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Abstract. We consider the Fault-Tolerant Facility Placement problem
(FTFP ), which is a generalization of the classical Uncapacitated Facility
Location problem (UFL). In the FTFP problem we have a set of clients
C and a set of facilities F . Each facility i ∈ F can be opened many times.
For each opening of facility i we pay fi ≥ 0. Our goal is to connect each
client j ∈ C with rj ≥ 1 open facilities in a way that minimizes the total
cost of open facilities and established connections.
In a series of recent papers FTFP was essentially reduced to FTFL
and then to UFL showing it could be approximated with ratio 1.575.
In this paper we show that FTFP can actually be approximated even
better. We consider approximation ratio as a function of r = minj∈C rj
(minimum requirement of a client). With increasing r the approximation
ratio of our algorithm λr converges to one. Furthermore, for r > 1 the
value of λr is less than 1.463 (hardness of approximation of UFL). We
also show a lower bound of 1.278 for the approximability of the Fault-
Tolerant Facility Location problem (FTFL) for arbitrary r. Already for
r > 3 we obtain that FTFP can be approximated with ratio 1.275,
showing that under standard complexity theoretic assumptions FTFP
is strictly better approximable than FTFL.
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1 Introduction

In the Fault-Tolerant Facility Placement problem, we are given a set F of loca-
tions where facilities may be opened (each i ∈ F costs fi > 0 and can be opened
many times) and a set C of clients. Each j ∈ C has connection requirement
rj > 0. Our goal is to open a subset of facilities (possibly many copies of some
facilities) and connect each client j with rj open facilities, such that the total
cost of connections and opened facilities is as small as possible. In this paper
we consider the metric version of the problem where the connection costs satisfy
the triangle inequality.

It is easy to see that the classical UFL problem is a special case of FTFP
with all rj = 1 . On the other hand, if no facility can be open more than once,
then the problem becomes the Fault-Tolerant Facility Location problem (FTFL),
in which the demands cannot exceed the number of facilities.

Facility location problems are typically APX-hard and there exist constant
factor approximation algorithms assuming metric connection costs. Shmoys,
Tardos and Aardal [5] gave the first constant factor 3.16-approximation algo-
rithm based on LP-rounding. Later Chudak and Shmoys [14] obtained (1 + 2

e )-
approximation by marginal-preserving randomized rounding of facility openings,
which has became standard for facility location problems. The long line of results
for UFL includes a primal-dual algorithm JMS [2], which was then combined with
a scaled version of [14] in a work of Byrka and Aardal [4]. The currently best
known ration of 1.488 was obtained by Shi Li [1] by further randomizing the
algorithm from [4]. Many techniques developed for UFL can be directly applied
to FTFP which was shown in [16].

First constant factor approximation algorithm for the closely related FTFL
problem was given by Guha, Meyerson and Munagala [13]. Next Swamy and
Shmoys improved the ratio to 2.076, see [11]. More recently Byrka, Srinivasan
and Swamy [10] improved the ratio to 1.725 using dependent rounding [9] and
laminar clustering. Moreover it is shown in [11] that JMS algorithm can be
adapted to FTFL with uniform requirements of clients.

FTFP was first studied by Xu and Shen [17] and next by Yan and Chrobak
who first obtained a 3.16-approximation algorithm [7], and later improved the
ratio to 1.575 [16].

1.1 Our contribution

We extend the work of Yan and Chrobak [16] and propose an algorithm with
approximation ratio being a decreasing function of the minimal requirement
r = minj∈C rj . Our solution benefits from requirements of clients being bigger
than one. Instead of considering a client j ∈ C as rj distinct clients with unit
demand we raven on this multiplicity and use Poisson distribution to estimate
the expected number of useful facilities which will be open in a set of a partic-
ular volume. We consider both cases: uniform and non-uniform requirements of
clients, and obtain the following approximation ratios:
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r 1 2 3 4 5 6 7 8 9 10
non-uniform 1.515 1.439 1.338 1.275 1.234 1.207 1.187 1.171 1.159 1.149

uniform 1.488 1.410 1.329 1.272 1.234 1.207 1.187 1.171 1.159 1.149

We also prove a lower bound of 1.278 on the approximability of Fault-Tolerant
Facility Location (where at most one facility may be opened in each location)
for arbitrarily large r > 1.

Observation 1 Lower bound for FTFL, of value 1.278, is bigger than λr for
r ≥ 4. Moreover for r ≥ 2 FTFP is easier than UFL

Note that λr for r = 4 (in both uniform and non-uniform case) is bounded
by 1.275, which is smaller than our lower bound for FTFL.

2 The LP formulation

Consider the following standard LP relaxation of FTFP .

min
∑
i∈F

∑
j∈C

cijxij +
∑
i∈F

yifi (1)

∑
i∈F

xij ≥ rj ∀j∈C (2)

yi − xij ≥ 0 ∀i∈F,j∈C (3)

xij , yi ≥ 0 ∀i∈F,j∈C (4)

An optimal solution of the above LP is denoted by a pair (x∗, y∗). Using
these variables we express the total facility cost as F ∗ =

∑
i∈F fiy

∗
i and the

connection cost of each client j ∈ C as C∗j =
∑
i∈F cijx

∗
ij . Summing over all

clients gives the total connection cost C∗ =
∑
j∈C C

∗
j of the LP solution. The

cost of (x∗, y∗) denoted by LP ∗ = F ∗ + C∗ is a lower bound on the cost of an
optimal integral solution denoted by OPT .

We say that a solution is complete if for each client j ∈ C and each facility
i ∈ F we have x∗ij ∈ {0, y∗i }. Detailed description of a technique called facility
splitting, which yields complete solutions, can be found in [3]. The splitting
algorithm takes as input a solution of the LP and outputs a complete solution
of the same cost to a larger, but equivalent instance of the problem. For clarity
of a presentation, throughout the paper, we simply assume that all fractional
solutions are complete.

Definition 1. The volume of a set F ′ ⊆ F , denoted by vol(F ′) is the sum of
facility openings in this set, i.e., vol(F ′) =

∑
i∈F ′ yi.

One of the problems with input instances is possibly non-polynomial demand
of some clients. In [16] we can find an elegant reduction of such instance to
instances with requirements bounded by |F |. In Section 5 we give an algorithm
which generalizes this reduction. Our algorithm also reduces the input instance
to an instance with polynomial demands of clients, but we also care not to reduce
the requirements of clients too much.
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3 Algorithm for FTFP

The following algorithm A(γ) is parametrized by a real constant γ ∈ (1, 3).
Our final Algorithm 1 is as follows: run algorithm A(γl) for each choice of

Algorithm 3.1 A(γ)

1: formulate and solve the LP (1)-(4), get an optimal solution (x∗, y∗);
2: scale up facility opening by γ, then recompute values of xij to obtain a minimum

cost solution (x̄, ȳ);
3: compute clustering for all clients;
4: round facility opening variables using dependent rounding;
5: connect each client j with rj closest open facilities;

γl = 1+2 · n−ln , where l = 1, 2, . . . n−1. Select the best of the obtained solutions.
Note that n − 1 is the number of different values of γ, each of them we use as
a parameter of algorithm A(γ). In the computation of approximation ratios we
use n equal 1000, but we will describe our results for a general n.

Scaling facility opening is an idea from [4], it decreases average connection
cost of each client, but increases total cost of opening facilities. In FTFP we can
open more than one facility in one location, so scaling does not cause problems
with opening more than one facility in one place. The version of clustering which
we use is very close to the one described in [14]. To round facility opening
variables we use the randomized algorithm from [9], called dependent rounding.
Each step of the algorithm A(γ) is carefully described in the following sections.

3.1 Scaling

Let Fj denote the set of facilities with a positive flow from a client j ∈ C, i.e.,
facilities i with x∗ij > 0 in the optimal LP solution.

Let γl > 1. Suppose that all facilities are sorted in an order of non-decreasing
distances from a client j ∈ C. Scaling all y∗ variables by γl divides the set of
facilities Fj into two disjoint subsets: the set of close facilities of a client j,

denoted by FClj , such that vol(FClj ) = rj ; and the distant facilities, denoted by

FDlj = Fj \ FClj , note that vol(FDlj ) = rj(γl − 1). Certainly for each i1 ∈ FClj
and i2 ∈ FDlj we have ci1j ≤ ci2j .

By DCl
av(j), DDl

av (j) and Dav(j) we denote the average distances to close,
distant and all facilities in set Fj , respectively. More formally:

DCl
av(j) =

∑
i∈FClj

cij x̄ij

vol(FClj )
, DDl

av (j) =

∑
i∈FDlj

cij x̄ij

vol(FDlj )

By Dl
max(j) we denote the maximal distance to a facility in FClj , and by cl(j) we

denote the average distance to F lj = FClj \F
Cl−1

j for n > l ≥ 1, Fnj = Fj \FCn−1

j

and F 0
j = ∅. (see Fig. 1)
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j F 1
j · · ·

Fn−1
j

Dn−1
max(j)

Fn
j

Fig. 1. Figure shows partition of facilities in set Fj .

3.2 Clustering

Definition 2. The radius of a set A for a client j, where A ⊆ F and j ∈ C, is
maxi∈A cij. Assume that vol(A) ≥ r. By B(j, A, r) we denote the subset of A of
volume r which has the smallest radius.

Each client j ∈ C initially has a cluster proposition CP (j) = B(j, F, rj) =
FCj , whose radius is qj = DC

max(j). In the following algorithm the cluster propo-
sition of a client j changes, but the radius never increases.

Algorithm 3.2 Clustering

1: for all j ∈ C do
2: qj := DC

max(j)
3: end for
4: while there is a client with positive requirement do
5: select a client j ∈ C with rj > 0 that minimizes qj and set rj := 0
6: for all j′ ∈ N(j) = {j′′ ∈ C | CP (j) ∩ CP (j′′) 6= ∅ ∧ rj′′ > 0} do
7: rj′ := max(0, rj′ − dvol(CP (j) ∩ CP (j′))e)
8: CP (j′) := B(j′, CP (j′) \ CP (j), rj′)
9: end for

10: create C(j) = {j} ∪N(j) ∪ CP (j) and call j the center of cluster C(j);
11: end while

The above described procedure is a variant of the method described in [14]. It
is well known that output of the procedure has two important properties. First:
each facility is clustered by at most one client. Second: the distance from a client
to any of his cluster centers is not too big.

Lemma 1. Distance from any client j ∈ C to any close facility of j′ ∈ C such
that j ∈ C(j′) is bounded by 3 ·DC

max(j).
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Proof. Suppose that j′ ∈ C and j ∈ CC(j′) = C(j′)∩C. From the fact that j ∈
CC(j′) follows that qj′ ≤ qj , which is equivalent with DC

max(j′) ≤ DC
max(j). The

definition of CP (·) assures that the distance from j (j′) to any facility in CP (j)
(CP (j′)) can be bounded by DC

max(j) (DC
max(j′)). Consider i′ ∈ CP (j)∩CP (j′)

and any i ∈ CP (j′). Distance from j to i is ci′j + ci′j′ + cij′ ≤ DC
max(j) + 2 ·

DC
max(j′) ≤ 3 ·DC

max(j). ut

3.3 Facility opening

A randomized procedure deciding whether a particular facility should be open
or not transforms the fractional ȳ into a random integral ŷ. We would like the
procedure to have the following properties:

1. Marginal distribution: Pr[ŷi = 1] = ȳi
2. Sum-preservation:

∑
i∈CF (j) ŷi ∈ {bvol(CF (j))c, dvol(CF (j))e}

3. Negative correlation: ∀S ⊆ CF (j)∀b ∈ {0, 1}Pr[
∧
i∈S

(ŷi = b)] ≤
∏
i∈S

Pr[ŷi = b]

One method which gives an output with the above properties is the dependent
rounding (DR) from [9]. Each cluster can have many facilities open fractionally.
We first apply DR to each CF (j) = C(j) ∩ F , where j is the center of a clus-
ter. Then the remaining fractional facility openings are rounded by DR in an
arbitrary order.

4 Analysis

To bound the expected connection cost of an algorithm A(γ), we need to first
analyse the number of facilities which will be opened in a set of a particular
volume. Suppose that facilities are opened independently and that in the limit
case all facilities are opened very little in the fractional solution, then the number
of eventually open facilities from a set has the Poisson distribution. By the
negative correlation this distribution can be used to derive the following lower
bound on the number of useful opened facilities from the considered set.

Observation 2 The expected number of possible connections with set A of vol-
ume Λ = vol(A), when the requirement is k, is h(Λ, k) ≥

∑k−1
i=1 iPΛ(X =

i)+kPΛ(X ≥ k). Where PΛ(X = i) = Λie−Λ

i! is the probability of opening exactly
i facilities in a set of volume Λ, if opened independently (Poisson distribution).

Lemma 2. Suppose that γ = γk. Consider a client j ∈ C which is not a center
of any cluster. The expected connection cost of client j is at most

E[Cj ] ≤
n−1∑
l=1

cl(j) ·
ek,l1 (j)

rj
+
ek3(j)

rj
· 3Dk

max(j)

Where ek,l1 (j) is expected number of open facilities in set F lj , in which opening

of each facility is scaled by γk; e
k
3(j) is rj decreased by expected number of open
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facilities in set Fj, in which opening of each facility is scaled by γk (or zero if
number of open facilities in Fj is bigger than rj).

Proof. The value of ek,l1 (j) is the expected number of open facilities in the set

F lj = FClj \ F
Cl−1

j , when all fractional openings of facilities are scaled up by
γk. Connection cost of a client j with an open facility in this set is cl(j). The
expected number of connections which j has to establish with close facilities of
his cluster centers is ek3(j) - his requirement reduced by the number of facilities
opened in Fj . Lemma (1) bounds the distance to close facilities of cluster centers
of j. ut

4.1 Factor revealing LP

Consider running an algorithm A(γl) for γl = 1 + 2 · n−ln where l = 1, 2, . . . n−1.
Observe that the following linear program, called FRLP, covers all that execu-
tions. Value of the objective function is an upper bound on the approximation
ratio of the best of the obtained solutions.

max λr (5)

γkf +

n−1∑
l=1

cl ·
ek,l1

r
+
ek3
r
· 3 · cl+1 ≥ λr ∀k<n (6)

n∑
l=1

vol(F l) · cl = c (7)

0 ≤ ci ≤ ci+1 ≤ 1 ∀i<n (8)

f + c = 1 (9)

f, c ≥ 0 (10)

The above LP encodes the cost of solutions obtained in executions of an
algorithm A for different values of the scaling parameter γk for k = 1, 2, . . . n−1.
Adversary has the freedom to choose the distances from client j to groups of
facilities and the relation between values of f and c in the optimal solution, which
have to sum up to one, and (both) be non-negative. We consider all facilities in
the order of a non-decreasing distance from the client j, so the average distances
to consecutive groups of facilities have to be non-decreasing, see constraint (8).
We divide facilities into sets F lj , for 1 ≤ l ≤ n. In each set F lj the adversary

may choose the distance from client j to the open facility in F lj , which is the
worst for our algorithm and equals cl(j). Equality (7) shows that the sum of
average distances, each weighted by the volume of facilities at such distance,
has to sum up to the total connection cost in the optimal solution. The crucial
inequality (6) encodes the expected cost of an algorithm A(γk) and it is used as
an upper bound for the approximation ratio. Client in inequality (6) is a client

with minimum requirement r, ek,l1 = h(γk · vol(FCl , r))− h(γk · vol(FCl−1), r) is
expected number of open facilities in set F l and ek3 = r−h(γk · r, r). Correctness
of this inequality follows from Lemmas (1), (2) and Dl

max ≤ cl+1. If r = 1 then

7



instead of Algorithm 1 we use method from [16]. To improve the approximation
ratio from 1.575 to 1.52 we run the algorithm from [16] for a number of values of
the scaling parameter γl = 1+2 · n−ln , where l = 1, 2, . . . n−1. It can be analyzed
by FRLP. The computed values of λr, for r = 1, 2, . . . 10, are in the following
table:

r 1 2 3 4 5 6 7 8 9 10
λr 1.515 1.439 1.338 1.275 1.234 1.207 1.187 1.171 1.159 1.149

Fig. 2. The profiles of distances in tight instances for Algorithm 1 for FTFP (in a
general, non-uniform case) for 1 ≤ r ≤ 5, extracted from the FRLP solutions. The
x-axis encodes the volume of a set of facilities closest to a client and the y-axis is the
distance to the farthest facility in this set.

