Skip to main content

Spatial Selectivity Estimation for Web Searching

  • Conference paper
  • First Online:
  • 632 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9080))

Abstract

Estimating how many records qualify for a spatial predicate is crucial when choosing a cost-effective query execution plan, especially in presence of extra non-spatial criteria. The challenge is far bigger with geospatial data on the Web, as information is inherently disparate in many sites and effective search should avoid transmission of large datasets. Our idea is that fast, succinct, yet reliable estimates of spatial selectivity could incur significant reduction in query execution costs. Towards this goal, we examine variants of well known spatial indices enhanced with data distribution statistics, essentially building spatial histograms. We compare these methods in terms of performance and estimation accuracy over real datasets and query workloads of varying range. Our empirical study exhibits their pros and cons and confirms the potential of spatial histograms for optimized search on the Web of Data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity Estimation in Spatial Databases. In: ACM SIGMOD, pp. 13–24, June 1999

    Google Scholar 

  2. Bamba, B., Ravada, S., Hu, Y., Anderson, R.: Statistics Collection in Oracle Spatial and Graph: Fast Histogram Construction for Complex Geometry Objects. PVLDB 6(11), 1021–1032 (2013)

    Google Scholar 

  3. Battle, R., Kolas, D.: GeoSPARQL: Enabling a Geospatial Semantic Web. Semantic Web Journal 3(4), 355–370 (2012)

    Google Scholar 

  4. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322–331 (1990)

    Google Scholar 

  5. Beigel, R., Tanin, E.: The geometry of browsing. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 331–340. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geometry - algorithms and applications, 2nd edn. Springer-Verlag (2000)

    Google Scholar 

  7. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. IJSWIS 5(3), 1–22 (2009)

    Google Scholar 

  8. Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial query processing into native RDF triple stores. In: ACM GIS, pp. 33–42, November 2010

    Google Scholar 

  9. Eavis, T., Lopez, A.: rK-Hist: an R-tree based histogram for multi-dimensional selectivity estimation. In: CIKM, pp. 475–484 (2007)

    Google Scholar 

  10. Gaede, V., Günther, O.: Multidimensional Access Methods. ACM Computing Surveys 30(2), 170–231 (1998)

    Article  Google Scholar 

  11. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospatial RDF stores. In: ISWC, pp. 343–359, October 2013

    Google Scholar 

  12. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: ACM SIGMOD, pp. 47–57, June 1984

    Google Scholar 

  13. Ioannidis, Y.: The history of histograms (abridged). In: VLDB, pp. 19–30 (2003)

    Google Scholar 

  14. Kedem, G.: The quad-CIF tree: a data structure for hierarchical on-line algorithms. In: DAC, pp. 352–357 (1982)

    Google Scholar 

  15. Liagouris, J., Mamoulis, N., Bouros, P., Terrovitis, M.: An Effective Encoding Scheme for Spatial RDF Data. PVLDB 7(12), 1271–1282 (2014)

    Google Scholar 

  16. Lin, X., Liu, Q., Yuan, Y., Zhou, X.: Multiscale Histograms: summarizing topological relations in large spatial datasets. In: VLDB, pp. 814–825 (2003)

    Google Scholar 

  17. OGC Inc., GeoSPARQL Standard - A Geographic Query Language for RDF Data. URL: https://portal.opengeospatial.org/files/?artifact_id=47664

  18. OpenStreetMap project. URL: http://www.openstreetmap.org/

  19. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Resource Description Framework. URL: http://www.w3.org/TR/rdf-primer/

  21. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases: with Application to GIS. Morgan-Kaufmann, San Fransisco (2002)

    Google Scholar 

  22. Roh, Y.J., Kim, J.H., Son, J.H., Kim, M.H.: Efficient Construction of Histograms for Multidimensional Data using Quad-trees. Elsevier DSS 52(1), 82–94 (2011)

    Google Scholar 

  23. Samet, H.: The Quadtree and Related Hierarchical Data Structures. ACM Computing Surveys 16(2), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  24. Shagam, J., Pfeiffer, J.: Dynamic Irregular Octrees. Technical Report, New Mexico State University (2003)

    Google Scholar 

  25. Šidlauskas, D., Šaltenis, S., Christiansen, C., Johansen, J., Šaulys, D.: Trees or grids? indexing moving objects in main memory. In: ACM GIS, pp. 236–245 (2009)

    Google Scholar 

  26. SPARQL 1.1 Query Language. URL: http://www.w3.org/TR/sparql11-query/

  27. Sun, C., Agrawal, D.P., El Abbadi, A.: Selectivity estimation for spatial joins with geometric selections. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 609–626. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Tan, K.-L., Ooi, B.C., Abel, D.J.: Exploiting Spatial Indexes for Semijoin-based Join Processing in Distributed Spatial Databases. TKDE 12(6), 920–937 (2000)

    Google Scholar 

  29. Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual indexing for geographical search on the web. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Zaamout, S., Osborn, W.: A strategy for optimizing a multi-site query in a distributed spatial database. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013. LNCS, vol. 7820, pp. 16–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Patroumpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Patroumpas, K. (2015). Spatial Selectivity Estimation for Web Searching. In: Gensel, J., Tomko, M. (eds) Web and Wireless Geographical Information Systems. W2GIS 2015. Lecture Notes in Computer Science(), vol 9080. Springer, Cham. https://doi.org/10.1007/978-3-319-18251-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18251-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18250-6

  • Online ISBN: 978-3-319-18251-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics