ =

∑

r∈R

∑

i∈P r φri (P
r
i,π ∪ {i}) it is without loss

of generality to assume that player i appears last in π. We then obtain,

Φ(P )− Φ(P−i, P
′
i ) =

∑

r∈Pi\P ′

i

φri (P
r)−

∑

r′∈P ′

i
\Pi

φr
′

i (P r′ ∪ {i})

= Ci(P )− Ci(P−i, P
′
i ),

which finishes the proof.

Using that potential games always have a pure Nash equilibrium, we obtain
the following immediate corollary.

Corollary 3. The Shapley cost sharing protocol is stable.

As a side-product of the proof of Proposition 2, we obtain the following al-
ternative representation of the exact potential function of a Shapley cost sharing
game.

Corollary 4. The exact potential function for Shapley cost sharing games can

be written as Φ(P ) =
∑

r∈R

∑

T⊆P r αT · Cr(T ) where αT = (|P r|−|T |)!·(|T |−1)!
|P r|! ,

and α∅ = 0.

3 The Efficiency of Shapley Cost Sharing

Having established the existence of pure Nash equilibria in Shapley cost sharing
games we proceed to analyze their efficiency. We start to consider the price of
stability.
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3.1 Price of Stability

We first need the following technical lemma that bounds the coefficients αT ,
T ⊆ N that occur when writing the potential function as in Corollary 4.

Lemma 5. Let P ∈ P and r ∈ R. Then,
∑

T⊆P r αT = Hk, where k = |P r|
and Hk is the k-th harmonic number.

Proof. Let us fix P r ⊆ N with |P r| = k. Recall that αT = (|P r|−|T |)!(|T |−1)!
|P r|!

and α∅ = 0, thus, αT does not depend on the set T but only on its cardinality
|T |. In particular, αS = αT for all S, T ∈ 2N with |S| = |T |. Defining αl = αT

where T ⊂ N with |T | = l is arbitrary, we obtain αl =
(|P r |−l)!(l−1)!

|P r |! and α0 = 0.

We calculate

∑

T⊆P r

αT =

k
∑

l=1

∑

T⊆P r

|T |=l

αT =

k
∑

l=1

∑

T⊆P r

|T |=l

αl =

k
∑

l=1

αl

(

k

l

)

=

k
∑

l=1

(l − 1)!(k − l)!

k!

(

k

l

)

=
k
∑

l=1

(l − 1)!(k − l)!

k!
·

k!

l!(k − l)!
=

k
∑

l=1

1

l
= Hk,

We obtain the following upper bound on the price of stability of n-player
Shapley cost sharing games.

Theorem 6. The price of stability for n-player Shapley cost sharing games with

set-dependent cost functions is at most nHn.

Proof. Fix a Shapley cost sharing game and a socially optimal strategy vector P̂ .
We proceed to show that a global minimum P of the potential function given
in Proposition 2 has cost no larger than nHn · C(P̂ ). We first calculate

C(P ) =
∑

r∈R

Cr(P r) ≤
∑

r∈R

|P r| ·

(

1

|P r|
Cr(P r) +

∑

T⊂P r

αTC
r(T )

)

,

since αT = (|T |−1)!(|P r|−|T |)!
|P r|! ≥ 0. We use αP r = 1

|P r | to obtain

C(P ) ≤
∑

r∈R

|P r| ·

(

αP rCr(P r) +
∑

T⊂P r

αTC
r(T )

)

=
∑

r∈R

|P r| ·
∑

T⊆P r

αTC
r(T )

≤ n ·
∑

r∈R

∑

T⊆P r

αTC
r(T ) = n · Φ(P ). (6)

As Φ(P ) ≤ Φ(P̂ ) and cost functions Cr are non-decreasing, we obtain

C(P ) ≤ n · Φ(P̂ ) = n ·
∑

r∈R

∑

T⊆P̂ r

αTC
r(T ) ≤ n ·

∑

r∈R

∑

T⊆P̂ r

αTC
r(P̂ r)

= n ·
∑

r∈R

Cr(P̂ r)
∑

T⊆P̂ r

αT .

Using Lemma 5, we obtain C(P ) ≤ nHn · C(P̂ ), as claimed.

For n-player games with supermodular cost functions, we obtain a better
upper bound for the price of stability of n.
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Theorem 7. The price of stability for n-player Shapley cost sharing games with

supermodular cost functions is at most n.

