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Abstract

We give new linear time globally explicit constructions of some d-
restriction problems that follows from the techniques used in [1, 30, 31].

Keywords: Derandomization, d-Restriction problems, Perfect hash, Cover-
Free families, Separating hash functions.

1 Introduction

A d-restriction problem [30, 2, 6] is a problem of the following form:
Given an alphabet Σ of size |Σ| = q, an integer n and a class M of nonzero
functions f : Σd → {0, 1}.
Find a small set A ⊆ Σn such that: For every 1 ≤ i1 < i2 < · · · < id ≤ n
and f ∈ M there is a ∈ A such that f(ai1 , . . . , aid) 6= 0.

A (1− ǫ)-dense d-restriction problem is a problem of the following form:
Given an alphabet Σ of size |Σ| = q, an integer n and a class M of nonzero
functions f : Σd → {0, 1}.
Find a small set A ⊆ Σn such that: For every 1 ≤ i1 < i2 < · · · < id ≤ n
and f ∈ M

Pra∈A[f(ai1 , . . . , aid) 6= 0] > 1− ǫ

where the probability is over the choice of a from the uniform distribution
on A.

We give new constructions for the following three ((1 − ǫ)-dense) d-
restriction problems: Perfect hash family, cover-free family and separating
hash family.
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A construction is global explicit if it runs in deterministic polynomial time
in the size of the construction. A local explicit construction is a construction
where one can find any bit in the construction in time poly-log in the size
of the construction. The constructions in this paper are linear time global
explicit constructions.

To the best of our knowledge, our constructions have sizes that are less
than the ones known from the literature.

2 Old and New Results

2.1 Perfect Hash Family

Let H be a family of functions h : [n] → [q]. For d ≤ q we say that H is
an (n, q, d)-perfect hash family ((n, q, d)-PHF) [2] if for every subset S ⊆ [n]
of size |S| = d there is a hash function h ∈ H such that h|S is injective
(one-to-one) on S, i.e., |h(S)| = d.

Blackburn and Wild [12] gave an optimal explicit construction when

q ≥ 2O(
√
d log d logn).

Stinson et al., [32], gave an explicit construction of (n, q, d)-PHF of size
dlog

∗ n log n for q ≥ d2 log n/ log q. It follows from the technique used in [1]
with Reed-Solomon codes that an explicit (n, q, d)-PHF of size d2 log n/ log q
exist for q ≥ d2 log n/ log q. In [4, 30, 2] it was shown that there are
(n,Ω(d2), d)-PHF of size O(d6 log n) that can be constructed in poly(n) time.
Wang and Xing [36] used algebraic function fields and gave an (n, d4, d)-PHF
of size O((d2/ log d) log n) for infinite sequence of integers n. Their construc-
tion is not linear time construction. The above constructions are either for
large q or are not linear time constructions.

Bshouty in [6] shows that for a constant c > 1, the following (third
column in the table) (n, q, d)-PHF can be locally explicitly constructed in
almost linear time (within poly(log))
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Linear time. Upper Lower
n q Size = O() Bound Bound

I.S. q ≥ c
4d

4 d2 lognlog q d logn
log q d logn

log q

all q ≥ c
4d

4 d4 lognlog q d logn
log q d logn

log q

I.S. q ≥ c
2d

2 d4 lognlog d d logn
log(2q/(d(d−1))) d logn

log q

all q ≥ c
2d

2 d6 lognlog d d logn
log(2q/(d(d−1))) d logn

log q

I.S. q = d(d−1)
2 + 1 + o(d2) d6 lognlog d d log n d logn

log q

all q = d(d−1)
2 + 1 + o(d2) d8 lognlog d d log n d logn

log q

The upper bound in the table follows from union bound [6]. The lower
bound is from [25, 5] (see also [27, 17, 20, 21, 12, 11, 7]). I.S. stands for
“true for infinite sequence of integers n”.

Here we prove

Theorem 1. Let q be a power of prime. If q > 4(d(d− 1)/2 +1) then there
is a (n, q, d)-PHF of size

O

(

d2 log n

log(q/e(d(d − 1)/2 + 1))

)

that can be constructed in linear time.
If d(d− 1)/2+2 ≤ q ≤ 4(d(d− 1)/2+1) then there is a (n, q, d)-PHF of

size

O

(

q2d2 log n

(q − d(d− 1)/2 − 1)2

)

that can be constructed in linear time.
In particular, for any constants c > 1, δ > 0 and 0 ≤ η < 1, the

following (n, q, d)-PHF can be constructed in linear time (the third column
in the following table)

Linear time. Upper Lower
n q Size = O() Bound Bound

all q ≥ d2+δ d2 logn
log q d logn

log q d log n
log q

all q ≥ c
2d

2 d2log n d log n d log n
log q

all q = d(d−1)
2 + 1 + d2η d6−4η log n d log n d log n

log q

all q = d(d−1)
2 + 2 d6 logn

log d d log n d log n
log q

Notice that for q > cd2/2, c > 1 the sizes in the above theorem is within a
factor of d of the lower bound. Constructing almost optimal (within poly(d))
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(n, q, d)-PHF for q = o(d2) is still a challenging open problem. Some nearly
optimal constructions of (n, q, d)-PHF for q = o(d2) are given in [30, 24].

The (n, q, d)-perfect hash families for d ≤ 6 are studied in [3, 12, 5, 32,
24, 10, 9, 26]. In this paper we prove

Theorem 2. If q is prime power and d ≤ log n/(8 log log n) then there is a
linear time construction of (n, q, d)-PHF of size

O

(

d3 log n

g(q, d)

)

where

g(q, d) =

(

1− 1

q

)(

1− 2

q

)

· · ·
(

1− d− 1

q

)

.

Using the lower bound in [17] we show that the size in the above theorem
is within a factor of d4 of the lower bound when q = d+O(1) and within a
factor of d3 for q > cd for some c > 1.

2.2 Dense Perfect Hash Family

We say that H is an (1 − ǫ)-dense (n, q, d)-PHF if for every subset S ⊆ [n]
of size |S| = d there are at least (1− ǫ)|H| hash functions h ∈ H such that
h|S is injective on S.

We prove

Theorem 3. Let q be a power of prime. If ǫ > 4(d(d − 1)/2 + 1)/q then
there is a (1− ǫ)-dense (n, q, d)-PHF of size

O

(

d2 log n

ǫ log(ǫq/e(d(d − 1)/2 + 1))

)

that can be constructed in linear time.
If (d(d − 1)/2 + 1)/(q − 1) ≤ ǫ ≤ 4(d(d − 1)/2 + 1)/q then there is a

(1− ǫ)-dense (n, q, d)-PHF of size

O

(

q2d2 log n

ǫ(q − (d(d − 1)/2 + 1)/ǫ)2

)

that can be constructed in linear time.

We also prove (what we believe) two folklore results that show that the
bounds on the size and ǫ in the above theorem are almost tight. First, we
show that the size of any (1− ǫ)-dense (n, q, d)-PHF is

Ω

(

d log n

ǫ log q

)

.
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Second, we show that no (1− ǫ)-dense (n, q, d)-PHF exists when ǫ < d(d −
1)/(2q) +O((d2/q)2).

Notice that for q ≥ (d/ǫ)1+c, where c > 1 is any constant, the size of the
construction in Theorem 3,

O

(

d2 log n

ǫ log q

)

,

is within a factor d of the lower bound. Also the bound on ǫ is asymptotically
tight.

For the rest of this section we will only state the results for the non-dense
d-restriction problems. Results similar to Theorem 3 can be easily obtained
using the same technique.

2.3 Cover-Free Families

Let X be a set with N elements and let B be a set of subsets (blocks) of X.
We say that (X,B) is (w, r)-cover-free family ((w, r)-CFF), [22], if for any w
blocks B1, . . . , Bw ∈ B and any other r blocks A1, . . . , Ar ∈ B, we have

w
⋂

i=1

Bi 6⊆
r
⋃

j=1

Aj .

Let N((w, r), n) denotes the minimum number of points in any (w, r)-CFF
having n blocks. Here we will study CFF when w = o(r) (or r = o(w)). We
will write (n, (w, r))-CFF when we want to emphasize the number of blocks.

When w = 1, the problem is called group testing. The problem of group
testing which was first presented during World War II was presented as
follows [13, 28]: Among n soldiers, at most r carry a fatal virus. We would
like to blood test the soldiers to detect the infected ones. Testing each one
separately will give n tests. To minimize the number of tests we can mix
the blood of several soldiers and test the mixture. If the test comes negative
then none of the tested soldiers are infected. If the test comes out positive,
we know that at least one of them is infected. The problem is to come up
with a small number of tests.

This problem is equivalent to (n, (1, r))-CFF and is equivalent to finding
a small set F ⊆ {0, 1}n such that for every 1 ≤ i1 < i2 < · · · < id ≤ n,
d = r+1, and every 1 ≤ j ≤ d there is a ∈ F such that aik = 0 for all k 6= j
and aij = 1.

Group testing has the following lower bound [14, 15, 16]

N((1, r), n) ≥ Ω

(

r2

log r
log n

)

. (1)
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It is known that a group testing of size O(r2 log n) can be constructed in
linear time [13, 31, 19].

An (n, (w, r))-CFF can be regarded as a set F ⊆ {0, 1}n such that for
every 1 ≤ i1 < i2 < · · · < id ≤ n where d = w + r and every J ⊂ [d] of size
|J | = w there is a ∈ F such that aik = 0 for all k 6∈ J and aij = 1 for all
j ∈ J . Then N((w, r), n) is the minimum size of such F .

It is known that, [34],

N((w, r), n) ≥ Ω

(

d
(d
w

)

log
(d
w

) log n

)

.

Using union bound it is easy to show

Lemma 1. For d = w + r = o(n) we have

N((w, r), n) ≤ O

(√
wrd ·

(

d

w

)

log n

)

.

It follows from [32], that for infinite sequence of integers n, an (n, (w, r))-
CFF of size

M = O
(

(wr)log
∗ n log n

)

can be constructed in polynomial time. For constant d, the (n, d)-universal
set over Σ = {0, 1} constructed in [29] of size M = O(23d log n) (and in

[30] of size M = 2d+O(log2 d) log n) is (n, (w, r))-CFF for any w and r of size
O(log n). See also [23]. In [6], Bshouty gave the following locally explicit
constructions of (n, (w, r))-CFF that can be constructed in (almost) linear
time in their sizes (the third column in the table).

Linear time Upper Lower
n w Size= Bound Bound

I.S O(1) rw+2

log r log n rw+1 log n rw+1

log r log n

all O(1) rw+3

log r log n rw+1 log n rw+1

log r log n

I.S. o(r) w2(ce)wrw+2

log r log n rw+1

(w/e)w−1/2 log n
rw+1

(w/e)w+1 log r
log n

all o(r) w3(ce)wrw+3

log r log n rw+1

(w/e)w−1/2 log n
rw+1

(w/e)w+1 log r
log n

In the table, c > 1 is any constant. We also added to the table the non-
constructive upper bound in the forth column and the lower bound in the
fifth column.

In this paper we prove
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Theorem 4. For any constant c > 1, the following (n, (w, r))-CFF can be
constructed in linear time in their sizes

Linear time. Upper Lower
n w Size=O( ) Bound Bound

all O(1) rw+1 log n rw+1 log n rw+1

log r log n

all o(r) (ce)wrw+1 log n rw+1

(w/e)w−1/2 log n
rw+1

(w/e)w+1 log r
log n

Notice that when w = O(1) the size of the construction matches the
upper bound obtained with union bound and is within a factor of log r of
the lower bound.

2.4 Separating Hash Family

Let X and Σ be sets of cardinalities n and q, respectively. We call a set
F of functions f : X → Σ an (M ;n, q, (d1, d2, . . . , dr))-separating hash
family (SHF), [35, 33], if |F| = M and for all pairwise disjoint subsets
C1, C2, . . . , Cr ⊆ X with |Ci| = di for i = 1, 2, . . . , r, there is at least one
function f ∈ F such that f(C1), f(C2), . . . , f(Cr) are pairwise disjoint sub-
sets. The goal is to find (M ;n, q, (d1, d2, . . . , dr))-SHF with small M . The
minimal M is denoted by M(n, q, (d1, d2, . . . , dr)).

Notice that (n, q, d)-PHF of size M is (M ;n, q, (1, 1, d. . ., 1))-SHF and
(w, r)-CFF of size M is (M ;n, 2, (r, w))-SHF.

In [11], Bazrafshan and Trund proved that for

D1 =

r
∑

i=1

di,

M(n, q, (d1, d2, . . . , dr)) ≥ (D1 − 1)
log n− log(D1 − 1)− log q

log q

= Ω

(

D1
log n

log q

)

. (2)

See also [7].
In [32], Stinson et. al. proved that an (M ;n, q, (d1, d2)) separating hash

families of size
M = O((d1d2)

log∗ n log n)

can be constructed in polynomial time for infinite sequence of integers n
and q > d1d2. The same proof gives a polynomial time construction for any
separating hash family of size

M = O(Dlog∗ n
2 log n)
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where
D2 =

∑

1≤i1<i2≤r

di1di2

when q > D2.
In [23], Liu and Shen provide an explicit constructions of (M ;n, q, (d1, d2))

separating hash families using algebraic curves over finite fields. They show
that for infinite sequence of integers n there is an explicit (M ;n, q, (d1, d2))
separating hash families of size O(log n) for fixed d1 and d2. This also fol-
lows from [29], an (n, d1 + d2)-universal set over two symbols alphabet is
a separating hash families of size O(log n) for fixed d1 and d2. Their con-
struction is similar to the construction of the tester in [6]. In [6] Bshouty
gave a polynomial time construction of an (M ;n, q, (d1, d2)) separating hash
families of size M = ((d1d2)

4 log n/ log q) for any q ≥ d1d2(1 + o(1)) and
any n. He also show that for any constant c > 1 and q > D2, the follow-
ing (M ;n, q, (d1, d2, . . . , dr)) separating hash family can be constructed in
polynomial time

poly time. Upper Lower
n q Size M = O( ) Bound Bound

I.S. q ≥ c(D2 + 1)2, q P.S. D2
logn
log q D1

logn
log q D1

logn
log q

all q ≥ c(D2 + 1)2, q P.S. D2
2
logn
log q D1

logn
log q D1

logn
log q

I.S. q ≥ c(D2 + 1) D2
2

logn
logD2

D1log n D1
logn
log q

all q ≥ c(D2 + 1) D3
2

logn
logD2

D1log n D1
logn
log q

I.S. q ≥ D2 + 1 D3
2

logn
logD2

D1 log n D1
logn
log q

all q ≥ D2 + 1 D4
2

logn
logD2

D1 log n D1
logn
log q

and an (M ;n, r, (d1, d2, . . . , dr)) separating hash family of size

M =

(

cD2
d1 d2 ··· dr

)

D3
2

logD2
log n,

can be constructed in time linear in the construction size.
Here we prove the following

Theorem 5. For any constant c > 1 and q > D2, the following (M ;n, q
, (d1, d2, . . . , dr)) separating hash family can be constructed in linear time

poly time. Upper Lower
n q Size M = O( ) Bound Bound

all q ≥ (D2 + 1)c D2
logn
log q D1

logn
log q D1

logn
log q

all q ≥ c(D2 + 1) D2log n D1log n D1
logn
log q

all q ≥ D2 + 2 D3
2log n D1 log n D1

logn
log q
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and an (M ;n, r, (d1, d2, . . . , dr)) separating hash family of size

M =

(

cD2

d1 d2 · · · dr

)

D2 log n,

can be constructed in time linear in the construction size.

3 Preliminary Constructions

A linear code over the field Fq is a linear subspace C ⊂ F
m
q . Elements in

the code are called words. A linear code C is called [m,k, d]q linear code if
C ⊂ F

m
q is a linear code, |C| = qk and for every two words v and u in the

code dist(v, u) := |{i | vi 6= ui}| ≥ d.
The q-ary entropy function is

Hq(p) = p logq
q − 1

p
+ (1− p) logq

1

1− p
.

The following is from [31] (Theorem 2)

Lemma 2. Let q be a prime power, m and k positive integers and 0 ≤ δ ≤ 1.
If k ≤ (1−Hq(δ))m, then an [m,k, δm]q linear code can be globally explicit
constructed in time O(mqk).

Notice that to construct n codewords in an [m,k, δm]q linear code where
qk−1 < n ≤ qk, the time of the construction is O(mqk) = O(qmn).

We now show

Lemma 3. Let q be a prime power, m and k positive integers, 0 ≤ δ ≤ 1
and n an integer such that qk−1 < n ≤ qk. If k ≤ (1−Hq(δ))m, then a set of
n codewords in an [m,k, δm]q linear code can be globally explicit constructed
in time O(mn).

Proof. The same proof of Lemma 3 in [31] works here with the observation
that the first column of the generator matrix G = [v1| · · · |vk] can be the all-
one vector v1 = (1, 1, . . . , 1)′ and it is enough to ensure that every codeword
of the form

∑k
i=1 λivi, where the first nonzero λi is 1, is of weight at least δm.

We call such codeword a normalized codeword. The number of normalized
codewords is (qk − 1)/(q − 1) = O(qk−1). Obviously, codeword v is equal to
λu for some normalized codewords u and the minimum weight of normalized
codeword is the minimum weight of the code.

Therefore we first construct the normalized codewords as in [31] in time
O(mqk−1) and then add any n− (qk − 1)/(q − 1) codewords.
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All the results in this paper uses Lemma 3 and therefore they are globally
explicit constructions. We now show

Lemma 4. Let q be a prime power, 1 < h < q/4 and

m =

⌈

h ln(q(n + 1))

ln q − lnh− 1

⌉

.

A set of n nonzero codewords of a

[

m,

⌈

log(n+ 1)

log q

⌉

,

(

1− 1

h

)

m

]

q

linear code can be constructed in time O(nm).

Proof. By Lemma 3 it is enough to show that

⌈

log(n+ 1)

log q

⌉

≤
(

1−Hq

(

1− 1

h

))

m.

Now since for x > 0, (x− 1)/x ≤ lnx we have

1−Hq

(

1− 1

h

)

= 1−
((

1− 1

h

)

logq
q − 1

1− 1/h
+

1

h
logq h

)

=
1

h
− 1

h
logq h−

(

1− 1

h

)

logq
1− 1/q

1− 1/h

≥ 1

h
− 1

h
logq h+

h− 1

h
logq(1− 1/h)

≥ 1

h
− 1

h
logq h− 1

h ln q

=
ln q − lnh− 1

h ln q
.

Now
(

1−Hq

(

1− 1

h

))

m ≥ ln q(n+ 1)

ln q
≥
⌈

log(n+ 1)

log q

⌉

.

When h = O(q) we show

Lemma 5. Let q be a prime power, 2 ≤ q/4 ≤ h ≤ q − 1 and

m =

⌈

4(q − 1)2h ln(q(n + 1))

(q − h)2

⌉

.
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A set of n nonzero codewords of a
[

m,

⌈

log(n+ 1)

log q

⌉

,

(

1− 1

h

)

m

]

q

linear code can be constructed in time O(nm).

Proof. For ∆ = 1 − Hq

(

1− 1
h

)

and using the fact that ln(1 − x) = −x −
x2/2− x3/3− · · · for |x| < 1, we have

∆ =
1

h
− 1

h
logq h−

(

1− 1

h

)

logq
1− 1/q

1− 1/h

=
1

ln q

(

1

h
ln

q

h
−
(

1− 1

h

)

ln
h(q − 1)

q(h− 1)

)

=
1

ln q

(

−1

h
ln

(

1− q − h

q − 1

)

+ ln

(

1− q − h

h(q − 1)

))

=
(q − h)2

(q − 1)2h ln q

(

1

2

(

1− 1

h

)

+
q − h

3(q − 1)

(

1− 1

h2

)

+ · · ·
)

≥ (q − h)2

(q − 1)2h ln q

(

1

2

(

1− 1

h

))

≥ (q − h)2

4(q − 1)2h ln q
.

Now
(

1−Hq

(

1− 1

h

))

m ≥ ln q(n+ 1)

ln q
≥
⌈

log(n+ 1)

log q

⌉

.

4 Main Results

In this section we give two main results that will be used throughout the
paper

Let I ⊆ [n]2. Define the following homogeneous polynomial

HI =
∏

(i1,i2)∈I
(xi1 − xi2).

We denote by Hd ⊆ Fq[x1, . . . , xn] the class of all such polynomials of degree
at most d. A hitting set for Hd over Fq is a set of assignment A ⊆ F

n
q such

that for every H ∈ Hd,H 6≡ 0, there is a ∈ A where H(a) 6= 0. A (1 − ǫ)-
dense hitting set for Hd over Fq is a set of assignment A ⊆ F

n
q such that for

every H ∈ Hd, H 6≡ 0,

Pra∈A[H(a) 6= 0] > 1− ǫ

11



where the probability is over the choice of a from the uniform distribution
on A. When H(a) 6= 0 then we say that the assignment a hits H and H is
not zero on a.

We prove

Lemma 6. Let n > q, d. If q > 4(d + 1) is prime power then there is a
hitting set for Hd of size

m =

⌈

(d+ 1) log(q(n + 1))

log(q/e(d + 1))

⌉

= O

(

d log n

log(q/e(d + 1))

)

that can be constructed in time O(mn) = O(dqn log(qn)).
If d+ 2 ≤ q ≤ 4(d+ 1) is prime power then there is a hitting set for Hd

of size

m =

⌈

4(q − 1)2(d+ 1) ln(q(n + 1))

(q − d− 1)2

⌉

= O

(

dq2 log n

(q − d− 1)2

)

that can be constructed in time O(mn) = O(d(q2/(q − d− 1)2)n log(qn)).