4.2 Uniform requirement

As it was shown in [11] the JMS algorithm can be modified to work with FTFL
with uniform requirements of clients, and the approximation ratio remains the
same. In consequence it also works for FTFP with uniform requirements of
clients. We can add one more constraint 1.11f + 1.78c ≥ λr to the FRLP in
Section 4.1 which encodes that we additionally run the (modified) JMS algo-
rithm1. Such FRLP for r = 1 is a dual of the LP from [1], probabilities of
particular algorithms in Shi Li paper are dual values of constraints in FRLP. As

1 An algorithm for UFL is called (a,b)-approximation if the cost of returned solution
is upper bounded by a · F ∗ + b ·C∗, where F ∗ and C∗ are, respectively, the costs of
establishing connections and opening facilities in an optimal solution
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you can see in the following table, adding the JMS algorithm makes difference
only for small values of r.

r 1 2 3 4 5 6 7 8 9 10
non-uniform 1.515 1.439 1.338 1.275 1.234 1.207 1.187 1.171 1.159 1.149

uniform 1.488 1.410 1.329 1.272 1.234 1.207 1.187 1.171 1.159 1.149

5 Factor λr is a decreasing function of r

Lemma 3. Function f(r) = r−h((1+ε)r,r)
r converges to 0 when r 7→ ∞.

Proof. We show that

lim
r 7→∞

r − h((1 + ε)r, r)

r
= 0

r − h((1 + ε)r, r)

r
=
r − (

∑r−1
i=1 iP(1+ε)r(X = i) + rP(1+ε)r(X ≥ i))

r

=
r − (

∑r−1
i=1 iP(1+ε)r(X = i) + r(1−

∑r−1
i=1 P(1+ε)r(X = i)))

r

=

∑r−1
i=1 (r − i)P(1+ε)r(X = i)

r

=

r−1∑
i=1

(r − i)(1 + ε)i · ri

r · i! · e(1+ε)r
≤ (1 + ε)r−1 · rr

(r − 1)!e(1+ε)r

It remains to verify that

∀ε>0 lim
r 7→∞

(1 + ε)r−1 · rr

(r − 1)!e(1+ε)r
= 0,

which we did using wolfram alpha (http://www.wolframalpha.com/).

Theorem 1. For each choice of ε > 0 there exists r0 such that for each r ≥ r0
inequality λr ≤ 1 + ε holds.

The above theorem easy follows from the following lemmas, because the approx-
imation ratio of Algorithm 1 is always upper bounded by the approximation
ratio of A(γ) for each choice of γ.

Consider an instance I and a client j ∈ C. Lemma (2) implies that the ex-

pected connection cost of j in algorithm A(γ) is E[Cj ] ≤
∑n
l=1 cl(j) ·

ek,l1 (j)
rj

+

ek3 (j)
rj
· 3Dmax(j). Note that the inequality

∑n
l=1 cl(j) ·

ek,l1 (j)
rj

≤ C∗j holds, be-

cause in the solution (x∗, y∗) client j fractionally uses the same facilities, but
with smaller opening values. Therefore, in the expectation he pays not less for
connection than in our scaled up solution. Notice that, for a particular choice of

9
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γ = 1 + ε, the value of the expression 3(1 + 1
ε ) is a constant. From [9] we know

that the following inequality holds.

ek3(j)

rj
· 3Dmax(j) ≤ f(r) · 3(1 +

1

ε
)C∗j

Observation 3 For γ = 1 + ε the approximation factor for connection cost of
the solution produced by A(γ) depends only on f(r), where r is the minimum
requirement in the considered instance.

Li Yan showed [6] a result similar to the below lemma, but the result is
weaker: he shows that the limit is 1 only for a fixed number of facilities.

Lemma 4. For each ε > 0, γ = 1 + ε, there exists r0 such that for each r ≥ r0,
approximation ratio of an algorithm A(γ) is bounded by 1 + ε.

Proof. Lemma 3 and Observation 3 imply that for each choice of ε there exists
r0 such that for each instance with minimum requirement r ≥ r0 approximation
ratio of A(1 + ε) is bounded by 1 + ε. ut

5.1 Dealing with large requirements rj

Yan and Chrobak proved the following theorem

Theorem 2. (from [16]) Suppose that there is a polynomial-time algorithm A
that, for any instance of FTFP with maximum demand bounded by |F |, com-
putes an integral solution that approximates the fractional optimum of this in-
stance within factor ρ > 1. Then there is a ρ-approximation algorithm A′ for
FTFP .

The main result of this section is an extension of Theorem 2 which exploits
our Theorem 1. Consider an instance I for which the approximation ratio of
Algorithm 1 is almost one, see Theorem 1. As it was mentioned in Section 2
we can assume that the optimal solution (x∗, y∗) to the LP (1) - (4) for an
instance I is complete, so for each i ∈ F and j ∈ C we have x∗ij ∈ {0, y∗i } . From
optimality of this solution, we can assume that

∑
i∈F x

∗
ij = rj for all j ∈ C. We

split solution (x∗, y∗) into two parts (x∗, y∗) = (x̂, ŷ) + (ẋ, ẏ), where

ŷi = max{by∗i − r̄c, 0}, x̂ij = max{bx∗ij − r̄c, 0} ∀j ∈ C, i ∈ F

ẏi = y∗i − ŷi, ẋij = x∗ij − x̂ij ∀j ∈ C, i ∈ F

where 1 ≤ r̄ ≤ minj∈C rj . Now we will construct two instances İ and Î of
FTFP with the same parameters as I, except requirements. Demand of each
client j is r̂j =

∑
i∈F x̂ij in the instance Î and ṙj =

∑
i∈F ẋij in İ.

Lemma 5. (i) (x̂, ŷ) is a feasible integral solution to instance Î
(ii) (ẋ, ẏ) is a feasible fractional solution to instance İ
(iii) (x̂, ŷ) and (ẋ, ẏ) are optimal solutions to Î and İ
(iv) ∀j∈C (r̄ + 1) · |F | ≥ ṙj ≥ r̄

10



Proof. (i) For a feasibility of (x̂, ŷ), we need to show that all constraints of LP
(1) - (4) are satisfied. For each j ∈ C we have that r̂j =

∑
i∈F x̂ij , so (2) holds.

Solution (x∗, y∗) is complete, so x∗ij ∈ {0, y∗i }. If x∗ij = 0 then x̄ij = 0 ≤ ȳi,
otherwise x∗ij = y∗i > 0 in that case we have that x̂ij = ŷi. In consequence
constraint (3) is satisfied.

(ii) In the case of (ẋ, ẏ) also all inequalities hold. Constraint (2) is satisfied,
because ṙj =

∑
i∈F ẋij . Note that both ẋij and ẏi are non-negative. We need

to show that ẋij ≤ ẏi which is equivalent with y∗i −max{by∗i − r̄c, 0} ≥ x∗ij −
max{bx∗ij− r̄c, 0}. If x∗ij = 0 then we have y∗i ≥ max{by∗i − r̄c, 0} which holds. In
the other case we have x∗ij = y∗i > 0. With that assumption we trivially obtain
the following equality y∗i −max{by∗i − r̄c, 0} = x∗ij −max{bx∗ij − r̄c, 0}.

(iii) Suppose that at least one of (x̂, ŷ) and (ẋ, ẏ) is not an optimal solution to
Î and İ, respectively. In that situation we are able to obtain solution to instance
I with a smaller cost than cost(x∗, y∗), which is a contradiction.

(iv) To prove ṙj ≤ (r̄+ 1) · |F | we have to show that the following inequality
holds, where F ′ = {i ∈ F | x∗ij ≥ r̄ + 1}.

rj −
∑
i∈F ′

(x∗ij − (r̄ + 1)) ≤ (r̄ + 1)|F | ⇐⇒
∑

i∈F\F ′
x∗ij ≤ (r̄ + 1)|F \ F ′|

To finish the proof of the lemma we should prove the following inequalities

rj −
∑
i∈F

max{bx∗ij − r̄c, 0} ≥ rj −
∑
i∈F

max{x∗ij − r̄, 0} ≥ r̄

Let F ′ = {i ∈ F |x∗ij > r̄}. Using F ′ we can rewrite the above inequality as
rj −

∑
i∈F ′(x

∗
ij − r̄) ≥ r̄. Consider two cases: |F ′| = 0 and |F ′| ≥ 1. The

first is trivial because rj ≥ r̄ holds. In the second case rj −
∑
i∈F ′(x

∗
ij − r̄) ≥

rj + r̄ −
∑
i∈F x

∗
ij ≥ r̄, which trivially holds, because rj =

∑
i∈F x

∗
ij . ut

Corollary 1. For an instance I, with requirement r, for which the approxima-
tion ratio of Algorithm 1 is λr, we can obtain two other instances: integral Î
and fractional İ. Instance İ has polynomial demands and a minimum require-
ment 1 ≤ r̄ ≤ minj∈C rj. The approximation ratio λ and a running time of
Algorithm 1 depends on value of r̄, which can be arbitrarily selected from [1, r].
Sum of the integral solution S and the optimal integral solution for Î, is a feasible
integral solution for I with the approximation ratio λ.

6 Integrality gap of the LP

We will present examples of instances of FTFP , with an uniform require-
ment r of all clients, which has a quite big integrality gap. Let I(n, l, fc) de-
note an instance of the FTFP defined as follows. There is a set of facilities
F = {1, 2, . . . , n · r} (each of n facilities has r copies to avoid opening any of
them more than once, in a consequence our results for an integrality gap holds
also for FTFL) The set of clients C = {j ⊂ F : |j| = m ·r = l,m ∈ N\{0}} con-
structed from subsets of F such that each of m selected facilities is in r copies.
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A connection cost cij is equal 1
|C| if i ∈ j and 3

|C| otherwise. Instances described

above have the following properties:

• The optimal fractional solution to the linear relaxation of FTFP for these
instances is: open r

l of each facility, connect each client j to all facilities
whose distance is 1

|C|
• The cost of the optimal fractional solution to the LP -relaxation of FTFP

on these instances is zLP (I(n, l, fc)) = r(1 + fc
l )

• The cost of an integral solution to the FTFP depends only on number of
open facilities and requirement of clients.

Now we will analyse the cost of z(I(n, l, fc)), optimal solutions to instances
of the form I(n, l, fc). We consider the instance obtained by setting l and fc to
some constant values and n = 1, 2, 3, . . . . We consider all solutions by modifying
the parameter α ∈ (0, 1] which is a fraction of open facilities. The cost of the
integral solution for such instances can be described by the following expression:

lim
n 7→∞

z(I(n, l, fc)) = α · fc + r +

r−1∑
i=0

(
l

i

)
· αi · (1− α)l−i · (r − i) · 2

We open dα ·ne facilities of total cost α · fc. Each client has a requirement r and(
l
i

)
· αi · (1− α)l−i represents the following event: i facilities at distance 1

|C| are

open. The remaining r− i facilities which j uses are in a distance 3
|C| from j, so

he has to pay extra for a connection. The integrality gap for a particular values
of requirement r, which we are able to find, are presented in the below table.

r 1 2 3 4 5 6 7 8 9 10
IG 1.4627 1.3268 1.2655 1.2289 1.1709 1.1179 1.076 1.0466 1.0268 1.0146

The following table presents values of parameters used to obtain our integral-
ity gap instances. All values of the variables in the below table were obtained in
experimental way.

r IG α f l
1 1.46272 0.001462 463.495 1000
2 1.32689 0.002654 514.615 1000
3 1.26557 0.003796 539.050 1000
4 1.22895 0.004916 554.235 1000
5 1.17098 0.005855 526.635 1000
6 1.11795 0.006707 452.550 1000
7 1.07640 0.007535 356.055 1000
8 1.04669 0.008374 257.735 1000
9 1.02687 0.009242 172.485 1000
10 1.01460 0.010146 107.175 1000
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7 Lower bound for FTFL

We give a reduction from the Set Cover problem. Consider an instance of Set
Cover defined as X = {x1, x2, . . . xn}, and S = {S1, S2, . . . Sm} such that Si ⊆ X
for each i ∈ {1, 2, . . .m}. We would like to find a cover C ⊆ S such that |C| = k
is minimized. In our reduction we assume that we know k (we can run algorithm
for each value of 1 ≤ k ≤ m).

Theorem 3. If for any r > 1 there is a polynomial time algorithm with an
approximation factor smaller than 1.278 for the Fault-Tolerant Facility Location
problem for instances with minimal requirement r, then NP ⊆ DTIME[nO(log log n)].

Proof. We transform a given instance of the Set Cover (X,S) to an instance of
FTFL with uniform requirements r > 1. Suppose that we know that an optimal
solution to (X,S) uses k sets. Define Ri as a multi-set of singletons {xi} for
each xi ∈ X, (Ri = {{xi}, {xi}, . . . , {xi}} and |Ri| = r − 1). We set C = X and
F = S ∪ R, where R =

⋃n
i=1Ri. If xi ∈ Sj then cij = 1 and cij = 3 otherwise.

Similarly if xi′ ∈ Rj′ then ci′j′ = 0 and ci′j′ = 2 otherwise. We extend a distance
function cij by the shortest paths to obtain a metric instance.

The value of γ will be specified later. Suppose FTFL-ALG is an α approxi-
mation algorithm for the FTFL. Suppose that in iteration j we have nj = |C|

Algorithm 7.1 Algorithm (X,S)

1: Create FTFL instance (F,C) where F = S ∪R and C = X

2: fi = γ |C|
k

is cost of a facility i ∈ S and fi = 0 for i ∈ R
3: while C 6= ∅ do
4: F ′ = FTFL-ALG(F,C)
5: Let C′ be a set of clients connected in a distance one with any f ∈ F ′ \R
6: Let F = F \ (F ′ ∩ S) and C = C \ C′
7: for all i ∈ S do
8: fi = γ |C|

k

9: end for
10: end while

clients not covered by any facility from set S. Moreover, the cost of facilities
from set S is γ

nj
k .

We know that there is a solution to (X,S), which select exactly k sets, such
that each element is covered, hence there exists a solution for (F,C) such that
each client has an open facility from the set S at distance one and r − 1 open
facilities from the set R at distance 0. The cost of such solution is nj(γ + 1).
The approximation ratio of FTFL-ALG is α, hence on the cost of the returned
solution is at most αnj(γ + 1).

Suppose that FTFL-ALG opened βjk facilities from S and all facilities from
R. Fraction of all clients which are connected in distance one is 0 ≤ cj ≤ 1. The
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cost of such solution is βjγnj + cjnj + 2(nj − cjnj). Thus we obtain:

α ≥ γ · βj + 2− cj
1 + γ

Define cβj = (1 − e
−βj
c ), where 0 < c < 1. Suppose that for some iteration j,

cj ≤ cβj then

α ≥ γ · βj + 1 + e
−βj
c

1 + γ

Taking the derivative with respect to βj , tells us that the minimum is achieved
at βj = c · ln( 1

cγ ). Substituting this value of βj gives us

α ≥ 1 + cγ

1 + γ
+

cγ

1 + γ
ln(

1

cγ
)

Choosing γ = 0.278465 gives α ≥ 1.278465 when c is a constant close to 1.
In the second case we have that for each j, cj > cβj . Similar to the proof in

[12] it allows us to have an algorithm for the Set Cover with the approximation
ratio c · ln(|X|) for c < 1, which implies that NP ⊆ DTIME[nO(log log n)], see
[8]. It remains to observe that we may ”guess” k by trying the above construction
for k = 1, 2, . . . |S|. ut

The main idea of the proof, which you can find in the Appendix, is the same
as in [12]. We use an algorithm for FTFL to obtain partial covers for the Set
Cover instance (X,S). We show that the partial cover cannot be too big in each
step, because then it would contradict the Feige’s result [8]. He proved that
approximation algorithm for the Set Cover with ratio c · ln|X| where c < 1,
implies that NP ⊆ DTIME[nO(log log n)].

8 Open problems

Is it possible to apply techniques similar to presented in this paper to FTFL? Is
FTFL getting any easier with increasing value of r? It would also be interesting
to derive a lower bound on the approximability of FTFP as a function of r > 1.
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