Proof. Let us again fix an arbitrary game and let us denote a socially optimal
strategy vector and a potential minimum by P̂ and P , respectively. Using
inequality (6) from the proof of Theorem 6, we obtain C(P ) ≤ nΦ(P ) ≤ nΦ(P̂ ),
so it suffices to show that Φ(P̂ ) ≤ C(P̂ ) for supermodular cost functions.

To this end, we first remove all players from the game and then add them
iteratively to their strategy played in P̂ . Formally, for i ∈ {1, . . . , n}, let P̂(i)

denote the (partial) strategy vector in which only the players j ∈ {1, . . . , i} play
their strategies P̂j and all other players are removed from the game (and, thus,
have costs 0).

For every i, we get C(P̂(i))−C(P̂(i−1)) =
∑

r∈P̂i
Cr(P̂ r

(i−1)∪{i})−C
r(P̂ r

(i−1)),
where P̂ r

(i−1) denotes the set of players using resource r under strategy vector
P̂(i−1). We write this expression as

C(P̂(i))− C(P̂(i−1)) =
∑

r∈P̂i

∑

π∈Π(P̂ r
(i−1)

∪{i})

Cr(P̂ r ∪ {i})− Cr(P̂ r)

|P̂ r
(i−1) ∪ {i}|!

.

As Cr is supermodular, the marginal cost Cr(P̂ r ∪ {i}) − Cr(P̂ r) of player i
does not increase when considering only those players that appear before i in
the permutation π. Hence,

C(P̂(i))− C(P̂(i−1)) ≥
∑

r∈P̂i

∑

π∈Π(P̂ r
(i−1)

∪{i})

Cr(P̂ r
i,π ∪ {i})− Cr(P̂ r

i,π)

|P̂ r
(i−1) ∪ {i}|!

=
∑

r∈P̂i

φri (P̂
r
(i−1) ∪ {i})

= Ci(P̂(i))− Ci(P̂(i−1)) = Φ(P̂(i))− Φ(P̂(i−1)),

where the last equation is due to the fact that Φ is an exact potential function.
Thus, in each step, the cost increases at least as much as the potential, which
finally implies Φ(P̂ ) ≤ C(P̂ ), as claimed.

We obtain an even better bound on the price of stability of Shapley cost shar-
ing games with submodular costs. This result has been obtained independently
by Roughgarden and Schrijvers [16].

Theorem 8. The price of stability of n-player Shapley cost sharing games with

submodular costs is at most Hn.

Proof. The proof works very similar to the one of Theorem 7 with the difference
that we now use the submodularity of the costs to show that C(P ) ≤ Φ(P ) for
the strategy vector P that minimizes Φ.

Let P̂ be a socially optimal strategy vector and let P be a strategy vector
that minimizes Φ. The proof of Theorem 6 yields Φ(P ) ≤ Φ(P̂ ) ≤ HnC(P̂ ), so
it suffices to show C(P ) ≤ Φ(P ).

Analogously to the proof of Theorem 7, we first remove all players from the
game and then insert them iteratively in order of their index. For i ∈ {1, . . . , n}
let P(i) denote the (partial) strategy vector, in which all players j ∈ {1, . . . , i}

9



play Pj . As in the proof of Theorem 7, we obtain

C(P(i))− C(P(i−1)) =
∑

r∈Pi

∑

π∈Π(P r
(i−1)

∪{i})

Cr(P r ∪ {i})− Cr(P r)

|P̂ r
(i−1) ∪ {i}|!

.

We use the submodularity of the cost functions to obtain C(P(i))−C(P(i−1)) ≤
Φ(P(i))−Φ(P(i−1)), i.e., in each iteration, the social cost function decreases no
more than the potential function. This yields C(P ) ≤ Φ(P ).

3.2 Price of Anarchy

We proceed to analyze the price of anarchy of Shapley cost sharing games. It
turns out that we obtain a finite bound on the price of anarchy (for a fixed
number of players) only for submodular cost functions.

Theorem 9. The price of anarchy of n-player Shapley cost sharing games with

submodular costs is at most n.

Proof. Let P be a pure Nash equilibrium and let P̂ be a socially optimal strategy
vector. We calculate

Ci(P ) ≤ Ci(P̂i, P−i) =
∑

r∈P̂i

∑

π∈Π(P r∪{i})

Cr(P r
i,π ∪ {i})− Cr(P r

i,π)

|P̂ r ∪ {i}|!
,

and, by submodularity,

Ci(P ) ≤
∑

r∈P̂i

∑

π∈Π(P r∪{i})

Cr({i})− Cr(∅)

|P̂r ∪ {i}|!
=
∑

r∈P̂i

Cr({i}) ≤ C(P̂ ).

4 General Uniform Cost Sharing

In Section 3, we showed upper bounds on the inefficiency of pure Nash equilibria
for the Shapley cost sharing protocol. In this section, we show that these upper
bounds are essentially tight, even for network games with anonymous resource
costs that depend only on the cardinality of the set of the resource’s users.

4.1 Price of Stability

It is well known [1, 2] that no uniform cost sharing protocol can guarantee a
price of stability strictly below Hn for all n-player Shapley cost sharing games
with submodular costs. In fact, this negative result holds even for anonymous
and constant costs. We complement this result with the observation that even
for anonymous and convex costs, no uniform cost sharing protocol can guarantee
a price of stability strictly below n.

Proposition 10. For all uniform cost sharing protocols and ǫ ∈ (0, 1) there

is a n-player network resource allocation model with anonymous convex cost

functions such that the price of stability is at least n− ǫ.

10
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Figure 1: Cost sharing game with price of stability arbitrarily close to n.

Proof. Let us fix a uniform cost sharing protocol and a player setN = {1, . . . , n}.
Because of the uniformity of the cost sharing protocol, the cost shares for a given
edge are completely determined by the local information on that edge and do
not depend on the structure of the network.

So let us consider an edge e1 with the following convex cost function

Ce1(P e1 ) =

{

0, if |P e1 | 6= n,

n− ǫ, if |P e1 | = n.

By budget-balance,
∑

i∈N ce1i (N) = n − ǫ, implying that there is a player
i ∈ N paying less than 1 on this edge when all users are using it.

Consider the network shown in Figure 1 where the cost of edge e2 equals
the number of its users. The other edges e3 and e4 are free. Player i has to
route from node si to node t and all the other players route from s to t and
must use the strategy {e1, e4}. If player i uses the strategy {e1, e3}, the costs
equal C({e1, e3}, {e1, e4}, . . . , {e1, e4}) = Ce1(N) = n − ǫ. If she chooses {e2}
instead, the costs are 1. Clearly, the first strategy vector is the unique pure
Nash equilibrium while the latter is the system optimum. Thus, the price of
stability is n− ǫ.

We proceed to show a lower bound on the price of stability of Θ(nHn) for
any uniform cost sharing protocol. To prove this, we use a result of Gopalakr-
ishnan et al. [7, Theorem 1] who showed that the set of generalized weighted
Shapley cost sharing protocols is the unique maximal set of uniform cost sharing
protocols that is stable. To state their result, we first recall the definition of the
generalized weighted Shapley cost sharing protocols [9].

Definition 11 (Generalized weighted Shapley cost sharing). Let N = {1, . . . , n}
be a set of players. A tuple w = (λ,Σ) with λ = (λ1, . . . , λn) and Σ =
(S1, . . . , Sm) is called a weight system if λi > 0 for all i ∈ N and Σ is a

partition of N , i.e., S1 ∪ · · · ∪ Sm = N and Si ∩ Sj = ∅ for all i 6= j.
Given a resource allocation model M = (N,R,P , (Cr)r∈R) and a weight sys-

tem w = (λ,Σ), the generalized weighted Shapley cost sharing protocol assigns
the cost shares (ψr

i )i∈N,r∈R defined as

ψr
i (P

r) =











∑

T⊆P r :i∈T
λi∑

j∈T
λj

(

∑

U⊆T (−1)|T |−|U|Cr(U)
)

, if i ∈ P r

0, otherwise,

where T = T ∩ Sk and k = min{j : Sj ∩ T 6= ∅}.

The following proposition is a special case of [7, Theorem 1].
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e1 e2 e3 . . .
eñ
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eñ+1

Figure 2: Cost sharing game with price of stability equal to
(

n
2 + 1

)

Hn/2

Proposition 12 (Gopalakrishnan et al. [7]). For every budget-balanced, uni-

form and stable cost sharing protocol ξ there is a weight system w such that ξ is

equivalent to the generalized weighted Shapley cost sharing protocol with weight

system w.

We use this characterization to obtain the following lower bound.

Theorem 13. For all uniform cost sharing protocols, ǫ ∈
(

0, 12
)

and n even,

there is a network n-player resource allocation model with anonymous costs for

which the price of stability is equal to
n/2+1
1+ǫ Hn/2 ∈ Θ(nHn).

Proof. Referring to Proposition 12, it is sufficient to show the claimed result
for an arbitrary generalized weighted Shapley cost sharing protocol with weight
system w only.

To this end, consider the network resource allocation model with anonymous
costs shown in Figure 2. There are n players that we partition into two sets A
and B of cardinality ñ := n/2, i.e., N = A ∪ B, A ∩ B = ∅, and |A| = |B| =
n
2 = ñ. For edges e1, e2, . . . , eñ, eñ+1 we assume the following cost functions:

Cei(P ei) =

{

0, if |P ei | < ñ+ 1,
ñ+1
i , if |P ei | = ñ+ 1,

for all i = 1, . . . , ñ.

Ceñ+1(P eñ+1) =

{

0, if P eñ+1 = ∅,

1 + ǫ, if P eñ+1 6= ∅.

All other edges are for free.
Note that the cost function of edge eñ+1 is constant as the cost is equal for

every non-empty set of users. In previous work [2, Lemma 5.2] it was shown
that in games where all cost functions are constant, all uniform cost sharing
protocols have to be monotone in the sense that a player does not pay less if
the cost of an edge has to be divided among less players, i.e.,

c
eñ+1

i (P eñ+1) ≤ c
eñ+1

i (P eñ+1 \ {j}) ∀i 6= j ∈ P eñ+1 ⊆ N.

This result applies to our setting as well due to the uniformity of the protocol.
It is worth noting, however, that it does not necessarily hold on the other edges
in our game, since their cost is not constant.

For a given generalized weighted Shapley cost sharing protocol with weight
system w = (λ,Σ) we assign the players to the sets and start nodes as follows.

12



First, we sort the players ascending to their sets Si where ties are broken in
favor of larger λj , i.e., for a ∈ Si and b ∈ Sj we have the property

a < b⇔ Si < Sj ∨ (Si = Sj ∧ λa ≥ λb) .

. Up to renaming we can assume that the obtained order is (1, . . . , n). We then
put the first n/2 players into A and the remaining n/2 into B.

All players in A have start node sA and target node tA. The start and target
nodes of the players in B are assigned in a similar fashion as in the proof of
Proposition 10. We first pick the player, say iñ with largest cost share on edge
eñ+1 among the players in B using eñ+1. We let iñ route from node sñ to node
tñ. Then, we consider the remaining players B \ {iñ} and choose a player

iñ−1 ∈ argmax
b∈B\{iñ}

c
eñ+1

b (B \ {iñ}).

and let iñ−1 route from sñ−1 to tñ−1. We iterate this process until all players
in B are assigned to their respective start and target nodes.

We proceed to show that in the unique pure Nash equilibrium no player
uses edge eñ+1. For a contradiction, suppose P is a pure Nash equilibrium and
there is a non-empty set of players B̃ ⊆ B using edge eñ+1. Let j = max{k ∈
{1, . . . , ñ} : ik ∈ B̃} be the player chosen first among the players in B̃ in the
assignment procedure described above. First, we show that ij pays more than

1/j for edge eñ+1 in P . To this end, note that c
eñ+1

ij
(B̃) ≥ c

eñ+1

ij
(∪j

k=1{ik}) ≥

(1 + ǫ)/j > 1/j, where for the first inequality we used the monotonicity of the
cost shares, and for the second inequality, we used that player ij pays most

among the players in ∪j
k=1{ik} by construction.

We proceed to argue that player ij ∈ B would not pay more than 1/j on
edge ej when deviating to her other path, which is then a contradiction to P
being a pure Nash equilibrium with a non-empty set of players using edge eñ+1.
We calculate the cost share of player ij on ej by the definition of the generalized
weighted Shapley cost sharing protocol.

c
ej
ij
(A ∪ {ij}) =

∑

T⊆A∪{ij}:ij∈T

λij
∑

k∈T λk

(

∑

R⊆T
(−1)|T |−|R|Cej (R)

)

=
∑

T=A∪{ij}:ij∈T

λij
∑

k∈T λk
(Cej (T )),

where we used that Cei(R) = 0 for R 6= A ∪ {ij}. We obtain

c
ej
ij
(A ∪ {ij}) =

{ λij∑
k∈S1

λk
(Cej (A ∪ {ij})) , if ij ∈ S1,

0, otherwise.

In particular, only the players in S1 have to pay for edge ej . If ij /∈ S1 we
immediately obtain c

ej
ij
(A ∪ {ij}) = 0 ≤ 1/j. If, on the other hand, player

ij ∈ S1 we know from the construction of A and B that A ⊆ S1. Player ij
has the smallest weight of all these players by construction, so ij pays not more
than all the other players. We then obtain c

ej
ij
(A ∪ {ij}) ≤

(ñ+1)/j
ñ+1 = 1/j.

We have shown that in no pure Nash equilibrium there is a player using edge
eñ+1. This implies that in all pure Nash equilibria, each player ij uses edge ej,

so the players in N pay in total
∑ñ

j=1 C
ej (A ∪ ij) =

∑ñ
j=1

ñ+1
j = (ñ + 1)Hñ.

The price of stability thus amounts to 1
1+ǫ(n/2 + 1)Hn/2, as claimed.
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Figure 3: Cost sharing game used in case 1 of the proof of Theorem 14.

4.2 Price of Anarchy

Von Falkenhausen and Harks [19] showed that any uniform cost sharing protocol
leads to unbounded price of anarchy for cost sharing games with three (weighted)
players and three parallel arcs.

We complement their result by showing that also for anonymous costs but
more complicated networks, no constant price of anarchy can be obtained.

Theorem 14. For all uniform cost sharing protocols there is a 2-player network
resource allocation model with anonymous convex cost functions such that the

price of anarchy is unbounded.

Proof. Let us fix a uniform cost sharing protocol and let a ≥ 1 be arbitrary. In
the following, we will show that there is a 2-player network resource allocation
model with anonymous convex cost such that the resulting price of anarchy is
at least a. As a was chosen arbitrarily, this implies the claimed result.

First, consider the two-player game shown in Figure 3. For arbitrary q ≥ 2,
we assume the following supermodular cost functions for the edges e1 and e2.

Ce1 (∅) = 0 Ce2 (∅) = 0

Ce1 ({1}) = 1 Ce2 ({1}) = 1

Ce1 ({2}) = 1 Ce2 ({2}) = 1

Ce1({1, 2}) = q Ce2({1, 2}) = q.

The per-player costs of all the other edges are given in Figure 3. Both players
have to route from s to t. Observe that mini,j∈{1,2}

{

c
ej
i ({1, 2})

}

may depend
on q as the costs of edges e1 and e2 when used by both players are q. We
distinguish the following two cases.

First case: mini,j∈{1,2}

{

c
ej
i ({1, 2})

}

is unbounded for q ∈ [2,∞). Fix q
such that

min
i,j∈{1,2}

{

c
ej
i ({1, 2})

}

≥ 4a > 2.

This implies that if both players choose the direct edge, one of them has to pay
at least 2 for this edge. Up to labeling let this be player 2. In a socially optimal
strategy vector, one player routes from s via v1 to t and the other player from
s via v2 to t. Because of budget-balance each player pays 2 for her strategy, so
this strategy vector has a total cost of 4.

However, player 1 using the direct edge from s to t and player 2 using the
path s→ v1 → v2 → t is a pure Nash equilibrium. Player 1 cannot improve her
strategy because she can not pay less on any of the paths containing edge e1 or
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t
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Figure 4: Cost sharing game used in case 2 of the proof of Theorem 14.

edge e2, because of the choice of the cost function of the direct edge. Player 2
would not deviate to the direct edge by construction and not to the other edges
due to budget-balance. So this game has a price of anarchy of at least

min
i,j∈{1,2}

{

c
ej
i ({1, 2})

}

+ 2

4
≥

4a+ 2

4
≥ a.

This finishes the proof for the first case.
Second case: mini,j∈{1,2}{c

ej
i ({1, 2})} is bounded for all q ∈ [2,∞). Let

z ∈ N be such that

min
i,j∈{1,2}

{

c
ej
i ({1, 2})

}

≤ z for all q ∈ [2,∞). (7)

Let us fix q ≥ min{a(z + 1), 2}. Using (7), there is a player i ∈ {1, 2} and an
edge e ∈ {e1, e2} with

cei ({1, 2}) ≤ z.

Up to labeling let this be player 1 at edge e1. Now consider the network shown
in Figure 4. Player 2 has to route from s2 to t, so she has to use edge e1.
Player 1 starts at s1, so she can choose the direct edge from s1 to t or path
s1 → s2 → t using e1. In a socially optimal strategy vector she would choose
the direct edge and we have

C ((s1, t), e1) = C(s1,t)({1}) + Ce1({2}) = z + 1,

whereas we know by construction of the second case that P = (e1, e1) is a pure
Nash equilibrium. So we immediately get a price of anarchy of

C(e1, e1)

C
(

(s1, t), e1
) =

Ce1({1, 2})

C(s1,t)({1}) + Ce1 ({2})
=

q

z + 1
≥
a(z + 1)

z + 1
≥ a.

This finishes the proof of the second case.
We conclude that there is a game with anonymous convex costs and arbi-

trarily large price.
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