
ar
X

iv
:1

31
0.

49
35

v1
 [

cs
.D

C
]

18
 O

ct
 2

01
3 Online Packet Scheduling

under Adversarial Jamming∗

Tomasz Jurdzinski† Dariusz R. Kowalski‡ Krzysztof Lorys†

Abstract
We consider the problem of scheduling packets of different lengths via a

directed communication link prone to jamming errors. Dynamic packet ar-
rivals and errors are modelled by an adversary. We focus on estimating rela-
tive throughput of online scheduling algorithms, that is, the ratio between the
throughputs achieved by the algorithm and the best scheduling for the same
arrival and error patterns. This framework allows more accurate analysis of
performance of online scheduling algorithms, even in worst-case arrival and
error scenarios. We design an online algorithm for scheduling packets of ar-
bitrary lengths, achieving optimal relative throughput in(1/3, 1/2] (the exact
value depends on packet lengths). In other words, for any arrival and jam-
ming patterns, our solution gives throughput which is no more thanc times
worse than the best possible scheduling for these patters, wherec ∈ [2, 3)
is the inverse of relative throughput. Another algorithm wedesign makes
use of additional resources in order to achieve relative throughput1, that is,
it achieves at least as high throughput as the best schedule without such re-
sources, for any arrival and jamming patterns. More precisely, we show that
if the algorithm can run with double speed, i.e., with twice higher frequency,
then its relative throughput is1. This demonstrates that throughput of the
best online scheduling algorithms scales well with resource augmentation.
Keywords: Packet scheduling, Dynamic packet arrivals, Adversarial jam-
ming, Online algorithms, Relative throughput, Resource augmentation.

1 Introduction

Motivation. Achieving high-level reliability in packet scheduling hasrecently be-
come more and more important due to substantial increase of the scale of networks

†Institute of Computer Science, University of Wrocław, Poland.
‡Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK.
∗This work was supported by the Polish National Science Centre grant DEC-

2012/06/M/ST6/00459.

http://arxiv.org/abs/1310.4935v1

and higher fault-tolerant demands of many incoming applications. In the era of
Internet of Things and nano-devices, it will no longer be possible to attend de-
vices physically, and therefore the designed protocols must be stable and robust
no matter of failure pattern. Imagine the problem of thousands of malfunctioning
nano-capsules with overflown buffers that need to be somehowremoved from the
human body, or the consequences of lack of communication between AVs with
humans onboard or medical devices incorporated into patients bodies, even if such
case might happen with probability less than1%.

Our Approach. This paper studies a fundamental problem of online packet schedul-
ing via unreliable link (also called a channel), when transmitted packets may be
interrupted byunrestrictedjamming errors. This problem was recently introduced
in [4] and analyzed for two different packet lengths. Packets arrive dynamically to
one end of the link, called a sender, and need to be transmitted in full, i.e., without
any in-between jamming error, to the other end (called a receiver). Jamming er-
rors are immediately discovered by the sender. We analyze all possible scenarios,
including worst case ones, which we model as a conceptually adversary who con-
trols both packet arrivals and channel jamming. The adversary is unrestricted, in
the sense that she may generateanyarrival and error pattern. The main objective of
the online scheduling protocol is to achieve as high throughput as possible under
current scenario. In particular, we consider the measure called relative throughput,
which is a long-term form of competitive ratio between the throughput achieved by
the online algorithm and the one reached by optimum offline scheduling solution
(i.e., under the knowledge of adversarial arrivals and errors).

Our Contribution. We design a deterministic online scheduling algorithm achiev-
ing optimal relative throughput for an arbitrary numberk of packet lengthsℓmin =
ℓ1 < ℓ2 < . . . < ℓk = ℓmax (Section 3). We first show a simpler version of
the algorithm, for the case when packet lengths are pairwisedivisible (any larger
is divisible by any smaller), in order to demonstrate high-level ideas and analysis
leading to related throughput1/2. We then extend the protocol so that it does not
need to rely on such limitation about divisibility, and achieves the relative through-

putmin1≤j<i≤k

{

⌊ρi,j⌋
⌊ρi,j⌋+ρi,j

}

, whereρi,j = ℓi/ℓj is the ratio between thei-th and

the j-th packet length. Note that this general formula for relative throughput is
in the range(1/3, 1/2], and it reaches1/2 if and only if the pairwise divisibility
condition holds.

Unfortunately, the designed protocol does not achieve relative throughput1 if
the speed-up2 is applied (it can be easily checked that the relative throughput is
at most2/3 in such case), which implies that it is not well-scalable with resource
augmentation.1 Therefore we design another deterministic online protocolto op-

1Note that the considered speed-up2 is chosen because we claim linear scalability of relative

1

timize relative throughput for speedup2 (Section 4). It is a generalisation of the
preamble protocols proposed in [4] and [5] in the case of two packet lengths.

More details can be found in the full draft of the paper [7].

Previous and related work. Packet scheduling [9] is one of the most fundamen-
tal problems in computer networks. A realistic approach involvesonlineschedul-
ing [6, 11], and therefore acompetitive analysis[1, 14] is often used to evaluate the
performance of proposed solutions. Online scheduling was considered in a number
of models; for more information the reader is referred to [10] and [11].

The framework considered in this work was recently introduced in [4]. The au-
thors showed that general offline version of this problem, inwhich the scheduling
algorithm knows a priori when errors will occur, is NP-hard.They also consid-
ered algorithms and upper limitations for relative throughput in case oftwopacket
lengths. In particular, they proved that relative throughput of anyonline schedul-
ing protocol cannot be bigger thanρ/(ρ + ρ), whereρ is the ratio between the
bigger and the smaller packet length andρ = ⌊ρ⌋. (Note that the upper bound
becomes1/2 if the bigger packet length is a multiplicity of the smaller packet
length.) This upper bound can be achieved by a protocol scheduling a specific
preamble of shorter packets followed by the LongestFirst rule after every error,
but cannot be reached by simpler protocols such as LongestFirst itself or Short-
est First (in fact, the relative throughputs of the latter protocols are far worse than
1/2: 0 and1/(1+ρ), respectively, and thus they are not very reliable). Therefore, it
remained open whether there is an online scheduling protocol reaching the relative
throughput of (roughly)1/2 for arbitrary number of packet lengths; we answer this
question in affirmative in this work. Moreover, as also shownin [4], randomization
does not help, which motivates our study of deterministic algorithms.

In [5], the authors studied buffer sizes of online scheduling protocols on error-
prone channel. Unlike the relative throughput measure, in order to be positively
competitive with the best scheduling algorithms with respect to the buffer sizes,
additional resources need to be given to the online protocol, i.e., speed-up (higher
frequency). This form of resource allocation appeared to beefficient: for some
speed-up smaller than2 there is a deterministic online scheduling algorithm having
roughly the same queue sizes as any other scheduling algorithm running without
speed-up. That work motivated us to consider resource augmentation technique,
in the form of using some speed-up (higher frequency), to reach at least the same
throughput as the best scheduler without speed-up foreveryexecution.

Wireless packet scheduling was also considered in models with physical con-
straints included, such as radio networks or SINR. Anantharamu et al. [2] consid-

throughput with the increase of speed-up, that is, startingfrom level1/2 with no speed-up we expect
the relative throughput to reach value1 for speed-up2.

2

ered packet scheduling on a multiple access channel with signal interference, under
a restricted adversarial patterns of packet arrivals and channel jamming. Kessel-
heim [8] considered packet scheduling problem in the SINR model, for both ad-
versarial and stochastic arrivals, but with no errors. Bothpapers studied stronger
objective measure: maximum time from packet arrival to successful delivery. In
this line of research, the most relevant direction was takenby Richa et al. [13] who
analyzed competitive throughput of randomized schedulingprotocols on multiple
access channels with signal interference againstadaptive, but still restricted, ad-
versarial jamming. Therefore, the results obtained in this line of work cannotbe
directly comparable with ours, mainly because of assuming restricted arrival and
jamming patterns.

Andrews and Zhang [3] studied buffer stability (i.e., bounded buffers property)
of online packet scheduling on a wireless channel, where both the channel con-
ditions and the data arrivals are controlled by an adversary. They also assumed
bounded adversary, as otherwise stability could not be reached.

Our framework could also be applied to other types of channelerrors, as long as
the feedback is immediately delivered to the sender, e.g., to the emerging Continu-
ous Error Detection (CED) framework [12] that uses arithmetic coding to provide
continuous error detection.

2 Model

We consider a uni-directional point-to-point link in whichone end point, called a
sender, transmits packets to the other end point, called areceiver. The sender is
equipped with unlimited buffer, in which the arriving packets are queued. Packets
may be of different lengths, and may arrive at any time; we assume that time is
continuous, and scheduling algorithm have access to packets as soon as they arrive.
There arek ≥ 2 different packet lengths, denoted byℓmin = ℓ1 < ℓ2 < . . . <
ℓk = ℓmax. For simplicity, we will use the names “ℓi-packets” and “packetsℓi” for
packets of lengthℓi, for any1 ≤ i ≤ k. For clarity of presentation, we assume
in some parts of the paper thatℓi/ℓj is an integer for any1 ≤ j < i ≤ k (so
called pairwise divisibility property). We denoteρ = ℓmax/ℓmin. We assume
that all packets are transmitted at the same bit rate, hence the transmission time is
proportional to the packet’s length. The link is prone to jamming errors, that is,
transmitted packets might be corrupted at any time point.

Arrival models. We consider adversarial packet arrivals: the packets’ arrival time
and length are governed by an adversary. We define an adversarial arrival pattern
as a collection of packet arrivals caused by the adversary.

Link jamming errors. We consider adversarial model of jamming errors, in which

3

the adversary decides at which time to cause a jamming error on the link. The er-
ror at timet implies that any packet being transmitted at timet is broken, and the
information about it is immediately delivered to the senderso that it breaks the cur-
rent transmission and could schedule another packet (or re-schedule the one that
was just broken). A corrupted packet transmission is unsuccessful, in the sense
that it is not received by the receiver and it needs to be retransmitted in full (not
necessarily right after the error — scheduling algorithm may decide to postpone
it and transmit another packet instead); otherwise it is understood as not (success-
fully) transmitted. We assume that scheduling algorithms do not voluntarily stop
transmitting packets before the end of the transmission, unless they get feedback
about jamming error. An adversarial error pattern is definedas a collection of error
events on the link caused by the adversary.

Adversarial models are typically used to argue about the algorithm’s behavior
in any possible scenario, in particular, in the worst-case ones.

Efficiency metric: Relative throughput. We would like to measure throughput of
the communication link. However, due to adversarial errors, the real link capacity
may vary in time, and moreover, due to adversarial packet arrivals, the stream of
packets may not be regular or saturated. Therefore, following [4], we pursue a
long-term competitive analysis. LetA be an arrival pattern andE an error pattern.
For a given deterministic algorithm ALG, letLALG(A, E , t) be the total length of
all the successfully transferred (i.e., non-corrupted) packets by timet under arrival
patternA and error patternE . Let OPT be the offline optimal algorithm that knows
the exact arrival and error patterns, as well as the online algorithm, before the start
of the execution. We assume that OPT devises an optimal schedule that minimises
the asymptotic ratio (i.e., with time growing to infinity) between the total length of
packet transmitted by the online algorithm and the total length of packet transmitted
by itself.

We require that any pair of patternsA, E occurring in an execution must allow
non-trivial communication, i.e., the value ofLOPT (A, E , t) in the execution is
unbounded witht going to infinity.

For arrival patternA, adversarial error patternE and timet, we define the
relative throughputTALG(A, E , t) of a deterministic algorithmALG by timet as:

TALG(A, E , t) =
LALG(A, E , t)

LOPT (A, E , t)
.

For completeness,TALG(A, E , t) equals 1 ifLALG(A, E , t) = LOPT (A, E , t) = 0.
We define therelative throughputof ALG in the adversarial arrival model as:

TALG = inf
A,E

lim
t→∞

TALG(A, E , t) . (1)

4

In the analysis of lower and upper bound on relative throughput, we usually fo-
cus on comparison of the number of successful transmissionsof packets, weighted
by packet lengths, for periods aftersufficiently largetimet. This is because the per-
formances of online and optimal algorithms in a fixed prefix oftime are negligible
from perspective of the definition of relative throughput given in Equation (1).

Resource augmentation — speed-up.In the second part of the paper, in Sec-
tion 4, we consider resource augmentation technique. This technique was recently
applied to fault-tolerant scheduling in [5] in the context of buffer stability met-
ric. In particular, we compare the throughput of a given online algorithm under
the assumption that this algorithm is run with a certain speed-up s > 1, with the
throughput of the best scheduling algorithm run without anyspeed-up. From tech-
nical perspective, computing of the relative throughput under speed-ups > 1 fol-
lows the same definitions as given above, with the only difference that the value of
LALG(A, E , t) is calculated under assumption thatALG transmits packetss times
faster.

3 Packet Scheduling fork packet lengths

In this section we present online algorithm, which is optimal for any number of
packet lengthsk ≥ 2. First, for the ease of presentation, we present algorithm
Greedy under assumption thatℓi/ℓi−1 ∈ N for 1 < i < k. Later, in Section 3.1, we
show how to remove this assumption by modifying algorithm Greedy; the resulted
algorithm is called MGreedy.

The main idea behind our algorithms is to keep transmitting as many short
packets as possible (shortest-first strategy), subject to some balancing constraints.
Observe that it is difficult for any offline algorithm OFF to get advantage over any
online algorithm ALG when ALG sends small packets. Thus, preference for small
packets ensures that ALG can be competitive against OFF, as long as it has short
packets. However, if OFF transmits large packets during transmission of small
packets by ALG, it can afterwards transmit small packets when ALG does not
have any of them in its queue. Simultaneously, when OFF is transmitting small
packets, ADV can generate errors preventing ALG from successful transmission
of large packets. Despite this disadvantage of a greedy approach, we show that
an appropriate implementation of this strategy, using somebalancing constraints,
provides an optimal solution with respect to relative throughput, and thus against
any optimal way of scheduling under occurring arrival and failure patterns.

Our specific modification of the greedy shortest-first strategy is based on send-
ing packets in groups, which altogether balance the length of the next larger packet.
We explain it in detail first for two types of packet lengths:ℓmin andℓmax. If there

5

are at leastρ = ℓmax/ℓmin small packets in the queue, the algorithm builds agroup
which consists ofρ of them and keeps sending them until all of them are transmit-
ted successfully. If there are less thanρ small packets in the queue at the moment
when a transmission of a group is finished, a large packet is transmitted. However,
whenever there are at leastρ small packets, the group of small packets is formed,
independently of the fact whether a transmission of a large packet(s) is successful
or not. This idea is then recursively applied for the case when there arek > 2 types
of packets. A pseudo-code of our greedy algorithm is presented as Algorithm 1,
with its recursive subroutine given as Algorithm 2.

Algorithm 1 Greedy
1: loop
2: while

∑k
i=1 ℓini < ℓk do Stayidle

3: Transmit-group(k)

Algorithm 2 Transmit-group(j)
1: loop
2: if

∑j−1
i=1 ℓini ≥ ℓj then

3: for a = 1 to ℓj/ℓj−1 do Transmit-group(j − 1)
return

4: Transmitℓj; If the transmission is successful:return

In the pseudo-codes,ni denotes the number of packetsℓi which are currently
(at the moment) waiting in the queue for transmission.

Performance analysis of algorithm Greedy.
For the sake of analysis of algorithm Greedy, we introduce some new nota-

tions. First, let us assume that an arrival pattern and an injection pattern are chosen
arbitrarily and are fixed, so we could omit them from formulasin the further anal-
ysis. For an algorithmA, let qA(i, t) denote the sum of lengths ofℓi-packets in
the queue ofA at the momentt. That is,qA(i, t) = ni · ℓi for a fixed timet.
Moreover, letqA(< i, t) =

∑

j<i qA(j, t) and we defineqA(≤ i, t) analogously.
Let LA(i, t) denote the length of packetsℓi successfully transmitted by timet.
For a time periodτ = [t1, t2], let LA(i, τ) = LA(i, t2) − LA(i, t1). That is,
LA(i, τ) denotes the number ofℓi-packets successfully transmitted in the interval
τ . The notionsLA(< i, t), LA(≤ i, t), LA(< i, τ), andLA(≤ i, τ) for time t
and time intervalτ are defined analogously toqA(< i, t), qA(≤ i, t), qA(< i, τ)
andqA(≤ i, τ). We also use the above introduced notations without the firstargu-
ment, i.e.,qA(t), qA(τ), LA(t), andLA(τ), which are shorthands forqA(≤ k, t),
qA(≤ k, τ), LA(≤ k, t) andLA(≤ k, τ), respectively.

6

An algorithmA is busyat timet if it is transmitting a packet att, it has just
finished a successful transmission, or its transmission is jammed by an error att.
OtherwiseA is idle at t.

Our goal is to compare progress in sending packets of our algorithm Greedy
and an algorithm achieving the optimal throughput, denotedas OFF. We say that
an algorithmA is m-busyin a time periodτ = [t1, t2] if the following conditions
are satisfied:

1. A is busy at each timet ∈ τ ;

2. A does not transmit packetsℓi for i > m duringτ ;

3. qA(i, t1) ≥ qOFF (i, t1) for eachi ∈ [m]. (That is, at timet1 A has no less
packets of lengthℓi in its queue than OFF, for eachi ≤ m.)

Now, we prove technical results regarding periods in which Greedy ism-busy
for somem ∈ [k]. These lemmas eventually lead to the proof of the fact that
relative throughput of Greedy is1/2 (providedℓi/ℓi−1 ∈ N for i ∈ [2, k]), which
is optimal. First, we make an observation that, if Greedy does not use packets
longer thanℓm for m ∈ [k], then the total length of packets transmitted by Greedy
is at least as large as the total length of packets of length atleastℓm transmitted by
OFF.

Lemma 1. Assume that Greedy ism-busy in a time periodτ , m ≤ k. Then,
LGreedy(τ) ≥ LOFF (≥ m, τ)− ℓk.

Proof. Consider any packetℓi for i ≥ m successfully transmitted by OFF in the
period [t, t + ℓi] ⊆ τ . According to the assumptions, Greedy does not send any
packetsℓj for j > m in τ and it is busy at each timet′ ∈ τ . Therefore, Greedy
finishes transmissions ofℓi/ℓm groups of packets of lengthℓm in the period[t, t+
ℓi]. Thus, by assigning each groupG of packets of lengthℓm transmitted by Greedy
to a packet transmitted by OFF at the moment when the last packet ofG is finished,
we obtain the result of the lemma. The “−ℓk” reduction in the formula is needed in
order to take into account the packet (if any) which OFF started transmitting before
τ and finished inτ .

Next, we formulate a relationship between the length of packets transmitted by
Greedy and OFF up to the moment when Greedy is transmitting the longest packet
used by itself in the computation.

Lemma 2. Assume that Greedy ism-busy in a time periodτ = [t1, t2], m ≤ k.
Let t ∈ τ be any time at which Greedy starts transmittingℓm. Then,

2LGreedy([t1, t]) ≥ LOFF ([t1, t]) + qOFF (< m, t)− ℓm − ℓk.

7

Proof. The idea is that each packetp successfully transmitted by Greedy is associ-
ated to:

(a) transmission ofp by OFF;

(b) transmission of a packetℓi for i ≥ m by OFF which lasted while the group
G of lengthℓi containingp was finished by Greedy.

This association guarantees that:

• each packetℓi, for i > m, transmitted by OFF has an association (of type
(b)) with a group of packets of lengthsℓi transmitted by Greedy;

• each packetℓi, for i ≤ m, transmitted by OFF has an association (of type
(a)) with its transmission by Greedy, provided Greedy transmitted this packet
successfully as well.

On the other hand, each packetp successfully transmitted by Greedy corresponds
to successful transmissions of OFF with length at most twicethe length ofp. How-
ever, packets which are successfully transmitted by Greedyin [t1, t] and are not
transmitted by OFF in[t1, t] “pay” for transmissions of OFF only once, i.e., are
associated to a packetℓi, for i > m, transmitted by OFF but not to transmissions
of themselves by OFF. As Greedy tries transmittingℓm at timet only in the case
whenqGreedy(< m, t) < ℓm, the claimed result holds.

The “−ℓk” reduction in the formula is needed in order to take into account the
packet which OFF started transmitting beforeτ and finished inτ .

Using previous lemmas, we prove by induction a relationshipbetweenLGreedy(τ)
andLOFF (τ) for periodsτ which arem-busy for Greedy, wherem ∈ [k].

Lemma 3. Assume that Greedy ism-busy in a time periodτ , for m ≤ k. Then,

2LGreedy(τ) ≥ LOFF (τ)− fm

wherefm satisfies the relationshipsf1 = ℓk andfi+1 = fi + 3ℓi+1 + ℓi + ℓk for
i ∈ [1, k − 1].

Proof. The proof goes by induction with respect tom. Form = 1 the result is an
immediate consequence of Lemma 1.

For the inductive step, assume that the result holds for somem < k. We will
show the correctness of the result for the case when the longest packet sent by
Greedy inτ is ℓm+1. We splitτ into three subintervals:

• τ1 from the beginning ofτ to time t at which Greedy starts (an attempt to)
transmittingℓm+1 for the last time duringτ ;

8

• τ2 from t to t′ ∈ τ such that either Greedy finishes a successful transmission
of ℓm+1 at t′ or it gives up scheduling packetsℓm+1 at t′ (since it has enough
shorter packets in the queue att′ to cover the lengthℓm+1);

• τ3 from t′ to the end ofτ .

Lemma 2 implies that

2LGreedy(τ1) ≥ LOFF (τ1) + qOFF (< m+ 1, t)− ℓm+1 − ℓk,

wheret is the moment whenτ1 ends. Consider OFF’ which acts inτ2 andτ3 as
OFF, however: it startsτ2 without packets of lengthℓi for eachi < m + 1, and
it stays idle each time OFF is transmitting a packet which wasin its queue at the
beginning ofτ2 and therefore it was not in the queue of OFF’.

Note that Greedy finishes an attempt to transmit a packetℓm+1 not later than
at the moment when it successfully transmits packetℓm+1 or new packets shorter
thanℓm+1 of overall length at leastℓm+1 are inserted in the queue and error occurs.
Observe also that OFF’ starts time intervalτ2 with an empty queue and it cannot
finish transmitting a packetℓi, for i > m+1, in τ2 (if a time period of lengthℓm+1

without error occurs,τ2 is finished by its definition). Thus,

LGreedy(τ2) ≥ LOFF ′(τ2)− 2ℓm+1 ,

since new packets inserted duringτ2 and transmitted by OFF’ have length< ℓm+1:

• packets of length smaller thanℓm+1 are inserted until the beginning of the
last attempt to sendℓm+1 by Greedy inτ2;

• packets of length at mostℓm+1 are successfully transmitted by OFF’ during
the last attempt to sendℓm+1 by Greedy, since this attempt takes a time
period of length at mostℓm+1.

At the beginning ofτ3, it holds thatqGreedy(i, t
′) ≥ qOFF ′(i, t′) for i ≤ m, since

Greedy attempted only transmitting one copy ofℓm+1 duringτ2.
Therefore, the inductive hypothesis apply to the periodτ3 for the largest packet

ℓm and OFF’ in place of OFF:

2LGreedy(τ3) ≥ LOFF ′(τ3)− fm .

Next, recall that OFF’ differs from OFF only such that it doesnot transmit packets
of lengths smaller thanℓm+1, which appear in the queue of OFF at timet, of total
lengthqOFF ′(< m+ 1, t). Thus,

LOFF ′(τ2 ∪ τ3) ≥ LOFF (τ2 ∪ τ3)− qOFF (< m+ 1, t) .

9

All these inequalities summed up and combined with the fact thatLGreedy(τ) =
LGreedy(τ1) + LGreedy(τ2 ∪ τ3) yield:

2LGreedy(τ) ≥ LOFF (τ1) + (qOFF (< m+ 1, t) − ℓm+1

−ℓk) + LOFF ′(τ2 ∪ τ3)− fm − 2ℓm+1

≥ LOFF (τ)− fm − 3ℓm+1 − ℓm − ℓk
≥ LOFF (τ)− fm+1 .

Theorem 1. The relative throughput of Greedy is equal to1/2, providedli/li−1 ∈
N for eachi ∈ [2, k].

Proof. Lemma 3 implies that the relative throughput gets arbitrarily close to1/2
on sufficiently long time intervals in which Greedy is busy and OFF starts with
the queue containing smaller or equal number of packets of each size. On the
other hand, Greedy gets idle only in the case when its queue isalmost empty,
i.e., contains packets of length< ℓk, which means that its relative throughput is
arbitrarily close to1 in such a momentt, providedt is large enough.

The theorem holds by combining these two observations:

• It holds at the moments when Greedy is idle.

• We can assume that OFF has empty queues at the moments when Greedy
starts being idle — this assumption does not improve relative throughput of
Greedy (we allow OFF to transmit all packets from its queue immediately in
a period of length0). Thus, the assumption of Lemma 3 is satisfied when
Greedy starts transmitting after being idle. Therefore, the relative throughput
of Greedy gets arbitrary close to12 in sufficiently large periods in which
Greedy is not idle.

Corollary 1. The algorithm Greedy achieves optimal relative throughputfor pack-
ets’ lengthsℓ1 < . . . < ℓk such thatℓi/ℓi−1 ∈ N for eachi ∈ [2, k].

Proof. It is shown in [4] that relative throughput of any online algorithm for two
types of packets is at most

⌈ℓ2/ℓ1⌉

⌈ℓ2/ℓ1⌉+ ℓ2/ℓ1

which is equal to1
2 when ℓ2/ℓ1 ∈ N. As an adversary can decide to schedule

merely two types of packets among availablek types, Theorem 1 implies optimality
of relative throughput of Greedy.

10

3.1 Arbitrary lengths of packets

In this section we discuss an application of the ideas behindthe algorithm Greedy
to the general case, i.e., when the conditionℓi/ℓi−1 ∈ N is not satisfied. Let
ρi,j = ℓi/ℓj . A natural generalization of Greedy is that, instead ofρi groups of
packets of lengthℓi−1 on thei-th level of recursion, we choose⌊ρi,i−1⌋ groups of
packets of length (as close as possible to)ℓi−1 in order to “cover”ℓi. If the length
of a group of packets on thei-th level of recursion is not larger thanℓi+1, we can
apply the ideas of “covering” packets transmitted by OFF using groups of packets
transmitted by Greedy. Ifk = 2, this approach gives an algorithm with relative
throughput ⌊ρ2,1⌋

⌊ρ2,1⌋+ρ2,1
, which is optimal due to [4]. This naturally generalizes to

the following result.

Theorem 2. The relative throughput of any online scheduling algorithmis at most

min
1≤j<i≤k

{

⌊ρi,j⌋

⌊ρi,j⌋+ ρi,j

}

.

Proof. This result easily follows from Theorem 1 in [4]. Indeed, if the adversary
schedules merely packetsℓi andℓj, for i, j minimizing the expression ⌊ρi,j⌋

⌊ρi,j⌋+ρi,j
,

the strategy described in the proof of Theorem 1 in [4] gives our result.

However, fork > 2, the additional advantage of OFF over Greedy following
from rounding on various levels of recursion can accumulate. In order to limit this
effect, instead of transmitting⌊ℓi/ℓi−1⌋ groups of packets on the leveli − 1, we
keep sending groups on the leveli−1 as long as the sum of lengths of packets from
the transmitted groups is not larger thanℓi−ℓi−1. This gives the following technical
result. (For simplifying the arguments in the remaining part of the analysis, let us
denoteρi,i−1 = ℓi/ℓi−1 by simplyρi, for i ∈ [2, k].)

Lemma 4. Consider such a modification of Greedy that Transmit-group(j) keeps
calling Transmit-group(j− 1), for j > 1, as long as the total length of transmitted
packets in the current execution of Transmit-group(j) is at mostℓj − ℓj−1. The

relative throughput of this algorithm is at leastmini∈[2,k]

{

ρi−1
2ρi−1

}

.

Proof. In Lemmas 1, 2 and 3, we repeatedly use an argument that, if Greedy does
not use packets of lengthℓi for i > m, then each such packet transmitted by
OFF corresponds to a group of (shorter) packets transmittedby Greedy of total
length ℓi. This observation can be preserved for the modified Greedy algorithm
with a relaxation that a packetℓi transmitted by OFF corresponds to a group of

11

packets transmitted by Greedy of length at leastℓi−ℓi−1. This relaxation translates
inequalities from Lemmas 1, 2 and 3 to:

ρm
ρm−1 · LGreedy(τ) ≥ LOFF (≥ m, τ)− ℓk

(1 + ρm
ρm−1) · LGreedy([t1, t]) ≥ LOFF ([t1, t])+

qOFF (< m, t)− ℓm − ℓk
(1 + ρm

ρm−1) · LGreedy(τ) ≥ LOFF (τ)− fm

If we apply the above inequalities instead of those from Lemmas 1, 2 and 3 in the
proof of Theorem 1, we obtain the result claimed here.

However, as a group of packets transmitted by Greedy “covering” ℓi transmit-
ted by OFF may contain packets of various lengths, the relative throughput of the
solution from Lemma 4 is difficult to compare with the upper bound from Theo-
rem 2. In order to tackle this issue, we introduce yet anothermodification to the
algorithm.

The main goal of this modification is to ensure that Greedy is transmitting
packets of the same length for long periods of time and it changes to other length
only if it is necessary. An execution of the algorithm is split into stages. In a stage,
packets of total length (close to)ckℓk are transmitted, wherec ∈ N is a fixed large
constant. At the beginning of a stage, the setC of candidates is determined as
C = {i |niℓi ≥ ckℓk}. Then, theinterestinglengthℓi⋆ is set for parameteri⋆ =
min(C), and the algorithm starts transmitting packetsli⋆ . After each transmission,
successful or not, the interesting lengthi⋆ is updated toi⋆ ← min({i⋆}∪{i | ℓini ≥
ckℓk}). (Note that the set of candidates{i | ℓini ≥ ckℓk} may change over time,
as the adversary injects packets.)

Using the notion of the interesting length, we work in line with the original
algorithm Greedy, with the following restrictions:

• no packet is transmitted as long as the interesting length isnot determined
(i.e., the set of candidates is empty);

• only a packet of lengthli⋆ can be transmitted.

As the total length of packets staying in the queue whose lengths are not inter-
esting is at mostk · ckℓk, they do not have impact on theasymptoticvalue of the
relative throughput. Thus, assume that there are no packetsof lengths which are
not interesting at each timet. That is, there are no packets of lengthsℓi such that
i 6∈ C. Then, the new algorithm MGreedy works exactly as the original algorithm
Greedy. The pseudo-code of algorithm MGreedy and the modified sub-routine

12

Algorithm 3 MGreedy
1: C ← {i |niℓi ≥ ckℓk}
2: loop
3: while {i | ℓini ≥ ckℓk} = ∅ do Stayidle

4: C ← {i | ℓini ≥ ckℓk}
5: i⋆ ← min(C)
6: for a = 1 to ck do ℓ′ ← Transmit-group(j − 1)
7: ℓ← ℓ+ ℓ′

Algorithm 4 Transmit-group(j)
1: ℓ← 0
2: while ℓ ≤ ℓj − ℓi⋆ do
3: if j > i⋆ then ℓ′ ← Transmit-group(j − 1)
4: ℓ← ℓ+ ℓ′

5: else
6: Transmitℓj
7: C ← C ∪ {i | ℓini ≥ ckℓk}
8: i⋆ ← min(C)
9: If a transmission ofℓj successful:ℓ← ℓj

10: return ℓ

Transmit-group(j), which now returns also some valueℓ, are given as Algorithm 3
and Algorithm 4, respectively.

Performance analysis of algorithm MGreedy.
We say that an execution of Transmit-group(k) is uniform if the algorithm

transmits packets of a fixed lengthℓi during that executions of Transmit-group(k)
as well as during the executions of Transmit-group(k) directly preceding it. A
new key property of algorithm MGreedy compared with Greedy is that most of its
executions of sub-routine Transmit-group(k) are uniform.

Proposition 1. At leastck− 2k calls of Transmit-group in a stage of MGreedy are
uniform.

Proof. Observe that the value ofi⋆ can only decrease during a stage and, as long
as i⋆ remains unchanged, only packets of lengthℓi⋆ are transmitted. Therefore,
the claim follows from the fact thati⋆ may change at mostk − 1 times during a
stage.

Now, we evaluate the relative throughput of MGreedy.

13

Lemma 5. The relative throughput of the MGreedy algorithm is at least

min
1≤j<i≤k

{

⌊ρi,j⌋

⌊ρi,j⌋+ ρi,j

}

·
1

1 + 4/(cη)
,

whereη is a constant depending merely on packets’ lengths.

Proof. In Lemmas 1, 2 and 3, we repeatedly use an argument that, if Greedy does
not use packets of lengthℓi for i > m, then each such packet transmitted by
OFF corresponds to a group of (shorter) packets transmittedby Greedy of the total
lengthℓi, and this association is injective, provided Greedy is not idle at that time.
For a while, assume that each execution of Transmit-group inMGreedy is uniform.
Then, the above property of Greedy can be preserved for the MGreedy algorithm
with a relaxation that a packetp of lengthℓi transmitted by OFF corresponds to a
group of⌊ℓi/ℓj⌋ packets of lengthℓj transmitted by MGreedy forj < i. Actually,
those are the packets whose successful transmission is finished during the trans-
mission ofp. The fact that there are at least⌊ℓi/ℓj⌋ such packets follows from the
assumption that MGreedy is not idle at that time, its executions of Transmit-group
are uniform, and the time period needed for transmission of⌊ℓi/ℓj⌋ packetsℓj is
not larger thanℓi.

Letγ = min1≤j<i≤k

{

⌊ρi,j⌋
⌊ρi,j⌋+ρi,j

}

. Let δi,j =
ρi,j
⌊ρi,j⌋

and letδ = maxi>j{δi,j}.

One can check thatγ = 1/(1 + δ). This relaxation translates inequalities from
Lemmas 1, 2 and 3 to:

δ · LGreedy(τ) ≥ LOFF (≥ m, τ)− ℓk
(1 + δ) · LGreedy([t1, t]) ≥ LOFF ([t1, t])

+qOFF (< m, t)− ℓm − ℓk
(1 + δ) · LGreedy(τ) ≥ LOFF (τ)− fm

If we apply the above inequalities instead of those from Lemmas 1, 2 and 3 in the
proof of Theorem 1, we obtain the claimed result, even without the 1

1+4/(cη) factor,

since1/(1 + δ) = min1≤j<i≤k

{

⌊ρi,j⌋
⌊ρi,j⌋+ρi,j

}

.

However, the above reasoning does not deal with the situation that an execu-
tion of Transmit-group is not uniform. In such a case, we cannot associate⌊ℓi/ℓj⌋
packetsℓj to ℓi transmitted by OFF in the periodT such that their transmissions
by MGreedy were finished inT . Fortunately, by Proposition 1, only the frac-
tion 2k

ck = 2
c of calls of Transmit-group(k) are not uniform. As argued earlier in

the proof of Lemma 4, even without uniformity assumption we have the bound

LGreedy/LOFF ≥ η, whereη = mini∈[2,k]

{

ρi−1
2ρi−1

}

.

Let us split packets transmitted by OFF by timet into those whose transmis-
sion was inside periods when MGreedy works in a uniform manner, denoted by

14

LOFF,1(t), and the remaining ones, denoted byLOFF,2(t). Given the fact that the
fraction at least(1 − 2

c) of transmitted packets by MGreedy are sent in uniform
way, we have the following

limt→∞(1− 2/c) · LMGreedy(t)/LOFF,1(t) ≥ γ
limt→∞(2/c) · LMGreedy(t)/LOFF,2(t) ≥ η

The second bound implies that(2/c) · LMGreedy(t)/LOFF,2(t) ≥ η/2 for each
large enought, and thereforeLOFF,2(t) ≤ 4/(c · η)LMGreedy(t). This implies
also that eitherLMGreedy(t) > LOFF (t) or LOFF,2(t) ≤ 4/(c · η)LOFF (t)
for sufficiently larget. As the first condition implies that the relative through-
put is close to1, assume thatLOFF,2(t) ≤ 4/(c · η)LOFF (t). As LOFF (t) =
LOFF,1(t) + LOFF,2(t), this implies that

lim
t→∞

LMGreedy(t)/LOFF (t) ≥ γ ·
1

1 + 4/(cη)
.

As we can choose arbitrarily largec, Lemma 5 implies that the relative through-
put of MGreedy might be arbitrarily close to the upper bound from Theorem 2. In
the following theorem, we argue that one can modify MGreedy such that it grad-
ually increases the constantc during its execution, which guarantees the optimal
relative throughput.

Theorem 3. The optimal relative throughput of an online algorithm is equal to

min
1≤j<i≤k

{

⌊ρi,j⌋

⌊ρi,j⌋+ ρi,j

}

.

Proof. Let γ = min1≤j<i≤k

{

⌊ρi,j⌋
⌊ρi,j⌋+ρi,j

}

. By choosing sufficiently large constant

c, algorithm MGreedy can achieve the relative throughput which is arbitrarily close
to γ. More precisely, it isγc = γ · 1

1+4/(cη) . From the proofs of Lemmas 4 and 5,
one can derive a polynomialp(1/ε, c, k, ℓ1 , . . . , ℓk) such that

LMGreedy(t) ≥ (1− ε)γcLOFF (t) ,

provided MGreedy transmitted packets of length at leastp(1/ε, c, k, ℓ1, . . . , ℓk).
Using this bound, one can design an adaptive version of MGreedy which gradually
increases the value of its parameterc. The value ofc is increased to2c when
the total length of transmitted packets is long enough to guarantee that the current
relative throughput is close enough toγc for the current value ofc on one side,

15

and deterioration of the relative throughput following from the increase ofc in
the initial part of the computation with largerc is meaningless on the other side.
(Note that the increase ofc may cause a temporary deterioration of the relative
throughput, since largerc requires more copies ofℓi in the queue to considerℓi as
an interesting packet’s length.) In this way, the relative throughput of the algorithm
will get arbitrary close toγ after sufficiently long time. (The actual bound on the
current relative throughput at timet depends rather on the number of successfully
transmitted packets than on timet.)

One can observe that, in order to get closer to the asymptotically optimal rela-
tive throughput, our algorithms wait until there are many packets waiting for trans-
mission in the queue (of total length at leastck2ℓk in the worst case). That is why
we conjecture that the original much simpler algorithm Greedy might turn out to
be more efficient in usual real life scenarios. Therefore, from practical point of
view, it is interesting to design an algorithm which achieves optimal (asymptotic)
relative throughput and minimizes the maximum of the relative throughput over all
timest.

4 An algorithm for a scenario with speedup

Now we return to the packets whose lengths fulfil divisibility property, i.e.ℓi/ℓi−1 ∈
N for 1 < i < k, and address the problem of increasing throughput by enabling
algorithm to work with greater speed. We design an algorithmPrudent which,
working with speedups = 2, achieves relative throughput1. This algorithm works
in phases, where a phase is a time period between two consecutive errors. Be-
haviour of the algorithm in a phase is described as Algorithm5. During each phase
it tries to send packets of maximal length which do not exceedthe total length of
packets sent so far. It can be treated as a greedy strategy restricted by a ”safety pol-
icy” that does not allow to send long packets unless the cost of their unsuccessful
transmissions can be amortized by an advantage over an adversary gained during
the earlier transmissions since the time of the last error.

Performance analysis of algorithm Prudent. Consider any offline algorithm
OFF .

Lemma 6. The total length of packets sent by Prudent is less than the total length
of packets sent byOFF by no more than5/2kℓk.

In the proof of the lemma we consider potential gain ofOFF over Prudent
restricted tok − i longest types of packets fori = k − 1, . . . , 0. The proof is
inductive and it is splitted into next two propositions. Thefirst one, being the

16

Algorithm 5 Prudent
1: loop
2: while {i | ℓini ≥ ℓk} = ∅ do Stayidle

3: let i be the smallest number such that:niℓi ≥ ℓk;
4: if i < k then
5: transmitℓi+1/ℓi packetsℓi;
6: Lsent ← ℓi+1

7: while Lsent < ℓk do
8: j ←maximal number such that
9: njℓj ≥ ℓk − Lsent andℓj ≤ Lsent

10: transmitℓj+1/ℓj packetsℓj
11: Lsent ← Lsent + ℓj+1

12: loop
13: transmit longest unsent packet

base of the induction, shows that Prudent sends no less of thelongest packets than
OFF . Then, in the second proposition, we make an inductive step.Here the notion
of thei-th queue means the set of packetsℓi waiting for transmission in the queue
of algorithm Prudent.

Proposition 2. LPrudent(k, t) ≥ LOFF (k, t) for any timet.

Proof. Let t be the earliest time in whichLPrudent(k, t) < LOFF (k, t). There
were no errors in the periodτ = [t − ℓk, t], so either Prudent has transmitted
enough packets beforet− ℓk/2 to get willing to send packetsℓk or, for eachj < k,
the inequalitynjℓj < ℓk was satisfied at timet− ℓk. In both cases Prudent would
send a packetℓk in τ (if then there was any in its queue), which contradicts the
choice oft.

Proposition 3. For any timet and any1 ≤ i < k, if

LPrudent(≥ j, t) ≥ LOFF (≥ j, t)− 5/2(k − j)ℓk, for all j > i

then
LPrudent(≥ i, t) ≥ LOFF (≥ i, t)− 5/2(k − i)ℓk.

Proof. Let tb < t be the beginning of the phase with timet, let τ = [tb, t). If
|τ | = t − tb < ℓi, thenOFF does not send any packetℓi, and thus the thesis is
trivially fulfilled. Therefore assume that|τ | ≥ ℓi. We distinguish two cases:

17

Case1. LPrudent(τ) = 0,

Case2. LPrudent(τ) > 0.

Note that in the first case|τ | < ℓk/2, soLOFF (≥ i, τ) < ℓk/2 andLOFF (≥
i, t) < LOFF (≥ i, tb) + ℓk/2. On the other hand,

LPrudent(≥ i, t) = LPrudent(≥ i, tb) + LPrudent(≥ i, τ)
= LPrudent(> i, tb) + LPrudent(i, tb) .

The second equality holds since Prudent sends no packets inτ .
To estimate the right side of this equation note that Prudenthas not tried to send

a packetℓi at tb, so itsi-th queue contained no more thanℓk/ℓi packets. Therefore
LPrudent(i, tb) ≥ LOFF (i, tb) − ℓk. Combining this inequality with inductive
bounds onLPrudent(> i, tb) we get:

LPrudent(≥ i, t) ≥ LOFF (> i, tb)− 5/2(k − (i+ 1))ℓk
+LOFF (i, tb)− ℓk

= LOFF (≥ i, tb) + 3/2ℓk − 5/2(k − i)ℓk
> LOFF (≥ i, t)− 5/2(k − i)ℓk .

Let nowLPrudent(τ) > 0. Let packets of lengthli or longer be calledlongand
let packets shorter thanℓi be calledshort. Since we are interested in estimating the
volume of packets of length at leastℓi transmitted by Prudent, we check carefully
what may happen after timetb + ℓi/2, i.e., at the moment when Prudent can start
to transmit long packets. We analyse separately three possible situations:

Subcase2.1. Prudent sends a small packet at some moment aftertb + ℓi/2;

Subcase2.2. aftertb + ℓi/2 algorithm Prudent sends only long packets;

Subcase2.3. aftertb + ℓi/2 algorithm Prudent does not complete transmis-
sion of any packet.

First, considerSubcase2.1. Let t′ be the time at which Prudent for the last
time beforet started transmitting a packetℓj for somej < i. Since Prudent
sends packets in blocks of lengthsℓ1, . . . , ℓk (recall that Prudent has speedup2
andℓi/ℓi−1 ∈ N), we know thatt′ ≥ tb + ℓi/2. Therefore we can conclude that at
time t′ thei-th queue contained less thanℓk/ℓi packets and estimateLPrudent(i, t

′)
byLPrudent(i, t

′) ≥ LOFF (i, t
′)− ℓk. This together with the inductive hypothesis

gives

LPrudent(≥ i, t′) ≥ LOFF (≥ i, t′)− 5/2(k − i)ℓk + 3/2ℓk .

18

During the period[t′, t], algorithm Prudent was successfully transmitting pack-
ets of length at leastℓi with the exception of the beginning of the period, when
it was sending packetℓj, and possibly the end, since its transmission of the last
packet could be stopped by an error. Thus, in this periodOFF could send long
packets of the total length at mostℓj/2+ℓk larger than Prudent. So finally we have

LPrudent(≥ i, t) = LPrudent(≥ i, t′) + LPrudent(≥ i, [t′t])
≥ LOFF (≥ i, t′)− 5/2(k − i)ℓk + 3/2ℓk

+LOFF (≥ i, [t′ − t])− 3/2ℓk
≥ LOFF (≥ i, t)− 5/2(k − i)ℓk .

As for Subcase2.2, note that in the periodτ = [tb, t], Prudent finishes suc-
cessfully its last transmission after time(tb + t)/2. Otherwise it would success-
fully send more long packets (remind that the length of each next packet cho-
sen by Prudent does not exceed the total length of packets transmitted so far).
Thus we haveLPrudent(≥ i, τ) > 2(|τ |/2 − ℓi/2) = |τ | − ℓi. On the other
handLOFF (≥ i, τ) ≤ |τ |. Now we use the divisibility property of the packet
lengths and observe that bothLPrudent(≥ i, τ) andLOFF (≥ i, τ) are multiple of
ℓi. Therefore the lower bound on the valueLPrudent(≥ i, τ) is not less than the
upper bound onLOFF (≥ i, τ), henceLPrudent(≥ i, τ) ≥ LOFF (≥ i, τ).

The situation described in the third subcase can not happen as it is contradictory
with our assumptions|τ | ≥ ℓi andLPrudent(τ) > 0, which directly follow from
the construction of algorithm Prudent.

As a simple consequence of Lemma 6 we get the following theorem.

Theorem 4. The relative throughput of Algorithm Prudent working with speed-up
2 is equal to1, providedℓi/ℓi−1 ∈ N for eachi ∈ [2, k].

5 Conclusions

We presented novel efficient and reliable algorithms for online scheduling of pack-
ets of different lengths. The first protocol assures maximumpossible throughput
for any arrival and jamming patterns, and additionally it guarantees to be no more
than twice worse than the throughput of any other schedulingalgorithm run under
the same patterns. The second algorithm guarantees at leastas high throughput
as the optimal one, when run with additional speed-up of2, i.e., with twice higher
frequency. It demonstrates that one can use available resources in a scalable way to
improve throughput for any arrival and jamming patterns, even the worst possible
ones.

19

The considered framework is very general, and therefore it leaves a number of
open extensions for further study, both theoretical, simulational and experimental.
For example, what is the relative throughput in case of “average” arrival patterns,
i.e., satisfying some stochastic constraints. In case of two packet lengths, it has
been shown in [4] that for some stochastic distributions therelative throughput
could be higher than1/2, and it would be interesting to give a complete character-
ization of stochastic arrival case for arbitrary number of packet lengths. Similarly,
some restricted class of arrival and/or jamming patterns, e.g., motivated by specific
physical or mobility scenarios, could allow better use of the channel. For such
more specific settings, theoretical results could be also complemented by simula-
tions run for particular physical models. Other extensionscould involve packet
deadlines, priorities and dependencies.

References

[1] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitive anal-
ysis for distributed algorithms. InProceedings of the 35th Annual Symposium
on Foundations of Computer Science (FOCS), pages 401–411. IEEE, 1994.

[2] L. Anantharamu, B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki. On-
line parallel scheduling of non-uniform tasks: Trading failures for energy. In
Proceedings of the 29th IEEE International Conference on Computer Com-
munications (INFOCOM), pages 146–150. IEEE, 2010.

[3] M. Andrews and L. Zhang. Scheduling over a time-varying user-dependent
channel with applications to high-speed wireless data.J. ACM, 52(5):809–
834, Sept. 2005.

[4] A. F. Anta, C. Georgiou, D. R. Kowalski, J. Widmer, and E. Zavou. Mea-
suring the impact of adversarial errors on packet scheduling strategies. In
Proceedings of the 20th International Colloquium on Structural Information
and Communication Complexity (SIROCCO). Springer, 2013.

[5] A. F. Anta, C. Georgiou, D. R. Kowalski, and E. Zavou. Online parallel
scheduling of non-uniform tasks: Trading failures for energy. In Proceed-
ings of the 19th International Symposium on Fundamentals ofComputation
Theory (FCT), pages 145–158. Springer, 2013.

[6] B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job schedul-
ing. In Proceedings of the twenty-fourth annual ACM Symposium on Theory
of Computing (STOC), pages 571–580. ACM, 1992.

20

[7] T. Jurdzinski, D. R. Kowalski, and K. Lorys. Online packet scheduling under
adversarial jamming.CoRR, 2013.

[8] T. Kesselheim. Dynamic packet scheduling in wireless networks. InPODC,
pages 281–290, 2012.

[9] C. Meiners and E. Torng. Mixed criteria packet scheduling. Algorithmic
Aspects in Information and Management, pages 120–133, 2007.

[10] M. L. Pinedo.Scheduling: theory, algorithms, and systems. Springer, 2012.

[11] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. pages 115–124. CRC
Press, 2003.

[12] A. Raghavan, K. Ramchandran, and I. Kozintsev. Continuous error detection
(ced) for reliable communication.IEEE Transactions on Communications,
49(9):1540–1549, 2001.

[13] A. Richa, C. Scheideler, S. Schmid, and J. Zhang. Competitive throughput in
multi-hop wireless networks despite adaptive jamming.Distributed Comput-
ing, pages 1–13, 2012.

[14] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules.Communications of the ACM, 28(2):202–208, 1985.

21

	1 Introduction
	2 Model
	3 Packet Scheduling for k packet lengths
	3.1 Arbitrary lengths of packets

	4 An algorithm for a scenario with speedup
	5 Conclusions

