Skip to main content

Routing Under Uncertainty: The a priori Traveling Repairman Problem

  • Conference paper
  • First Online:
Book cover Approximation and Online Algorithms (WAOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8952))

Included in the following conference series:

Abstract

The field of a priori optimization is an interesting subfield of stochastic combinatorial optimization that is well suited for routing problems. In this setting, there is a probability distribution over active sets, vertices that have to be visited. For a fixed tour, the solution on an active set is obtained by restricting the solution on the active set. In the well-studied a priori traveling salesman problem (TSP), the goal is to find a tour that minimizes the expected length. In the a priori traveling repairman problem (TRP), the goal is to find a tour that minimizes the expected sum of latencies. In this paper, we give the first constant-factor approximation for a priori TRP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Institute of Technology (1985)

    Google Scholar 

  2. Bertsimas, D.: Probabilistic combinatorial optimization problems. Ph.D. thesis, Massachusetts Institute of Technology (1988)

    Google Scholar 

  3. Schalekamp, F., Shmoys, D.B.: Algorithms for the universal and a priori tsp. Oper. Res. Lett. 36(1), 1–3 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gorodezky, I., Kleinberg, R.D., Shmoys, D.B., Spencer, G.: Improved lower bounds for the universal and a priori TSP. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 178–191. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Shmoys, D.B., Talwar, K.: A constant approximation algorithm for the a priori traveling salesman problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Zuylen, A.V.: Deterministic sampling algorithms for network design. Algorithmica 60(1), 110–151 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)

    Google Scholar 

  8. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM (JACM) 23(3), 555–565 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sitters, R.A.: The minimum latency problem is NP-hard for weighted trees. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 230–239. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 36–45. IEEE (2003)

    Google Scholar 

  11. Sitters, R.: Polynomial time approximation schemes for the traveling repairman and other minimum latency problems. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 604–616 (2014)

    Google Scholar 

  12. Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N.: The complexity of the travelling repairman problem. RAIRO Informatique théorique 20(1), 79–87 (1986)

    MATH  MathSciNet  Google Scholar 

  13. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 163–171. ACM (1994)

    Google Scholar 

  14. Goemans, M.X., Kleinberg, J.: An improved approximation ratio for the minimum latency problem. Math. Program. 82(1–2), 111–124 (1998)

    MATH  MathSciNet  Google Scholar 

  15. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. J. Comput. Syst. Sci. 76(8), 709–726 (2010)

    Article  MATH  Google Scholar 

  16. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn van Ee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van Ee, M., Sitters, R. (2015). Routing Under Uncertainty: The a priori Traveling Repairman Problem. In: Bampis, E., Svensson, O. (eds) Approximation and Online Algorithms. WAOA 2014. Lecture Notes in Computer Science(), vol 8952. Springer, Cham. https://doi.org/10.1007/978-3-319-18263-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18263-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18262-9

  • Online ISBN: 978-3-319-18263-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics