arXiv:1310.4935v1 [cs.DC] 18 Oct 2013

Online Packet Scheduling
under Adversarial Jamming

Tomasz Jurdzinski Dariusz R. Kowalski Krzysztof Lorys

Abstract

We consider the problem of scheduling packets of differemgths via a
directed communication link prone to jamming errors. Dyi@apacket ar-
rivals and errors are modelled by an adversary. We focustomaing rela-
tive throughput of online scheduling algorithms, thatli tatio between the
throughputs achieved by the algorithm and the best scheglfdr the same
arrival and error patterns. This framework allows more aatanalysis of
performance of online scheduling algorithms, even in woaste arrival and
error scenarios. We design an online algorithm for schaduylackets of ar-
bitrary lengths, achieving optimal relative throughputiri3, 1/2] (the exact
value depends on packet lengths). In other words, for anyaaand jam-
ming patterns, our solution gives throughput which is noertianc times
worse than the best possible scheduling for these pattéesew € [2,3)
is the inverse of relative throughput. Another algorithm design makes
use of additional resources in order to achieve relativeutihputl, that is,
it achieves at least as high throughput as the best schedthieutvsuch re-
sources, for any arrival and jamming patterns. More prégise show that
if the algorithm can run with double speed, i.e., with twiégher frequency,
then its relative throughput is. This demonstrates that throughput of the
best online scheduling algorithms scales well with reseategmentation.
Keywords: Packet scheduling, Dynamic packet arrivals, Adversasaial-j
ming, Online algorithms, Relative throughput, Resouragnaentation.

1 Introduction

Motivation. Achieving high-level reliability in packet scheduling hasently be-
come more and more important due to substantial increase aichle of networks

Institute of Computer Science, University of Wroctaw, Rala

tDepartment of Computer Science, University of Liverpodterpool L69 3BX, UK.

*This work was supported by the Polish National Science @engrant DEC-
2012/06/M/ST6/00459.

http://arxiv.org/abs/1310.4935v1

and higher fault-tolerant demands of many incoming apfoa. In the era of
Internet of Things and nano-devices, it will no longer begilde to attend de-
vices physically, and therefore the designed protocolst ineistable and robust
no matter of failure pattern. Imagine the problem of thodsaof malfunctioning
nano-capsules with overflown buffers that need to be somebowved from the
human body, or the consequences of lack of communicationdast AVs with
humans onboard or medical devices incorporated into gatidies, even if such
case might happen with probability less thiga.

Our Approach. This paper studies a fundamental problem of online packetdsd-
ing via unreliable link (also called a channel), when transmitted packets neay b
interrupted byunrestrictediamming errors. This problem was recently introduced
in [4] and analyzed for two different packet lengths. Pagletive dynamically to
one end of the link, called a sender, and need to be transhmittell, i.e., without
any in-between jamming error, to the other end (called aivege Jamming er-
rors are immediately discovered by the sender. We analyposdible scenarios,
including worst case ones, which we model as a conceptudigraary who con-
trols both packet arrivals and channel jamming. The adweiisaunrestricted, in
the sense that she may genematgarrival and error pattern. The main objective of
the online scheduling protocol is to achieve as high thrpuglas possible under
current scenario. In particular, we consider the measukedoeelative throughput,
which is a long-term form of competitive ratio between thetlghput achieved by
the online algorithm and the one reached by optimum offlifeedaling solution
(i.e., under the knowledge of adversarial arrivals andrsjro

Our Contribution. We design a deterministic online scheduling algorithm exchi
ing optimal relative throughput for an arbitrary numlaesf packet lengthg,,;, =

0 < ly < ... < U = lnax (SectionB). We first show a simpler version of
the algorithm, for the case when packet lengths are pairdngsible (any larger

is divisible by any smaller), in order to demonstrate highel ideas and analysis
leading to related throughput/2. We then extend the protocol so that it does not
need to rely on such limitation about divisibility, and amkes the relative through-

putming << {%} wherep; ; = ¢;/¢; is the ratio between theth and
the j-th packet length. Note that this general formula for ret@athroughput is
in the range(1/3,1/2], and it reacheg /2 if and only if the pairwise divisibility
condition holds.

Unfortunately, the designed protocol does not achieveiveléhroughputl if
the speed-up2 is applied (it can be easily checked that the relative thinpug is
at most2/3 in such case), which implies that it is not well-scalablehwiésource

augmentatioE]. Therefore we design another deterministic online protécap-

!Note that the considered speed-iis chosen because we claim linear scalability of relative

timize relative throughput for speed@p(Sectior4). It is a generalisation of the
preamble protocols proposed in [4] and [5] in the case of tackpt lengths.
More details can be found in the full draft of the paper [7].

Previous and related work. Packet scheduling [9] is one of the most fundamen-
tal problems in computer networks. A realistic approachlvesonline schedul-
ing [6,[11], and therefore @ompetitive analysifl], [14] is often used to evaluate the
performance of proposed solutions. Online scheduling wasidered in a number
of models; for more information the reader is referred td @red [11].

The framework considered in this work was recently intraguim [4]. The au-
thors showed that general offline version of this problenwlwich the scheduling
algorithm knows a priori when errors will occur, is NP-hartihey also consid-
ered algorithms and upper limitations for relative throogthin case otwo packet
lengths. In particular, they proved that relative throughgf any online schedul-
ing protocol cannot be bigger tha (p + p), wherep is the ratio between the
bigger and the smaller packet length ghd= |p|. (Note that the upper bound
becomesl /2 if the bigger packet length is a multiplicity of the smalleaghet
length.) This upper bound can be achieved by a protocol stingda specific
preamble of shorter packets followed by the Londeisst rule after every error,
but cannot be reached by simpler protocols such as Lorkjesttitself or Short-
estFirst (in fact, the relative throughputs of the latter pomiis are far worse than
1/2: 0 and1/(1+p), respectively, and thus they are not very reliable). Theeefit
remained open whether there is an online scheduling prbteaching the relative
throughput of (roughly) /2 for arbitrary number of packet lengths; we answer this
guestion in affirmative in this work. Moreover, as also shawj#], randomization
does not help, which motivates our study of determinisigmathms.

In [5], the authors studied buffer sizes of online schedupnotocols on error-
prone channel. Unlike the relative throughput measureyderoto be positively
competitive with the best scheduling algorithms with resge the buffer sizes,
additional resources need to be given to the online protoeo) speed-up (higher
frequency). This form of resource allocation appeared tefieient: for some
speed-up smaller thahthere is a deterministic online scheduling algorithm hgvin
roughly the same queue sizes as any other scheduling algoritnning without
speed-up. That work motivated us to consider resource autgtitm technique,
in the form of using some speed-up (higher frequency), tohred least the same
throughput as the best scheduler without speed-upveryexecution.

Wireless packet scheduling was also considered in modétsphiysical con-
straints included, such as radio networks or SINR. Anaatharet al.[[2] consid-

throughput with the increase of speed-up, that is, staftomg level1/2 with no speed-up we expect
the relative throughput to reach validor speed-up.

ered packet scheduling on a multiple access channel witlakiigterference, under
a restricted adversarial patterns of packet arrivals amaghrodl jamming. Kessel-
heim [8] considered packet scheduling problem in the SINRIehdor both ad-
versarial and stochastic arrivals, but with no errors. Bmthers studied stronger
objective measure: maximum time from packet arrival to sastul delivery. In
this line of research, the most relevant direction was tdlkeRicha et al.[[13] who
analyzed competitive throughput of randomized scheduimgocols on multiple
access channels with signal interference agaidaptive, but still restricted, ad-
versarial jamming Therefore, the results obtained in this line of work cartmmt
directly comparable with ours, mainly because of assumasgricted arrival and
jamming patterns.

Andrews and Zhang [3] studied buffer stability (i.e., boeddbuffers property)
of online packet scheduling on a wireless channel, wherk that channel con-
ditions and the data arrivals are controlled by an advers@ihgy also assumed
bounded adversary, as otherwise stability could not beheshc

Our framework could also be applied to other types of chaamels, as long as
the feedback is immediately delivered to the sender, @ ¢ghe emerging Continu-
ous Error Detection (CED) framework [12] that uses aritimmedding to provide
continuous error detection.

2 Model

We consider a uni-directional point-to-point link in whiole end point, called a
sendey transmits packets to the other end point, calledaeiver The sender is
equipped with unlimited buffer, in which the arriving patkare queued. Packets
may be of different lengths, and may arrive at any time; waimssthat time is
continuous, and scheduling algorithm have access to gaaketoon as they arrive.
There arek > 2 different packet lengths, denoted By, = (1 < ¢, < ... <

£, = fmax. For simplicity, we will use the nameg,*“packets” and “packets” for
packets of lengtl;, for any1l < ¢ < k. For clarity of presentation, we assume
in some parts of the paper thgt/¢; is an integer for any < j < i < k (so
called pairwise divisibility property). We denofe = /yax/lmin. We assume
that all packets are transmitted at the same bit rate, héweceansmission time is
proportional to the packet’s length. The link is prone to faimg errors, that is,
transmitted packets might be corrupted at any time point.

Arrival models. We consider adversarial packet arrivals: the packetsiarime
and length are governed by an adversary. We define an adeéesaival pattern
as a collection of packet arrivals caused by the adversary.

Link jamming errors. We consider adversarial model of jamming errors, in which

the adversary decides at which time to cause a jamming enrthieolink. The er-
ror at timet implies that any packet being transmitted at titrie broken, and the
information about it is immediately delivered to the sersiethat it breaks the cur-
rent transmission and could schedule another packet (schedule the one that
was just broken). A corrupted packet transmission is uressgfal, in the sense
that it is not received by the receiver and it needs to benstnitted in full (not
necessarily right after the error — scheduling algorithrmyrdacide to postpone
it and transmit another packet instead); otherwise it issustdod as not (success-
fully) transmitted. We assume that scheduling algorithmshdt voluntarily stop
transmitting packets before the end of the transmissiolgsarthey get feedback
about jamming error. An adversarial error pattern is defaed collection of error
events on the link caused by the adversary.

Adversarial models are typically used to argue about theritgn’s behavior
in any possible scenario, in particular, in the worst-caseso

Efficiency metric: Relative throughput. We would like to measure throughput of
the communication link. However, due to adversarial efritrs real link capacity
may vary in time, and moreover, due to adversarial packetadsr the stream of
packets may not be regular or saturated. Therefore, fatigvd], we pursue a
long-term competitive analysis. Let be an arrival pattern anflan error pattern.
For a given deterministic algorithm ALG, lét4r.c(A, £,t) be the total length of
all the successfully transferred (i.e., non-corruptedkpgs by timef under arrival
patternd and error patterd. Let OPT be the offline optimal algorithm that knows
the exact arrival and error patterns, as well as the onligerghm, before the start
of the execution. We assume that OPT devises an optimal sightthit minimises
the asymptotic ratio (i.e., with time growing to infinity) taeeen the total length of
packet transmitted by the online algorithm and the totaltleof packet transmitted
by itself.

We require that any pair of pattero§ £ occurring in an execution must allow
non-trivial communication, i.e., the value éfppr(A, £, t) in the execution is
unbounded witht going to infinity.

For arrival pattern4, adversarial error patterfi and timet, we define the
relative throughpu’s1.c (A, £, t) of a deterministic algorithmA LG by timet as:

L A&t
Tara(AE,t) = —szf;EA 5 t; :

For completenes§ a1 (A, E,t) equals LifLarc(A,E,t) = Lopr(A,E,t) = 0.
We define theelative throughpubf ALG in the adversarial arrival model as:

Tarc = }?ﬁ Jim Tara(A,€,1) . (1)

4

In the analysis of lower and upper bound on relative throughpe usually fo-
cus on comparison of the number of successful transmissigoackets, weighted
by packet lengths, for periods aftaufficiently largeimet. This is because the per-
formances of online and optimal algorithms in a fixed prefitimie are negligible
from perspective of the definition of relative throughputegi in Equation[({1).

Resource augmentation — speed-upln the second part of the paper, in Sec-
tion[4, we consider resource augmentation technique. €blique was recently
applied to fault-tolerant scheduling inl[5] in the contextbuffer stability met-
ric. In particular, we compare the throughput of a given mmlalgorithm under
the assumption that this algorithm is run with a certain dpges > 1, with the
throughput of the best scheduling algorithm run without sjppged-up. From tech-
nical perspective, computing of the relative throughpudamspeed-up > 1 fol-
lows the same definitions as given above, with the only difiee that the value of
Lara(A,€E,t)is calculated under assumption theEG transmits packets times
faster.

3 Packet Scheduling fork packet lengths

In this section we present online algorithm, which is optifiea any number of
packet lengthg > 2. First, for the ease of presentation, we present algorithm
Greedy under assumption that¢,_; € Nfor1 < i < k. Later, in Section 3]1, we
show how to remove this assumption by modifying algorithredaly; the resulted
algorithm is called MGreedy.

The main idea behind our algorithms is to keep transmittisgnany short
packets as possible (shortest-first strategy), subjeartm@alancing constraints.
Observe that it is difficult for any offline algorithm OFF totgelvantage over any
online algorithm ALG when ALG sends small packets. Thusfgrence for small
packets ensures that ALG can be competitive against OFBngsds it has short
packets. However, if OFF transmits large packets duringstrassion of small
packets by ALG, it can afterwards transmit small packetsrwAeG does not
have any of them in its queue. Simultaneously, when OFF msindting small
packets, ADV can generate errors preventing ALG from swgfaesransmission
of large packets. Despite this disadvantage of a greedyoappr we show that
an appropriate implementation of this strategy, using sbalancing constraints,
provides an optimal solution with respect to relative thylmout, and thus against
any optimal way of scheduling under occurring arrival arilifa patterns.

Our specific modification of the greedy shortest-first sgwpie based on send-
ing packets in groups, which altogether balance the lengtiemext larger packet.
We explain it in detail first for two types of packet lengtifs;;,, and/,,... If there

are atleasp = ln,ax/¢min SMall packets in the queue, the algorithm buildga@up
which consists op of them and keeps sending them until all of them are transmit-
ted successfully. If there are less thasmall packets in the queue at the moment
when a transmission of a group is finished, a large packeatnistnitted. However,
whenever there are at legssmall packets, the group of small packets is formed,
independently of the fact whether a transmission of a lasyket(s) is successful

or not. This idea is then recursively applied for the casenithere aré: > 2 types

of packets. A pseudo-code of our greedy algorithm is preseas Algorithni L,
with its recursive subroutine given as Algoritiiin 2.

Algorithm 1 Greedy
1. loop
2. while Y8, tin; < ¢ do Stayidle

3 Transmit-groupk)

Algorithm 2 Transmit-grougy)

1: loop

2: if zz;l bin; > Ej then

3: for a =1to ¢;/¢;_; do Transmit-group; — 1)
return

4: Transmit/;; If the transmission is successfuéturn

In the pseudo-codes,; denotes the number of packétswhich are currently
(at the moment) waiting in the queue for transmission.

Performance analysis of algorithm Greedy.

For the sake of analysis of algorithm Greedy, we introdugeesoew nota-
tions. First, let us assume that an arrival pattern and action pattern are chosen
arbitrarily and are fixed, so we could omit them from formutaghe further anal-
ysis. For an algorithm!, let ¢4(i,t) denote the sum of lengths éf-packets in
the queue ofA at the moment. That is,q4(i,t) = n; - ¢; for a fixed timet.
Moreover, letga(< i,t) = > ., qa(j,t) and we defing;4(< i,?) analogously.
Let L(i,t) denote the length of packets successfully transmitted by time
For a time periodr = [t1,t2], let La(i,7) = La(i,ta) — La(i,t1). Thatis,
L4 (i, 7) denotes the number éf-packets successfully transmitted in the interval
7. The notionsL A(< 4,t), La(< i,t), La(< 4,7), andL4(< 4,7) for time ¢
and time intervalr are defined analogously to(< i,t), ga(< 4,t), qa(< i,7)
andga(< i,7). We also use the above introduced notations without thedfigst-
ment, i.e.,qa(t), qa(7), La(t), andL 4(7), which are shorthands fars (< k, 1),
ga(< k, 1), La(< k,t) andL A (< k,), respectively.

6

An algorithm A is busyat timet if it is transmitting a packet at, it has just
finished a successful transmission, or its transmissioanisyjed by an error at
OtherwiseA isidle att.

Our goal is to compare progress in sending packets of ouritidgo Greedy
and an algorithm achieving the optimal throughput, denae®FF. We say that
an algorithmA is m-busyin a time periodr = [t1, t9] if the following conditions
are satisfied:

1. Aisbusy at each timee T;
2. A does not transmit packetsfor ¢ > m duringr;

3. qa(i,t1) > qorr(i,t1) for eachi € [m]. (Thatis, at time; A has no less
packets of lengtHi; in its queue than OFF, for ea¢h< m.)

Now, we prove technical results regarding periods in whicbe@dy ism-busy
for somem € [k]. These lemmas eventually lead to the proof of the fact that
relative throughput of Greedy i5/2 (provided?; /¢;—,1 € N for i € [2, k]), which
is optimal. First, we make an observation that, if Greedysdoet use packets
longer tharv,,, for m € [k], then the total length of packets transmitted by Greedy
is at least as large as the total length of packets of lend#asat/,,, transmitted by
OFF.

Lemma 1. Assume that Greedy is-busy in a time period-, m < k. Then,
LGreedy(T) > Loprp(> m, 1) — L.

Proof. Consider any packet; for i > m successfully transmitted by OFF in the
period[t,t + ¢;] C 7. According to the assumptions, Greedy does not send any
packetst; for j > m in 7 and it is busy at each timg € r. Therefore, Greedy
finishes transmissions éf/¢,,, groups of packets of length, in the period(t, t +

¢;]. Thus, by assigning each groapof packets of lengtld,,, transmitted by Greedy

to a packet transmitted by OFF at the moment when the lasepat is finished,

we obtain the result of the lemma. The/,” reduction in the formula is needed in
order to take into account the packet (if any) which OFF sthitansmitting before

7 and finished inr. O

Next, we formulate a relationship between the length of pecltansmitted by
Greedy and OFF up to the moment when Greedy is transmittmptigest packet
used by itself in the computation.

Lemma 2. Assume that Greedy ig-busy in a time period- = [t1,t2], m < k.
Lett € 7 be any time at which Greedy starts transmittifag. Then,

2LGreedy([t1,t]) = Lorr([t1,t]) + qorr(< m,t) — by — .

Proof. The idea is that each packesuccessfully transmitted by Greedy is associ-
ated to:

(a) transmission b by OFF;

(b) transmission of a packét for i > m by OFF which lasted while the group
G of length/; containingp was finished by Greedy.

This association guarantees that:

e each packet;, for i > m, transmitted by OFF has an association (of type
(b)) with a group of packets of lengtifstransmitted by Greedy;

e each packet;, for i < m, transmitted by OFF has an association (of type
(a)) with its transmission by Greedy, provided Greedy tnaitted this packet
successfully as well.

On the other hand, each packetuccessfully transmitted by Greedy corresponds
to successful transmissions of OFF with length at most ttfiedength ofp. How-
ever, packets which are successfully transmitted by Gréedl, t| and are not
transmitted by OFF iri¢y, ¢t] “pay” for transmissions of OFF only once, i.e., are
associated to a packét, for ¢ > m, transmitted by OFF but not to transmissions
of themselves by OFF. As Greedy tries transmittipgat timet only in the case
whenggreedy (< m,t) < £y, the claimed result holds.

The “—/¢,” reduction in the formula is needed in order to take into actdhe
packet which OFF started transmitting beferand finished inr. O

Using previous lemmas, we prove by induction a relationbeiwveen. g, ccay ()
andLorr(7) for periodsr which arem-busy for Greedy, where: € [k].

Lemma 3. Assume that Greedy ia-busy in a time period, form < k. Then,

2LGreedy(7) > LOFF(T) — fm

where f,,, satisfies the relationships, = ¢, and f; 1 = f; + 30;11 + £; + ¢}, for
i€ l,k—1].

Proof. The proof goes by induction with respectrta Form = 1 the result is an
immediate consequence of Lemmia 1.

For the inductive step, assume that the result holds for seme k. We will
show the correctness of the result for the case when the domgeket sent by
Greedy inr is 4,,+1. We splitT into three subintervals:

e 71 from the beginning of to time ¢ at which Greedy starts (an attempt to)
transmitting?,,,, 1 for the last time duringr;

8

e 7o fromitot’ € 7 such that either Greedy finishes a successful transmission
of /,,,1 att’ or it gives up scheduling packets, | att’ (since it has enough
shorter packets in the queuetato cover the lengtH,,, , 1);

e 73 from ¢’ to the end ofr.

Lemmd2 implies that

2LGreedy(T1) = Lorr(m1) + qorr(< m + 1,t) — Lyq1 — 4,

wheret is the moment whem; ends. Consider OFF’ which acts 9 and 5 as
OFF, however: it starts, without packets of lengtld; for eachi < m + 1, and
it stays idle each time OFF is transmitting a packet which indts queue at the
beginning ofr, and therefore it was not in the queue of OFF’.

Note that Greedy finishes an attempt to transmit a paGket not later than
at the moment when it successfully transmits pa¢kgt; or new packets shorter
than/,, ., of overall length at leadt,, . ; are inserted in the queue and error occurs.
Observe also that OFF’ starts time intervalwith an empty queue and it cannot
finish transmitting a packet, fori > m + 1, in 7, (if a time period of lengtt{,,, 1
without error occursrs is finished by its definition). Thus,

Lgreedy(T2) 2 Lorr/(T2) — 2bmy1
since new packets inserted duringand transmitted by OFF’ have length?,,, ,1:

e packets of length smaller thak), ., are inserted until the beginning of the
last attempt to send,,, 1 by Greedy inm;

e packets of length at mosgf, ., are successfully transmitted by OFF’ during
the last attempt to send,, 1 by Greedy, since this attempt takes a time
period of length at most,, ;.

At the beginning ofrs, it holds thatgcy,cedy (i, t") > qorr:(i,t") for i < m, since
Greedy attempted only transmitting one copyaf. 1 during .

Therefore, the inductive hypothesis apply to the peripfibr the largest packet
¢, and OFF’ in place of OFF:

2LGreedy(m3) > Lopr/(13) — fm -

Next, recall that OFF’ differs from OFF only such that it doex transmit packets
of lengths smaller thah,, 1, which appear in the queue of OFF at timef total
lengthqorr/ (< m + 1,t). Thus,

Lopp/(T2UT3) > Lopr(Ta UT3) — qorr(< m+1,t) .

9

All these inequalities summed up and combined with the fe@t Ecyceq, (7) =
LGreedy(Tl) + LGreedy (7’2 @] 7'3) yield:

2LGreedy(T) > Lorr(m1) + (qorr(< m+1,t) — lpq1
—l) + Lopr (T2 U T3) — frmn — 2041
Lorr(T) = fm — 3lmy1 — b — Uy,
Lorr(T) = fms1 -

AV

O

Theorem 1. The relative throughput of Greedy is equallt®, providedi;/l;—, €
N for eachi € [2, k|.

Proof. Lemmal3 implies that the relative throughput gets arblyrariose to1/2
on sufficiently long time intervals in which Greedy is busydaDFF starts with
the queue containing smaller or equal number of packets @f see. On the
other hand, Greedy gets idle only in the case when its queaémest empty,
i.e., contains packets of length ¢, which means that its relative throughput is
arbitrarily close tal in such a moment, providedt is large enough.

The theorem holds by combining these two observations:

¢ It holds at the moments when Greedy is idle.

e We can assume that OFF has empty queues at the moments whedy Gre
starts being idle — this assumption does not improve reativoughput of
Greedy (we allow OFF to transmit all packets from its queumédiately in
a period of length). Thus, the assumption of Lemmh 3 is satisfied when
Greedy starts transmitting after being idle. Therefore ridative throughput
of Greedy gets arbitrary close t%) in sufficiently large periods in which
Greedy is not idle.

O

Corollary 1. The algorithm Greedy achieves optimal relative througHpupack-
ets’ lengthe/; < ... < ¢, such that/;/¢;_, € N for eachi € [2, k].

Proof. It is shown in [4] that relative throughput of any online aligom for two
types of packets is at most
[l2/t]

[la/l1] + L2/ 0y

which is equal to% when/y/¢; € N. As an adversary can decide to schedule
merely two types of packets among availablgpes, Theorer]1 implies optimality
of relative throughput of Greedy. O

10

3.1 Arbitrary lengths of packets

In this section we discuss an application of the ideas bethiaclgorithm Greedy
to the general case, i.e., when the conditipf¥;_; € N is not satisfied. Let
pi; = 4i/¢;. A natural generalization of Greedy is that, insteachofroups of
packets of lengtld;_; on thei-th level of recursion, we choose; ;1 | groups of
packets of length (as close as possiblefta) in order to “cover’/;. If the length

of a group of packets on thieth level of recursion is not larger thah, , we can
apply the ideas of “covering” packets transmitted by OFRgigiroups of packets
transmitted by Greedy. & = 2, this approach gives an algorithm with relative
throughput&, which is optimal due ta [4]. This naturally generalizes to

" lp2,1]+p2,1
the following result.

Theorem 2. The relative throughput of any online scheduling algoritisrat most

min { Lpi;] } .
1<i<isk | Lpig] + piy
Proof. This result easily follows from Theorem 1 inl[4]. Indeed,ittadversary

schedules merely packetsand/;, for 7, 5 minimizing the expressio%,
the strategy described in the proof of Theorem 11n [4] givessresult. O

However, fork > 2, the additional advantage of OFF over Greedy following
from rounding on various levels of recursion can accumulaterder to limit this
effect, instead of transmitting¢; /¢;_1 | groups of packets on the level- 1, we
keep sending groups on the level 1 as long as the sum of lengths of packets from
the transmitted groups is not larger thian ¢; ;. This gives the following technical
result. (For simplifying the arguments in the remainingt pdithe analysis, let us
denotep; ;1 = ¢;/¢;—1 by simplyp;, fori € [2, k].)

Lemma 4. Consider such a modification of Greedy that Transmit-g(glixeeps
calling Transmit-grougj — 1), for j > 1, as long as the total length of transmitted
packets in the current execution of Transmit-groipis at most/; — ¢;_;. The

relative throughput of this algorithm is at leastinc; 1 { pi—1

2p;—1

Proof. In Lemmag 1l P and| 3, we repeatedly use an argument that, &d@ does
not use packets of lengthy for i > m, then each such packet transmitted by
OFF corresponds to a group of (shorter) packets transmiye@Greedy of total
length ¢;. This observation can be preserved for the modified Greegtyrighm
with a relaxation that a packét transmitted by OFF corresponds to a group of

11

packets transmitted by Greedy of length at I€ast/; ;. This relaxation translates
inequalities from Lemmds [[] 2 ahd 3 to:

:,):21 : LGreedy(T) > LOFF(Z m, 7_) — 4l
(1 + pinil) ’LGreedy([tlat]) > LOFF([tlat])+
qorr(< m,t) — Ly, — Uy
(1 + -) : LGreedy(T) > LOFF(T) - fm

Pm—

If we apply the above inequalities instead of those from Lersih[2 an@3 in the
proof of Theoreni 11, we obtain the result claimed here. O

However, as a group of packets transmitted by Greedy “cogé#; transmit-
ted by OFF may contain packets of various lengths, the velatiroughput of the
solution from Lemmal4 is difficult to compare with the uppeubd from Theo-
rem[2. In order to tackle this issue, we introduce yet anothedification to the
algorithm.

The main goal of this modification is to ensure that Greedyasgmitting
packets of the same length for long periods of time and it gaario other length
only if it is necessary. An execution of the algorithm is sjpito stages In a stage,
packets of total length (close te}/;, are transmitted, wherec N is a fixed large
constant. At the beginning of a stage, the Gebf candidates is determined as
C = {i|ni¥; > ckl}. Then, thenterestinglength/;. is set for parameter =
min(C), and the algorithm starts transmitting packiets After each transmission,
successful or not, the interesting lengthis updated ta* < min({i* }U{i| ¢;n; >
cklr}). (Note that the set of candidatés| ¢;n; > ckl;} may change over time,
as the adversary injects packets.)

Using the notion of the interesting length, we work in lingtwihe original
algorithm Greedy, with the following restrictions:

e no packet is transmitted as long as the interesting lengtiotisletermined
(i.e., the set of candidates is empty);

e only a packet of lengtly+ can be transmitted.

As the total length of packets staying in the queue whosehsraye not inter-
esting is at mosk - ck{y, they do not have impact on tlesymptoticvalue of the
relative throughput. Thus, assume that there are no paoké&sgths which are
not interesting at each time That is, there are no packets of lengthsuch that
i € C. Then, the new algorithm MGreedy works exactly as the oailgahgorithm
Greedy. The pseudo-code of algorithm MGreedy and the mddgig-routine

12

Algorithm 3 MGreedy
2: loop

3: while {i | ¢;n; > ckl;} = () do Stayidle

4: C «+~ {Z ’ bing > Ckfk}

5: i* < min(C)

6: for a = 1to ck do ¢’ + Transmit-groug; — 1)
7: L+ 0

Algorithm 4 Transmit-groug;)

1.4+ 0

2: while ¢ < ¢; — /;x do

3: if 7 > i* then ¢’ + Transmit-grougj — 1)
4: R4

5: else

6: Transmit/;

7 C+CU {Z ‘ ling > Ckgk}

8: i* < min(C)

o: If a transmission of; successful? « /;
10: return ¢

Transmit-grou;), which now returns also some valdgare given as Algorithrinl 3
and Algorithm 4, respectively.
Performance analysis of algorithm MGreedy.

We say that an execution of Transmit-grékp is uniform if the algorithm
transmits packets of a fixed lengthduring that executions of Transmit-graup
as well as during the executions of Transmit-gr@updirectly preceding it. A
new key property of algorithm MGreedy compared with Greedhat most of its
executions of sub-routine Transmit-grdép are uniform.

Proposition 1. At leastck — 2k calls of Transmit-group in a stage of MGreedy are
uniform.

Proof. Observe that the value &f can only decrease during a stage and, as long
asi* remains unchanged, only packets of lengthare transmitted. Therefore,
the claim follows from the fact that may change at mogt — 1 times during a
stage.]

Now, we evaluate the relative throughput of MGreedy.

13

Lemma 5. The relative throughput of the MGreedy algorithm is at least
0 { Lpij] } ‘ 1
1<j<i<k | |pij] +pij) 1+4/(cn)’
wheren is a constant depending merely on packets’ lengths.

Proof. In Lemmag I P andl 3, we repeatedly use an argument that, éd@@oes
not use packets of length for i > m, then each such packet transmitted by
OFF corresponds to a group of (shorter) packets transntitt€glreedy of the total
length/;, and this association is injective, provided Greedy is digt at that time.
For a while, assume that each execution of Transmit-groiypGmeedy is uniform.
Then, the above property of Greedy can be preserved for theebtly algorithm
with a relaxation that a packetof length¢; transmitted by OFF corresponds to a
group of | ¢;/¢;] packets of lengtld; transmitted by MGreedy fof < 4. Actually,
those are the packets whose successful transmission isefthturing the trans-
mission ofp. The fact that there are at leggt /¢, | such packets follows from the
assumption that MGreedy is not idle at that time, its exeaistiof Transmit-group
are uniform, and the time period needed for transmissiof?,g¥; | packets/; is

not larger thart;.

Lety = min1§j<i§k {ﬁpiﬁiim } . Letéi,j = —LZ:jJ andlety = maXi>j{5i7j}.
One can check thaf = 1/(1 + §). This relaxation translates inequalities from
Lemmag [P and 3 to:

0 Lareeay(T) > Lorr(=m,T) =¥
(1+5) 'LGreedy([tlat]) > LOFF([tlvt])
+qorr(< myt) — by, — Uy
(1 + 5) : LGreedy(T) > LOFF(T) — fm

If we apply the above inequalities instead of those from Lexsih[2 an@]3 in the

proof of TheoreniI1, we obtain the claimed result, even witmﬂm factor,

SinCEl/(l + 5) = min1§j<i§k {%}

However, the above reasoning does not deal with the situ#tiat an execu-
tion of Transmit-group is not uniform. In such a case, we ca@ssociatg/;/¢; |
packets/; to ¢; transmitted by OFF in the peridfl such that their transmissions
by MGreedy were finished ifi. Fortunately, by Propositionl 1, only the frac-
tion 2 = 2 of calls of Transmit-groufk) are not uniform. As argued earlier in

the proof of Lemmal4, even without uniformity assumption vesrénthe bound

LGreedy/LOFF >, Whel’en = mini€[2,k] {%} :
Let us split packets transmitted by OFF by timimto those whose transmis-
sion was inside periods when MGreedy works in a uniform maraenoted by

14

Lorr,(t), and the remaining ones, denotedlyr (). Given the fact that the
fraction at leas(1 — %) of transmitted packets by MGreedy are sent in uniform
way, we have the following

limy 00 (1 — 2/¢) - LpiGreedy(t)/Lorra(t)

>
hmt—>oo(2/c) : LMGreedy(t)/LOFF,2(t) >

0

n

The second bound implies thé?/c) - LisGreedy(t)/Lorr2(t) > n/2 for each
large enouglt, and thereforelorra(t) < 4/(c - 1) LarGreedy(t). This implies
also that eitherLMGmedy(t) > LOFF(t) or LOFF,2(t) < 4/(6 . n)LOFF(t)
for sufficiently larget. As the first condition implies that the relative through-
put is close tol, assume thaLorra(t) < 4/(c - n)Lorr(t). As Lopp(t) =
LOFF,l(t) + LOFRQ(t), this implies that

1

lim Lyscreedy(t)/ L ty >~y ————— .
Jim Ly ay(t)/Lorr(t) >~ T4/ (e)

O

As we can choose arbitrarily largeLemmdb implies that the relative through-
put of MGreedy might be arbitrarily close to the upper bourmif Theoreni 2. In
the following theorem, we argue that one can modify MGreadbhghat it grad-
ually increases the constanduring its execution, which guarantees the optimal
relative throughput.

Theorem 3. The optimal relative throughput of an online algorithm isiafto

min {&}
1<j<i<k | | pig] + piyj

Proof. Lety = minj<j«;<k {%} By choosing sulfficiently large constant
¢, algorithm MGreedy can achieve the relative throughputvis arbitrarily close
to v. More precisely, itisy. =~ - Wl(cn)' From the proofs of Lemmas 4 ahd 5,

one can derive a polynomigl1/e, ¢, k, {1, ..., {x) such that

LtGreedy(t) > (1 —€)veLorr(t) ,

provided MGreedy transmitted packets of length at leéstz, ¢, k, ¢q,. .., 0).
Using this bound, one can design an adaptive version of Miyresdich gradually
increases the value of its parameter The value ofc is increased t@c when
the total length of transmitted packets is long enough toantae that the current
relative throughput is close enough 4g for the current value of on one side,

15

and deterioration of the relative throughput followingrfradhe increase of in

the initial part of the computation with largeris meaningless on the other side.
(Note that the increase ef may cause a temporary deterioration of the relative
throughput, since largerrequires more copies d@f in the queue to considéf as

an interesting packet’s length.) In this way, the relativ@tighput of the algorithm
will get arbitrary close toy after sufficiently long time. (The actual bound on the
current relative throughput at tintedepends rather on the number of successfully
transmitted packets than on tim¢ O

One can observe that, in order to get closer to the asymaligtioptimal rela-
tive throughput, our algorithms wait until there are manglkmas waiting for trans-
mission in the queue (of total length at leakt/;, in the worst case). That is why
we conjecture that the original much simpler algorithm @yemight turn out to
be more efficient in usual real life scenarios. Thereforemfipractical point of
view, it is interesting to design an algorithm which acheweptimal (asymptotic)
relative throughput and minimizes the maximum of the redatinroughput over all
timest.

4 An algorithm for a scenario with speedup

Now we return to the packets whose lengths fulfil divisipifiroperty, i.e; /¢;_1 €
Nfor 1 < ¢ < k, and address the problem of increasing throughput by emabli
algorithm to work with greater speed. We design an algorithmdent which,
working with speedup = 2, achieves relative throughpit This algorithm works
in phases where a phase is a time period between two consecutiveserie-
haviour of the algorithm in a phase is described as AlgorfhrDuring each phase
it tries to send packets of maximal length which do not exdbedotal length of
packets sent so far. It can be treated as a greedy stratdggtessby a "safety pol-
icy” that does not allow to send long packets unless the dasteir unsuccessful
transmissions can be amortized by an advantage over ansadyerained during
the earlier transmissions since the time of the last error.

Performance analysis of algorithm Prudent. Consider any offline algorithm
OFF.

Lemma 6. The total length of packets sent by Prudent is less than thklemgth
of packets sent b9 F'F' by no more thars/2k/y.

In the proof of the lemma we consider potential gainCtf F' over Prudent
restricted tok — ¢ longest types of packets far= k£ — 1,...,0. The proof is
inductive and it is splitted into next two propositions. Thst one, being the

16

Algorithm 5 Prudent
1: loop
2: while {i|¢;n; > ¢;} = () do Stayidle

3: let 7 be the smallest number such that?; > /;;
4: if i < kthen

5: transmit¢; 1 /¢; packets;;

6: Lsent <+ ei-‘,—l

7: while Ly < £, do

8: j + maximal number such that

9 njgj > Uy — Lsent andéj < Lgent
10 transmitl; ., /¢; packets/;

11 Lsent < Lsent + gj-‘,—l

12: loop

13: transmit longest unsent packet

base of the induction, shows that Prudent sends no less tfrtfest packets than
OFF. Then, in the second proposition, we make an inductive $iepe the notion
of thei-th queue means the set of pack&tsvaiting for transmission in the queue
of algorithm Prudent.

Proposition 2. Lp,ygent(k,t) > Lorr(k,t) for any timet.

Proof. Let ¢ be the earliest time in whicl p,ygeni(k,t) < Lorr(k,t). There
were no errors in the period = [t — ¢, t], so either Prudent has transmitted
enough packets befote- ¢, /2 to get willing to send packe#s, or, for eachj < k,

the inequalityn;/; < ¢, was satisfied at time— /;.. In both cases Prudent would
send a packet;, in 7 (if then there was any in its queue), which contradicts the
choice oft. O

Proposition 3. For any timet and anyl < i < k, if

LPrudent(Z ja t) > LOFF(Z ja t) - 5/2(k -])Elm for all] >

then
Lprygent(> 1,t) > Lopr(> i,t) — 5/2(k — i)l.

Proof. Let t, < t¢ be the beginning of the phase with timelet 7 = [t;,¢). If
|T| =t —t, < ¢;, thenOFF does not send any packét and thus the thesis is
trivially fulfilled. Therefore assume thét| > ¢;. We distinguish two cases:

17

Casel. Lpydent(T) = 0,
Case2. Lpyygent(T) > 0.

Note that in the first casp| < ¢x/2, SO Lorpr(> i,7) < {;/2 and Lopr(>
i,t) < Lopr(>1i,ty) + £k /2. On the other hand,

LPrudent(z ia t) - LPrudent(z i7 tb) + LPrudent(z i, T)
= LPrudent(> ’i, tb) + LPrudent(ia tb) .

The second equality holds since Prudent sends no packets in

To estimate the right side of this equation note that Prudasiot tried to send
a packet/; att, so itsi-th queue contained no more thgyy¢; packets. Therefore
Lprudent(i,ty) > Lorr(i,ty) — ¢,. Combining this inequality with inductive
bounds oL p,ydent (> i, tp) We get:

LPrudent(Z iat) > LOFF(> Z'7751)) - 5/2(k - (Z + 1))€k‘
+LOFF(i, tb) — Al
= Lopp(>i,ty) +3/20, —5/2(k — i)y,
> LOFF(E i,t) — 5/2(/€ — z)ﬁk .

Let now L p,q4ent (7) > 0. Let packets of lengtly or longer be calletbng and
let packets shorter that) be calledshort Since we are interested in estimating the
volume of packets of length at leasttransmitted by Prudent, we check carefully
what may happen after timg + ¢;/2, i.e., at the moment when Prudent can start
to transmit long packets. We analyse separately threelpessiuations:

Subcase.1. Prudent sends a small packet at some momentigfter; /2;
Subcase.2. aftert, + ¢;/2 algorithm Prudent sends only long packets;

Subcase.3. aftert, + ¢;/2 algorithm Prudent does not complete transmis-
sion of any packet.

First, considerSubcase?.1. Lett’ be the time at which Prudent for the last
time beforet started transmitting a packéj for some; < 4. Since Prudent
sends packets in blocks of lengths ..., /. (recall that Prudent has speedp
and/;/¢;_, € N), we know that’ > t, + ¢;/2. Therefore we can conclude that at
time ' thei-th queue contained less théyy¢; packets and estimatep,., gen: (7, ')
by Lprudent(i,t') > Lopr(i,t') — £;. This together with the inductive hypothesis
gives

LPrudent(Z i» t/) > LOFF(Z ’i, t/) - 5/2(1{7 - Z)gk + 3/2&9 .

18

During the periodt’, ¢], algorithm Prudent was successfully transmitting pack-
ets of length at least; with the exception of the beginning of the period, when
it was sending packet;, and possibly the end, since its transmission of the last
packet could be stopped by an error. Thus, in this pefiddF' could send long
packets of the total length at mds/2 + ¢, larger than Prudent. So finally we have

LPrudent(Z i, t) = LPrudent(Z ’i, t/) + LPrudent(Z ’i, [t,t])
> Lopp(= i,t") = 5/2(k — i)l + 3/2lk

—I—LOFF(Z 1, [t/ — t]) — 3/2€k

> LOFF(Z ’i,t) — 5/2(1{7 — ’L)ﬁk .

As for Subcase2.2, note that in the period = [t;,t], Prudent finishes suc-
cessfully its last transmission after tingg + ¢)/2. Otherwise it would success-
fully send more long packets (remind that the length of eaekt packet cho-
sen by Prudent does not exceed the total length of packetsntiied so far).
Thus we havel p,ygent(> i,7) > 2(|7]/2 — ¢;/2) = |7| — ¢;. On the other
hand Lorr(> i,7) < |7|. Now we use the divisibility property of the packet
lengths and observe that bakhy,.,gen: (> 4, 7) and Lopp(> i, 7) are multiple of
¢;. Therefore the lower bound on the valllg,,4..:(> i, 7) is not less than the
upper bound oiLorr(> i, 7), hencel pygent(> i,7) > Lopr(> i, 7).

The situation described in the third subcase can not happéisaontradictory
with our assumption$r| > ¢; and L p,yqent(7) > 0, which directly follow from
the construction of algorithm Prudent. O

As a simple consequence of Lemfia 6 we get the following tmeore

Theorem 4. The relative throughput of Algorithm Prudent working witfesd-up
2 is equal tol, provided?; /¢;_1 € N for eachi € [2, k].

5 Conclusions

We presented novel efficient and reliable algorithms fomenscheduling of pack-
ets of different lengths. The first protocol assures maxinpassible throughput
for any arrival and jamming patterns, and additionally iaantees to be no more
than twice worse than the throughput of any other schedualiggrithm run under
the same patterns. The second algorithm guarantees aak&dgh throughput
as the optimal one, when run with additional speed-up, ak., with twice higher
frequency. It demonstrates that one can use availablenasoin a scalable way to
improve throughput for any arrival and jamming patterngrethe worst possible
ones.

19

The considered framework is very general, and therefoeaitds a number of
open extensions for further study, both theoretical, satiohal and experimental.
For example, what is the relative throughput in case of “ayet arrival patterns,
i.e., satisfying some stochastic constraints. In case ofpgacket lengths, it has
been shown in[[4] that for some stochastic distributions ridative throughput
could be higher thath/2, and it would be interesting to give a complete character-
ization of stochastic arrival case for arbitrary number aflget lengths. Similarly,
some restricted class of arrival and/or jamming pattermgs, motivated by specific
physical or mobility scenarios, could allow better use @& thannel. For such
more specific settings, theoretical results could be alsaptemented by simula-
tions run for particular physical models. Other extensioasld involve packet
deadlines, priorities and dependencies.

References

[1] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory ohgeetitive anal-
ysis for distributed algorithms. IRroceedings of the 35th Annual Symposium
on Foundations of Computer Science (FOG#)ges 401-411. IEEE, 1994.

[2] L. Anantharamu, B. S. Chlebus, D. R. Kowalski, and M. A.k&i. On-
line parallel scheduling of non-uniform tasks: Tradinduees for energy. In
Proceedings of the 29th IEEE International Conference om@ater Com-
munications (INFOCOM)pages 146-150. IEEE, 2010.

[3] M. Andrews and L. Zhang. Scheduling over a time-varyirsgrdependent
channel with applications to high-speed wireless dataACM 52(5):809—
834, Sept. 2005.

[4] A. F. Anta, C. Georgiou, D. R. Kowalski, J. Widmer, and Eavfu. Mea-
suring the impact of adversarial errors on packet schegldtrategies. In
Proceedings of the 20th International Collogquium on Stuualt Information
and Communication Complexity (SIROCCGSpringer, 2013.

[5] A. F. Anta, C. Georgiou, D. R. Kowalski, and E. Zavou. Oliparallel
scheduling of non-uniform tasks: Trading failures for gyerIn Proceed-
ings of the 19th International Symposium on FundamentaSaohputation
Theory (FCT) pages 145-158. Springer, 2013.

[6] B. Awerbuch, S. Kutten, and D. Peleg. Competitive dimited job schedul-
ing. In Proceedings of the twenty-fourth annual ACM Symposium @ofih
of Computing (STOCpages 571-580. ACM, 1992.

20

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

T. Jurdzinski, D. R. Kowalski, and K. Lorys. Online patlseheduling under
adversarial jammingCoRR 2013.

T. Kesselheim. Dynamic packet scheduling in wirelessvoeks. InPODC,
pages 281-290, 2012.

C. Meiners and E. Torng. Mixed criteria packet schedylinAlgorithmic
Aspects in Information and Managemgpages 120-133, 2007.

M. L. Pinedo.Scheduling: theory, algorithms, and syster8gringer, 2012.

K. Pruhs, J. Sgall, and E. Torng. Online scheduling. egatyl5-124. CRC
Press, 2003.

A. Raghavan, K. Ramchandran, and I. Kozintsev. Cowtirsuerror detection
(ced) for reliable communicationlEEE Transactions on Communications
49(9):1540-1549, 2001.

A. Richa, C. Scheideler, S. Schmid, and J. Zhang. Coitiyeethroughput in
multi-hop wireless networks despite adaptive jammiDgtributed Comput-
ing, pages 1-13, 2012.

D. D. Sleator and R. E. Tarjan. Amortized efficiency st lipdate and paging
rules. Communications of the ACN28(2):202—-208, 1985.

21

	1 Introduction
	2 Model
	3 Packet Scheduling for k packet lengths
	3.1 Arbitrary lengths of packets

	4 An algorithm for a scenario with speedup
	5 Conclusions