Proof. Consider the code C

[

m,

⌈

log(n+ 1)

log q

⌉

,

(

1− 1

d+ 1

)

m

]

q

constructed in Lemma 4 and Lemma 5. The number of non-zero words in
the code is at least n. Take any n distinct non-zero words c(1), · · · , c(n) in

C and define the assignments a(i) ∈ F
n
q , i = 1, . . . ,m where a

(i)
j = c

(j)
i . Let

HI ∈ Hd,HI 6≡ 0. Then

HI =
∏

(i1,i2)∈I
(xi1 − xi2) 6≡ 0

where |I| ≤ d. For each t := xi1 − xi2 we have (t(a(1)), . . . , t(a(m)))T =
c(i1) − c(i2) ∈ C is a non-zero word in C and therefore t is zero on at most
m/(d + 1) assignments. Therefore HI is zero on at most dm/(d + 1) < m
assignment. This implies that there is an assignment in A that hits HI .

Notice that the size of the hitting set is mn and therefore the time
complexity in the above lemma is linear in the size of the hitting set.

In the same way one can prove
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Lemma 7. Let q be a prime power. If q > 4(d+1)/ǫ be a prime power. Let
n > q, d. There is a (1− ǫ)-dense hitting set for Hd of size

m =

⌈

(d+ 1) log(q(n+ 1))

ǫ log(ǫq/e(d + 1))

⌉

= O

(

d log n

ǫ log(ǫq/e(d + 1))

)

that can be constructed in time O(dqn log(qn)/ǫ).
If (d+ 1)/ǫ + 1 ≤ q ≤ 4(d + 1)/ǫ be a prime power. Let n > q, d. There

is a (1− ǫ)-dense hitting set for Hd of size

m =

⌈

4(q − 1)2(d+ 1) ln(q(n + 1))

(q − (d+ 1)/ǫ)2ǫ

⌉

= O

(

dq2 log n

(q − (d+ 1)/ǫ)2ǫ

)

that can be constructed in time O(d(q2/(q − d− 1)2)n log(qn)/ǫ).

We note here that such result cannot be achieved when q < d/ǫ [6].

5 Proof of the Theorems

5.1 Perfect Hash Family

Here we prove

Theorem 1. Let q be a power of prime. If q > 4(d(d− 1)/2 +1) then there
is a (n, q, d)-PHF of size

O

(

d2 log n

log(q/e(d(d − 1)/2 + 1))

)

that can be constructed in linear time.
If d(d− 1)/2+2 ≤ q ≤ 4(d(d− 1)/2+1) then there is a (n, q, d)-PHF of

size

O

(

q2d2 log n

(q − d(d− 1)/2 − 1)2

)

that can be constructed in linear time.
In particular, for any constants c > 1, δ > 0 and 0 ≤ η < 1, the

following (n, q, d)-PHF can be constructed in linear time (the third column
in the following table)

Linear time. Upper Lower
n q Size = O() Bound Bound

all q ≥ d2+δ d2 logn
log q d logn

log q d log n
log q

all q ≥ c
2d

2 d2log n d log n d log n
log q

all q = d(d−1)
2 + 1 + d2η d6−4η log n d log n d log n

log q

all q = d(d−1)
2 + 2 d6 logn

log d d log n d log n
log q

13



Proof. Consider the set of functions

F = {∆{i1,...,id}(x1, . . . , xn) | 1 ≤ i1 < · · · < id ≤ n}

in Fq[x1, x2, . . . , xn] where

∆{i1,...,id}(x1, . . . , xn) =
∏

1≤k<j≤d

(xik − xij).

It is clear that a hitting set for F is (n, q, d)-PHF. Now since F ⊆ Hd(d−1)/2+1

the result follows from Lemma 6.

When q > d(d − 1)/2 is not a power of prime number then we can
take the nearest prime q′ < q and construct an (n, q′, d)-PHF that is also
(n, q, d)-PHF. It is known that the nearest prime q′ ≥ q − Θ(q.525), [8],
and therefore the result in the above table is also true for any integer q ≥
d(d + 1)/2 +O(d1.05).

5.2 Perfect Hash Family for Small d

We now prove

Theorem 2. If q is prime power and d ≤ log n/(8 log log n) then there is a
linear time construction of (n, q, d)-PHF of size

O

(

d3 log n

g(q, d)

)

where

g(q, d) =

(

1− 1

q

)(

1− 2

q

)

· · ·
(

1− d− 1

q

)

.

Proof. If q > d2 then the construction in Theorem 1 has the required size.
Let q ≤ d2. We first use Theorem 1 to construct an (n, d3, d)-PHF H1

of size O(d2 log n/ log d) in linear time. Then a (d3, q, d)-PHF H2 of size
O(d log d/g(q, d)) can be constructed in time, [30, 2],

(

d3

d

)

q1+⌈log d3/ log q⌉(d−1) ≤ d3dqdd3d ≤ d8d < n.

Then H = {h2(h1) | h2 ∈ H2, h1 ∈ H1} is (n, q, d)-PHF of the required
size.

14



We now show that this bound is within a factor of d4 of the lower bound
when q = d+ O(1) and within a factor of d3 log d of the lower bound when
q > cd for some constant c > 1.

Lemma 8. [17] Let n > d2+ǫ for some constant ǫ > 0. Any (n, q, d)-PHF
is of size at least

Ω

(

(q − d+ 1)

q log(q − d+ 2)

log n

g(q, d)

)

.

In particular, for q = d+O(1) the bound is

Ω

(

log n

dg(q, d)

)

and for q > cd for some constant c > 1 the bound is

Ω

(

log n

(log d)g(q, d)

)

.

5.3 Dense Perfect Hash

Using Lemma 7 with the same proof as in Theorem 1 we get

Theorem 3. Let q be a power of prime. If q > 4(d(d − 1)/2 + 1)/ǫ then
there is a (1− ǫ)-dense (n, q, d)-perfect hash family of size

O

(

d2 log n

ǫ log(ǫq/e(d(d − 1)/2 + 1))

)

that can be constructed in linear time.
If (d(d − 1)/2 + 1)/ǫ + 1 ≤ q ≤ 4(d(d − 1)/2 + 1)/ǫ then there is a

(1− ǫ)-dense (n, q, d)-PHF of size

O

(

q2d log n

ǫ(q − (d(d − 1)/2 + 1)/ǫ)2

)

.

that can be constructed in linear time.

The following two folklore results are proved for completeness

Lemma 9. Let q ≥ d1+c for some constant c > 1. Any (1 − ǫ)-dense
(n, q, d)-PHF is of size at least

Ω

(

d log n

ǫ log q

)

.
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Proof. If H is an (1 − ǫ)-dense (n, q, d)-PHF then any subset of H of size
ǫ|H| + 1 is (n, q, d)-PHF. Now the result follows from the lower bound for
the size of (n, q, d)-PHF.

Lemma 10. Let q > d2/2. When

ǫ ≤ d(d− 1)

2q
− d2(d− 1)2

8q2

then no (1− ǫ)-dense (n, q, d)-PHF exists.

Proof. Each hash function h : [n] → [q] can be perfect for at most
(

q
d

)

(n/q)d

sets S of size d, [17]. There are exactly
(

n
d

)

sets and therefore the density
cannot be greater than

1− ǫ ≤
(

q
d

)

(

n
q

)d

(n
d

)

n→∞−→
(

1− 1

q

)

· · ·
(

1− d− 1

q

)

≤ e−d(d−1)/2q .

Since

e−d(d−1)/2q ≤ 1− d(d− 1)

2q
+

d2(d− 1)2

8q2
.

the result follows.

For the rest of the paper we will only state the results for the non-dense
d-restriction problems. The results for the dense d-restrict problems follows
immediately from applying Lemma 7.

5.4 Cover-Free Families

We now prove the following

Theorem 4. Let q ≥ wr + 2 be a prime power. Let S ⊆ F
n
q be a hitting

set for Hwr. Given a (q, (w, r))-CFF of size M that can be constructed in
linear time one can construct an (n, (w, r))-CFF of size M · |S| that can be
constructed in linear time.

In particular, there is an (w, r)-CFF of size

(

q

w

)

· |S|

that can be constructed in linear time in its size.
In particular, for any constant c > 1, the following (w, r)-CFF can be

constructed in linear time in their sizes
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Linear time. Upper Lower
n w Size=O( ) Bound Bound

all O(1) rw+1 log n rw+1 log n rw+1

log r log n

all o(r) (ce)wrw+1 log n rw+1

(w/e)w−1/2 log n
rw+1

(w/e)w+1 log r
log n

Proof. Consider the set of non-zero functions

M = {∆i | i ∈ [n]d, i1, i2, . . . , id are distinct}

where
∆i(x1, . . . , xn) =

∏

1≤k≤w and w<j≤d

(xik − xij).

Then S is a hitting set for M.
Let F ⊆ {0, 1}q be a (q, (w, r))-CFF of size M . Regard each f ∈ F as a

function f : Fq → {0, 1}. It is easy to see that

{(f(b1), f(b2), . . . , f(bn)) | b ∈ S, f ∈ F} ⊆ {0, 1}n

is (w, r)-CFF of size |F| · |S| = M · |S|.
Now for every subset R ⊆ Fq define the function χR : Fq → {0, 1} where

for β ∈ Fq we have χR(β) = 1 if β ∈ R and χR(β) = 0 otherwise. Then
{χR | R ⊆ Fq, |R| = w} ⊆ {0, 1}Fq is a (q, (w, r))-CFF of size

(q
w

)

. Therefore

C = {(χR(b1), χR(b2), . . . , χR(bn)) | b ∈ S,R ⊆ Fq, |R| = w}

is (w, r)-CFF of size

|C| ≤
(

q

w

)

|S|.

Now for the results in the table consider a constant c > c′ > 1 and let q
be a power of prime such that q = c′wr+ o(wr). This is possible by [8]. By
Lemma 6 there is a hitting set S for Hwr of size O(wr log n). This gives a
(w, r)-CFF of size

O

((

q

w

)

· wr log n
)

= O
((qe

w

)w
wr log n

)

= O
(

(ce)wrw+1log n
)

that can be constructed in linear time in its size.
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5.5 Separating Hash Family

Here we prove the following

Theorem 5. Let q′ > q > D2. Let S ⊂ F
n
q′ be a hitting set for HD2. Then

M(n, q, {d1, d2, . . . , dr}) ≤ M(q′, q, {d1, d2, . . . , dr}) · |S|.

In particular, for any constant c > 1 and q > D2, the following (M ;n, q
, {d1, d2, . . . , dr}) separating hash family can be constructed in linear time

poly time. Upper Lower
n q Size = O( ) Bound Bound

all q ≥ (D2 + 1)c D2
logn
log q D1

logn
log q D1

logn
log q

all q ≥ c(D2 + 1) D2log n D1log n D1
logn
log q

all q ≥ D2 + 2 D3
2log n D1 log n D1

logn
log q

and an (M ;n, r, {d1, d2, . . . , dr}) separating hash family of size

(

cD2

d1 d2 · · · dr

)

D2 log n,

can be constructed in time linear in the construction size.

Proof. Consider the set of functions

F = {∆(C1,...,Cr)(x1, . . . , xn) | C1, . . . , Cd are pairwise disjoint, |Ci| = di}

in Fq[x1, x2, . . . , xn] where

∆(C1,...,Cr) =
∏

1≤k<j≤r

∏

i1∈Ck,i2∈Cj

(xi1 − xi2).

The proof then proceeds as the proof of Theorem 4 and 1.

6 Open Problems

Here we give some open problems

1. Find a polynomial time almost optimal (within poly(d)) construction
of (n, q, d)-PHF for q = o(d2). Using the techniques in [30] it is easy to
give an almost optimal construction for (n, q, d)-PHF when q = d2/c
for any constant c > 1. Unfortunately the size of the construction is
within a factor of dO(c) of the lower bound.
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2. In this paper we gave a construction of (n, (w, r))-CFF of size

min((2e)wrw+1, (2e)rwr+1) log n

=

(

w + r

r

)

2min(w logw,r log r)(1+o(1)) log n (3)

that can be constructed in linear time. Fomin et. al. in [18] gave a
construction of size

(

w + r

r

)

2
O
(

r+w
log log(r+w)

)

log n (4)

that can be constructed in linear time. The former bound, (3), is better
than the latter when w ≥ r log r log log r or r ≥ w logw log logw. We
also note that the former bound, (3), is almost optimal, i.e.,

(

w + r

r

)1+o(1)

log n = N1+o(1) log n,

where N log n is the optimal size, when r = wω(1) or r = wo(1) and the
latter bound, (4), is almost optimal when

o(w log logw log log logw) = r = ω

(

w

log logw log log logw

)

.

Find a polynomial time almost optimal (within No(1)) construction for
(w, r)-CFF when w = ω(1).

3. A construction is global explicit if it runs in deterministic polynomial
time in the size of the construction. A local explicit construction is
a construction where one can find any bit in the construction in time
poly-log in the size of the construction. The constructions in this paper
are linear time global explicit constructions. It is interesting to find
local explicit constructions that are almost optimal.
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[14] A. G. Dýachkov and V. V. Rykov. Bounds on the length of disjunctive
codes. Problemy Peredachi Inf, 18(3), pp. 7–13. (1982).
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