Skip to main content

Improving Hausdorff Edit Distance Using Structural Node Context

  • Conference paper
Book cover Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

In order to cope with the exponential time complexity of graph edit distance, several polynomial-time approximation algorithms have been proposed in recent years. The Hausdorff edit distance is a quadratic-time matching procedure for labeled graphs which reduces the edit distance to a correspondence problem between local substructures. In its original formulation, nodes and their adjacent edges have been considered as local substructures. In this paper, we integrate a more general structural node context into the matching procedure based on hierarchical subgraphs. In an experimental evaluation on diverse graph data sets, we demonstrate that the proposed generalization of Hausdorff edit distance can significantly improve the accuracy of graph classification while maintaining low computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S., Smola, A., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(1), 47–56 (2005)

    Article  Google Scholar 

  2. Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  3. Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of web documents using graph matching. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 475–496 (2004)

    Article  Google Scholar 

  4. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  5. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  6. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Analysis and Applications 7(3), 243–254 (2004)

    Article  MathSciNet  Google Scholar 

  8. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3), 353–363 (1983)

    Article  MATH  Google Scholar 

  9. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)

    Article  MATH  Google Scholar 

  10. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the Association for Computing Machinery 21(1), 168–173 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

    Article  Google Scholar 

  12. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)

    Article  Google Scholar 

  13. Riesen, K., Fischer, A., Bunke, H.: Estimating graph edit distance using lower and upper bounds of bipartite approximations. Int. Journal of Pattern Recognition and Artificial Intelligence 29(2), 1–27 (2015)

    Article  MathSciNet  Google Scholar 

  14. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognition Letters 45, 244–250 (2014)

    Article  Google Scholar 

  15. Fischer, A., Suen, C., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recognition 48(2), 331–343 (2015)

    Article  Google Scholar 

  16. Huttenlocher, D.P., Klanderman, G.A., Kl, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)

    Article  Google Scholar 

  17. Raveaux, R., Burie, J., Ogier, J.: A graph matching method and a graph matching distance based on subgraph assignments. Pattern Recognition Letters 31(5), 394–406 (2010)

    Article  Google Scholar 

  18. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit distance computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fischer, A., Uchida, S., Frinken, V., Riesen, K., Bunke, H. (2015). Improving Hausdorff Edit Distance Using Structural Node Context. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics