
ar
X

iv
:1

40
9.

17
22

v1
 [

cs
.D

S
]

5
S

ep
 2

01
4 Online Multi-Coloring with Advice∗

Marie G. Christ Lene M. Favrholdt Kim S. Larsen

University of Southern Denmark

Odense, Denmark

{christm,lenem,kslarsen}@imada.sdu.dk

October 15, 2018

Abstract

We consider the problem of online graph multi-coloring withadvice.
Multi-coloring is often used to model frequency allocationin cellular net-
works. We give several nearly tight upper and lower bounds for the most
standard topologies of cellular networks, paths and hexagonal graphs. For
the path, negative results trivially carry over to bipartite graphs, and our pos-
itive results are also valid for bipartite graphs. The advice given represents
information that is likely to be available, studying for instance the data from
earlier similar periods of time.

1 Introduction

We consider the problem of graph multi-coloring, where eachnode may receive
multiple requests. Whenever a node is requested, a color must be assigned to the
node, and this color must be different from any color previously assigned to that
node or to any of its neighbors. The goal is to use as few colorsas possible. In the
online version, the requests arrive one by one, and each request must be colored
without any information about possible future requests. The underlying graph is
known to the online algorithm in advance.

∗Supported in part by the Danish Council for Independent Research and the Villum Foundation.
An extended abstract will appear in the Twelfth Workshop on Approximation and Online Algorithms
(WAOA), Lecture Notes in Computer Science. Springer, 2014.

1

http://arxiv.org/abs/1409.1722v1

The problem is motivated by frequency allocation in cellular networks. These net-
works are formed by a number of base transceiver stations, each of which covers
what is referred to as a cell. Due to possible interference, neighboring cells cannot
use the same frequencies. In this paper, we use classic terminology and refer to
these cells as nodes in a graph where nodes are connected by anedge if they cor-
respond to neighboring cells in the network. Frequencies can then be modeled as
colors. Multiple requests for frequencies can occur in one cell and overall band-
width is a critical resource.

Two basic models dominate in the discussion of cellular networks, the highway and
the city model. The former is modeled by linear cellular networks, corresponding
to paths, and the latter by hexagonal graphs. We consider theproblem of multi-
coloring such graphs.

1.1 Analyzing online algorithms

If A is a multi-coloring algorithm, we letA(I) denote the number of colors used
by A on the input sequenceI. WhenI is clear from the context, we simply write
A instead ofA(I). The quality of an online algorithm is often given in terms ofthe
competitive ratio [35, 26]. An online multi-coloring algorithm is c-competitiveif
there exists a constantα such that for all input sequencesI, A(I) ≤ cOPT(I)+α.
The (asymptotic)competitive ratioof A is the infimum over all suchc. Results
that can be established usingα = 0 are referred to asstrict (or absolute). Often,
it is a little unclear when one refers to anoptimal online algorithm, whether this
means that the solution produced is as good as the one produced offline or that no
better online algorithm can exist. For that reason, we may use the termstrictly
1-competitiveto emphasize that an algorithm is as good as an optimal offlinealgo-
rithm, andoptimal to mean that no better online algorithm exists under the given
conditions. Throughout, we letn denote the number of requests in a given input
sequence.

1.1.1 Relaxing the concept of online

A way of relaxing the very strict and unnatural assumption that the algorithm has
no information about the input sequence is to give the algorithm someadvice. The
possibly most famous online problem of paging, where no deterministic online
algorithm is better thank-competitive on a cache size ofk, can be solved optimally
with just one bit of advice per request, saying whether to keep the requested page
in cache until its next request [18, 5].

2

A recent trend in the analysis of online algorithms has been to consider advice,
formalized under the notion ofadvice complexity, starting in [18]. Theoretically,
results along these lines give some information in the direction of the hardness
stemming from the problem being online, relaying information concerning how
much we need to know about the future to perform better. For practical appli-
cations, the assumption that absolutely nothing is known about the future is of-
ten unrealistic, and though many problems must be addressedwithout knowing in
which order requests arrive, quite often something is knownabout the sequence of
requests as a whole.

This realization that input is not arbitrary (uniformly random, for instance) is not
new, and work focused on locality of reference in input data has tried to capture
this. Early work includes access graph results, starting in[7], and with references to
additional related work in [9], but also more distributional models, such as [1], have
been developed. An entirely different approach was initiated in [11] and further
developed in [12, 8]. The idea behind the concept of accommodating sequences is
that for many problems requiring resources, there is a closeconnection between the
resources available and the resources required for an optimal offline algorithm, as
when capacity of transportation systems are matched with expected demand. This
leans itself very closely up against many of the results thatwe report here, where
the advice needed to do better is often some information regarding the resources
required by an optimal offline algorithm.

Thus, the results in this paper could have practical applications. The results es-
tablish which type of information is useful, how algorithmsshould be designed to
exploit this information, and what the limits are for what can be obtained.

1.1.2 Modeling advice complexity

Returning to the advice complexity modeling, some problemsneed very little ad-
vice. On the other hand, complete information about the input or the desired output
is a trivial upper bound on the amount of advice needed to be optimal. The first
approach to formalizing the concept of advice measured the number of bits per
request [18]. This model is well suited for some problems where information is
tightly coupled with requests and the number of bits needed per request is constant.
However, for most problems, we prefer the model where we simply measure the
total advice needed throughout the execution of the algorithm. As also discussed
in [5, 23], this model avoids some modeling issues present inthe “per request”
modeling, and at the same time makes it possible to derive sublinear advice re-
quirements. Thus, we use the advice model from [23], where the online algorithm

3

has access to an infinite advice tape, written by an offline oracle with infinite com-
putation power. In other words, the online algorithm can askfor the answer to any
question and read the answer from the tape. Competitivenessis defined and mea-
sured as usual, and the advice complexity is simply the number of bits read from
the tape, i.e., the maximum index of the bits read from the advice tape.

As the advice tape is infinite, we need to specify how many bitsof advice the
algorithm should read and if this knowledge is not implicitly available, it has to
be given explicitly in the advice string. For instance, if wewant OPT as advice
(the number of colors an optimal offline algorithm uses on a given sequence, for
instance), then we cannot merely read⌈log(OPT+1)⌉ (all logs in this paper are
base 2) bits, since this would require knowing something about the value of OPT.
One can use a self-delimiting encoding as introduced in [20]. We use the variant
from [10], defined as follows: The value of a non-negative integerX is encoded by
a bit sequence, partitioned into three consecutive parts. The last part isX written
in binary. The middle part gives the number of bits in the lastpart, written in
binary. The first part gives the number of bits in the middle part, written in unary
and terminated with a zero. These three parts require⌈log(⌈log(X + 1)⌉ + 1)⌉ +
1, ⌈log(⌈log(X + 1)⌉ + 1)⌉, and⌈log(X + 1)⌉ bits, respectively, adding a lower-
order term to the number of bits of information required by analgorithm. We
defineenc(x) to be the minimum number of bits necessary to encode a numberx,
and note that the encoding above is a (good) upper bound onenc(x).

1.2 Previous and new results

We now discuss previous work related to multi-coloring and advice complexity
and then state our results. When working with online algorithms, decisions are
generally irrevocable, i.e., once a color is assigned to a node, this decision is final.
However, in some applications, local changes of colors may be allowed (reassign-
ment of frequencies). This is calledrecoloring. An algorithm isd-recoloring if, in
the process of treating a request, it may recolor up to a distanced away from the
node of the request.

1.2.1 Previous results

For multi-coloring a path, the algorithm4-BUCKET is 4
3 -competitive [17], and this

is optimal [14]. Even with0-recoloring allowed (that is, colors at the requested
node may be changed),4-BUCKET is optimal [15]. Furthermore, if1-recoloring is
allowed, the algorithm GREEDYOPT is strictly 1-competitive [15].

4

For multi-coloring bipartite graphs, the optimal asymptotic competitive ratio lies
between107 ≈ 1.428 and 18−

√
5

11 ≈ 1.433 [16].

In [13], it was shown that, for hexagonal graphs, no online algorithm can be better
than 3

2 -competitive or have a better strict competitive ratio than2. They also gave
an algorithm, HYBRID, with an asymptotic competitive ratio of approximately1.9
on hexagonal graphs. Onk-colorable graphs, it is strictlyk+1

2 -competitive, and
hence, it has an optimal strict competitive ratio on hexagonal graphs. Recolor-
ing was studied in [25]: Nod-recoloring algorithm for hexagonal graphs has an
asymptotic competitive ratio better than1 + 1

4(d+1) . Ford = 0, the lower bound

was improved to97 . In [36], a 4
3 -competitive2-recoloring algorithm is given. The

best known1-recoloring algorithm for hexagonal graphs is3324 -competitive [37].
For the offline problem of multi-coloring hexagonal graphs,no polynomial time
algorithm can obtain an absolute approximation ratio better than 4

3 [30, 32, 33],
unless P= NP.

Many other problems have been considered in the advice models, including pag-
ing [5], disjoint path allocation [2], and job shop scheduling [5], as well ask-
server [4], knapsack [6], set cover [28], metrical task systems [21], and buffer
management [19]. Also graph coloring has been considered, but in a very dif-
ferent online setting, where the graph itself is not available from the beginning.
Instead, the nodes are revealed one by one and results have been obtained for
paths [22], bipartite graphs [3], and 3-colorable graphs [34]. In [29], a coloring
problem with restrictions going beyond the immediate neighbors is considered.
Furthermore, there are interesting connections between advice and randomization
and sometimes results on advice complexity can be used to obtain efficient random
algorithms [5, 27, 6].

1.2.2 Our results

An overview of our results is given in Table 1. For the path, these results are
nearly tight, even with upper bounds that also apply to bipartite graphs. For hexag-
onal graphs, note that with a linear number of advice bits, itis possible to be43 -
competitive, and the lower bound for being better than5

4 -competitive is close to
linear. The advice given to the algorithms is essentially (an approximation of) OPT

or the maximum number of requests given to any clique in the graph. For the un-
derlying problem of frequency allocation, guessing these values based on previous
data may not be unrealistic.

5

Ratio Lower Type Thm Upper Type Thm
P

at
h

s 1 logn− 2 s 1 logn+O(log logn) s 4

1 + 1

2b
b− 2 a 2 b+ 1 +O(log log n) s 5

< 4

3
ω(1) a 3

H
ex

ag
o

n
al 1 (n+ 1) ⌈logn⌉ s 8

< 5

4
Ω(n) a 7

4

3
n+ 2|V | a 10

3

2

⌊
n−1

3

⌋
s 6 logn+O(log logn) a 9

Table 1: Overview of our results. Recall thatn denotes the number of requests in
the input sequence. We mark the ratios that are strict by “s” and the ones that are
asymptotic by “a”. Note that a strict lower bound can be larger than an asymptotic
upper bound. For each bound, we indicate the number of the theorem proving the
result. For readability, many of the bounds stated are weaker than those proven in
the paper. Moreover, the upper bounds for the path hold for any bipartite graph.
The result of Theorem 3 in the third row of the table is valid only for neighborhood-
basedalgorithms, as defined just before Theorem 3 in Section 2.

2 The Path

As explained earlier, we establish all lower bounds for paths, and since a path is
bipartite, all these negative results carry over to bipartite graphs. Similarly, all our
(constructive) upper bounds are given for bipartite graphsand therefore also apply
to paths. We start with three lower bound results.

2.1 Lower bounds

Theorem 1 Any strictly 1-competitive online algorithm for multi-coloring paths
of at least 10 nodes has advice complexity at least

⌈
log(

⌊
n
4

⌋
+ 1)

⌉
.

Proof We letm =
⌊
n
4

⌋
and define a setS of m + 1 sequences, all having the

same prefix of length2m. The setS will have the following property: for no two
sequences inS can their prefixes be colored in the same way while ending up using
the optimal number of colors on the complete sequence. Starting from one end of
the path, we denote the nodesv1, v2,

We define the setS to consist of the sequencesI0, I1, . . . , Im, whereIi is defined in
the following way. Firstm requests are given to each of the nodesv1 andv4. Then

6

i requests to each ofv2 andv3. To give all sequences the same length, the sequence
ends with⌈n− 2m− 2i⌉ requests distributed as evenly as possible amongv6, v8,
andv10. Since⌈⌈n− 2m− 2i⌉ /3⌉ ≤ m, the optimal number of colors will not be
influenced by this part of the sequence.

Note that OPT(Ii) = m + i. In order not to use more than OPT(Ii) colors forIi,
exactlyi of the colors assigned tov4 have to be different from the colors assigned to
v1. The prefixes of length2m in S are identical, so all information to distinguish
between the different sequences must be given as advice. Thecardinality ofS
is m + 1. To specify one out ofm + 1 possible actions,⌈log(m+ 1)⌉ bits are
necessary. ✷

For algorithms that are98 -competitive or better, we give the following lower bound.

Theorem 2 Consider multi-coloring paths of at least 10 nodes. For anyb ≥ 3 and
any (1 + 1

2b
)-competitive algorithm,A, there exists anN ∈ N such thatA has

advice complexity at leastb− 2 on sequences of length at leastN .

Proof For any(1 + 1
2b
)-competitive algorithm,A, there exists anα ≥ 1 such that

A(I) ≤ (1+ 1
2b
)OPT(I) +α, for any input sequenceI. We consider sequences of

lengthn ≥ 22b+2α+ 3.

Letm =
⌊
n
4

⌋
and consider the same set of sequences as in the proof of Theorem 1.

Recall that
OPT(Ii) = m+ i .

For the sequenceIi, let xi denote the number of colors thatA uses onv4 but not
on v1. Then,A usesm+ xi colors in total forv1 andv4. Onv3, it can use at most
xi of the colors used atv1, so the total number of colors used atv1, v2, andv3 is at
leastm+ 2i− xi. Thus,

A(Ii) ≥ max {m+ xi,m+ 2i− xi} .

We will prove that there arep ≥ 2b−2 sequencesIi1 , Ii2 , . . . , Iip such that, for any
pair ij 6= ik, we havexij 6= xjk , or otherwiseA would not be(1+ 1

2b
)-competitive

on sequences of at least2b+2 requests. This will immediately imply thatA must
use at leastb− 2 advice bits.

Let ε = 1
2b

+ 1
22b

. FromA(Ii) ≤ (1 + 1
2b
)OPT(Ii) + α andm ≥ 22bα, we obtain

the inequalities
m+ xi ≤ (1 + ε)(m + i)

and
m+ 2i− xi ≤ (1 + ε)(m + i)

7

which reduce to
xi ≤ εm+ (1 + ε)i (1)

and
i ≤ xi + εm

1− ε
(2)

Hence, by (1),x0 ≤ εm. Thus, by (2), we can havexi = x0, only if i ≤ 2εm
1−ε .

Therefore, we leti1 = 0 andi2 = ⌊2εm1−ε + 1⌋. In general, we ensurexij 6= xij+1

by lettingij+1 = ⌊xij
+εm

1−ε + 1⌋. Thus,

ij+1 ≤
xij + εm

1− ε
+ 1

≤ εm+ (1 + ε)ij + εm

1− ε
+ 1, by (1)

=
1 + ε

1− ε
· ij +

2εm

1− ε
+ 1

Solving this recurrence relation, we get

ij+1 ≤
(
1 + ε

1− ε

)j

· i1 +
j−1
∑

k=0

(
1 + ε

1− ε

)k (2εm

1− ε
+ 1

)

=

(
1 + ε

1− ε

)j

· 0 +

(
1+ε
1−ε

)j
− 1

1+ε
1−ε − 1

(
2εm

1− ε
+ 1

)

=

(
1+ε
1−ε

)j
− 1

1 + ε− 1 + ε
(2εm+ 1− ε)

=

(
1+ε
1−ε

)j
− 1

2ε
(2εm+ 1− ε)

8

We letp equal the largestj for which ij ≤ m:

m < ip+1 ≤

(
1+ε
1−ε

)p
− 1

2ε
(2εm+ 1− ε)

⇒ 2εm <

(
1 + ε

1− ε

)p

(2εm+ 1− ε)− (2εm+ 1− ε)

⇔ 4mε+ 1− ε

2mε+ 1− ε
<

(
1 + ε

1− ε

)p

⇔ ln

(

2− 1− ε

2mε+ 1− ε

)

< p · ln
(

1 +
2ε

1− ε

)

⇒ ln

(

2− 1− ε

2mε+ 1− ε

)

< p · 2ε

1− ε
, since ln(1 + x) ≤ x, for x > −1

⇒ ln

(

2− 1

3

)

< p · 2ε

1− ε
, sincemε > 2b > 1− ε,

⇒ ln
(√

e
)
< p · 2ε

1− ε

⇔ 1

2
< p · 2ε

1− ε

⇔ p >
1− ε

4ε

⇔ p >
1− 1

2b
− 1

22b

4
2b

+ 4
22b

=
22b − 2b − 1

2b+2 + 4
> 2b−2 − 1

⇒ p ≥ 2b−2, sincep is an integer

This completes the proof. ✷

For the following theorem, we define the class ofneighborhood-basedalgorithms:
A multi-coloring algorithm,A, is called neighborhood-based, if there exists a con-
stantd such that, when assigning a color to a request to a nodev, A bases its
decision only on requests to nodes a distance of at mostd away fromv. Note
that, in particular, a neighborhood-based algorithm cannot base its decision on the
current value of OPT.

Theorem 3 No neighborhood-based online algorithm for multi-coloring paths with
advice complexityO(1) can be better than43 -competitive.

Proof Having an online algorithm with advice complexityO(1) gives an algorithm
a constant number of possible algorithmic behaviors; it is equivalent to having
O(1) online algorithms without advice and choosing one of these according to the
given advice.

9

As shown in [15], the family of sequences used in the proofs ofTheorems 1 and 2,
can be used to prove that any online algorithm without advicehas a competitive
ratio of at least43 . The result is asymptotic, since the construction works with
any scaling of the number of requests to each node. This meansthat for each
algorithm, there exists an infinite family of sequences indexed byn, the length of
the sequences, establishing the lower bound for each algorithm.

For any neighborhood-based algorithmA, there is a constantd such that, when
assigning a color to a request,A ignores all requests given to nodes a distance of
more thand away from the requested node. For anyn and any family, there is a
smallest and a largest node on the path which is requested, and the part of the path
from this smallest to the largest node defines a subpath. We now rename nodes
in these infinite families so that the subpaths used by the different families are
separated byd unused nodes. We then form one request sequence by concatenating
all these renamed subsequences. We scale the number of requests in each sequence
such that the value of OPT is the same for each sequence.

Clearly, no matter which of theO(1) algorithms are run on this constructed family,
its performance tends to at least4

3 OPT. ✷

2.2 Upper bounds

For multi-coloring of a path, there exists a strictly1-competitive1-recoloring algo-
rithm, GREEDYOPT [15]. GREEDYOPT divides the nodes into two sets,upperand
lower, such that every second node belongs toupperand the remaining nodes be-
long tolower. The following invariant is maintained: After each request, each node
in lower uses consecutive colors starting with the color 1 and each node inupper
uses consecutive colors ending with a color no larger than the optimal number of
colors for the sequence of requests seen so far.

The algorithm for paths from [15] is easily generalized to work on bipartite graphs,
letting the nodes of one partition,L, belong tolower and the nodes of the other
partition,U , belong toupper. Recoloring is only needed if the number of colors
used by an optimal offline algorithm is not known. Hence, using enc(OPT) advice
bits, an online algorithm can be strictly1-competitive, even if recoloring is not
allowed. We call the resulting algorithm GREEDYOPTADVICE.

To describe the algorithm GREEDYOPTADVICE in detail, we need some notation:
Let fi(v) denote the set of colors assigned to nodev after the firsti requests,
starting with request 1. Also, for notational convenience,we definef0(v) = ∅ for
all v. To smoothly handle initially empty sets of colors in the algorithm, we define

10

that if fi(v) is the empty set, thenmin fi(v) = max fi(v) = 0. This notation will
be used throughout the appendix. GREEDYOPTADVICE is listed as Algorithm 1.

Algorithm 1 The multi-coloring algorithm GREEDYOPTADVICE.
1: Assume that a bipartite graph is given by the partition intoL andU .
2: Advice: m = OPT

3: for i = 1 to n do
4: Assume that theith request,r, is to nodev
5: if v ∈ U then
6: /* using the upper colors top-down */
7: if fi−1(v) = ∅ then
8: give r colorm
9: else

10: give r colormin fi−1(v) − 1
11: else
12: /* v ∈ L; using the lower colors bottom-up */
13: give r colormax fi−1(v) + 1

Theorem 4 Algorithm GREEDYOPTADVICE is correct, strictly1-competitive, and
has advice complexityenc(OPT).

Proof We consider correctness first. Clearly, at timei, the maximum color as-
signed to a nodev ∈ L is max fi(v) = |fi(v)| and the minimum color assigned to
a nodev ∈ U is min fi(v) = OPT+1 − |fi(v)| (assumingv has received at least
one request).

Assume for the sake of contradiction that, at some timei, a request to a nodel ∈ L
gets assigned the same colorc as a request to a neighboring nodeu, which must
belong toU . This means thatc = |fi(l)| andc = OPT+1 − |fi(u)|, and, asl
andu are neighbors, OPT ≥ |fi(l)| + |fi(u)|, but then OPT ≥ |fi(l)| + |fi(u)| =
c + OPT+1 − c = OPT+1. This is a contradiction, so GREEDYOPTADVICE is
correct.

It follows directly that the maximum color that GREEDYOPTADVICE assigns is
OPT, implying that GREEDYOPTADVICE is strictly 1-competitive.

The maximum color that an optimal offline algorithm uses, given a sequence of
lengthn, isn. Therefore, OPT ≤ n andenc(OPT) advice bits are sufficient. ✷

We turn to nonoptimal variants of GREEDYOPTADVICE using fewer thanenc(OPT)
advice bits. We show how to obtain a particular competitive ratio of 1 + 1

2b
, us-

ing b + 1 + O(log log OPT) bits of advice. Thus, essentially, we are approaching

11

optimality exponentially fast in the number of bits of advice.

Theorem 5 For any integerb ≥ 1, there exists a strictly(1 + 1
2b−1)-competitive

online algorithm for multi-coloring bipartite graphs withadvice complexityb +
enc(a), wherea+ b is the total number of bits in the value OPT.

Proof As advice, the algorithm asks for theb high order bits of the value OPT, as
well as the numbera = ⌈log(OPT+1)⌉ − b of low order bits, but not the value of
these bits. The algorithm knowsb and can therefore just read the firstb bits, while
a needs to be encoded. Thus,b+ enc(a) bits are sufficient to encode the advice.

First, if OPT contains fewer thanb bits, this is detected bya being zero. In this
case, some of theb bits may be leading zeros. By Theorem 4, we can then be
strictly 1-competitive.

Now, assume this is not the case. Let OPTb =
⌊

OPT
2a

⌋
denote the value represented

by theb high order bits. Then the algorithm computesm = 2a OPTb +2a − 1 and
runs GREEDYOPTADVICE with this m. Since OPT ≤ m ≤ OPT+2a − 1, the
algorithm is correct and uses at most OPT+2a − 1 colors.

For any numberx ≥ 1, consisting ofc bits, with the most significant bit being one,
2c ≤ 2x. Thus,2b+a ≤ 2OPT, so2a ≤ 2 OPT

2b
. This means that the number of

colors used by GREEDYOPTADVICE is less than OPT+2 OPT
2b

= (1 + 1
2b−1)OPT,

so the algorithm is strictly(1 + 1
2b−1)-competitive. ✷

Considering the lower bound of Theorem 1 versus the upper bound of Theorem 4,
as well as the lower bound of Theorem 2 versus the upper bound of Theorem 5,
in both cases there is a small discrepancy of a few bits, in addition to a low order
term. The lower bound proof of Theorem 1 demonstrates the need of advice to
distinguish between

⌊
n
4

⌋
+ 1 different scenarios to be optimal. It will vary withn

whether or not the division by four saves one or two bits compared withlog n, and
similar reasoning applies to Theorem 2. Thus, when stating the lower bound, we
have to subtract two bits (refer to Table 1). Using encoding tricks, to for instance
identify cases where OPT has a very small value, we can also sometimes get down
to a bit less thanlog n for the upper bound. Thus, our results are nearly tight, up to
low order terms, but because of rounding, it seems difficult to squeeze the missing
few bits out of the bounds in every case. Note that for upper bounds, one could
perform better by distinguishing between different cases,but finding out which
case to use requires extra bits, by which we lose the advantage again.

Corollary 1 For anyε > 0, there exists a strictly(1+ε)-competitive deterministic

12

online algorithm for multi-coloring bipartite graphs withadvice complexity

O(log log OPT).

Proof Except for the termb, the advice stated in Theorem 5 isO(log log OPT)
and OPT ≤ n. Thus, we just need to bound the termb. For a givenε, chooseb
large enough such that1

2b−1 ≤ ε. Using this value forb in Theorem 5, we obtain
an algorithm with a strict competitive ratio of at most1 + 1

2b−1 ≤ 1 + ε. Since, for
any givenε, b is a constant, the total amount of advice isO(log log OPT). ✷

2.3 Cancellations

Algorithm 2 The multi-coloring algorithm GREEDYOPTADVICECANCEL.
1: Assume that a bipartite graph is given by the partition intoL andU .
2: Advice: m = OPT

3: for i = 1 to n do
4: Assume that theith request,r, is to nodev
5: if r is a color requestthen
6: if v ∈ U then
7: /* using the upper colors top-down */
8: if fi−1(v) = ∅ then
9: give r colorm

10: else
11: give r colormin fi−1(v)− 1
12: else
13: /* v ∈ L; using the lower colors bottom-up */
14: give r colormax fi−1(v) + 1
15: else
16: /* r is a cancellation */
17: if v ∈ U then
18: if the color ofr is different frommin fi−1(v) then
19: recolor the request that has colormin fi−1(v), giving it the

color of r
20: else
21: if the color ofr is different frommax fi−1(v) then
22: recolor the request that has colormax fi−1(v), giving it

the color ofr

The Multi-Coloring problem is sometimes considered in the context of request
cancellations, i.e., a color already given to a node disappears again. We observe

13

that even using the weakest form of recoloring, namely0-recoloring, where only
requests at the node where the cancellation takes place may be recolored, we can
extend the algorithm GREEDYOPTADVICE, using the same advice, to a strictly1-
competitive algorithm. This is simply done by recoloring atmost one request per
cancellation to ensure that the invariants regarding lowerand upper nodes are main-
tained, i.e., ensuring that the colors used at any node form aconsecutive sequence
starting from one and increasing and starting from OPT and decreasing for lower
and upper nodes, respectively. This algorithm, GREEDYOPTADVICECANCEL , is
listed as Algorithm 2. Note that the difference to Algorithm1 is the check in line 5
as to whether the current request is a color request and the addition of lines 15–22
handling cancellations.

3 Hexagonal Graphs

A hexagonal graph is a graph that can be obtained by placing (at most) one node
in each cell of a hexagonal grid (such as the one sketched in Figure 1) and adding
an edge between any pair of nodes placed in neighboring cells. Note that any
hexagonal graph can be3-colored. This is easily seen, since it is possible to use the
three colors cyclically on the cells of each row of the underlying hexagonal grid,
such that no two neighboring cells receive the same color.

3.1 Lower bounds

Theorem 6 Any online algorithm for multi-coloring hexagonal graphs with a strict
competitive ratio strictly smaller than32 has advice complexity at least

⌊
n−1
3

⌋
.

Proof First, we explain a small part of the construction that we will use in many
copies. We consider two sequences with the same prefix of length 2. Both se-
quences can be colored with two colors, but this requires coloring the two prefixes
of length two differently. Consider the left-most part of Figure 1 (surrounded by
thick lines) consisting of the “double” nodesD1 andD2, the “outer” nodesO0 and
O1 and the “single” nodesS1, andS2. These nodes form the same type of con-
figuration as the nodesD3, D4, O1, O2, S3, andS4. If a pair of outer nodes are
given some requests, they can later be “connected” by follow-up requests to either
the two double nodes or the single node between them.

First the nodesO0 andO1 get one request each. Then, eitherD1 andD2 or S1 and
S2 receive one request each. The nodeS2 is used to get up to the same sequence

14

O0 S1 O1 S3 O2 S2k−1 Ok

D1 D2

D3 D4

D2k−1 D2k

S2

S4

S2k

R. . .

Figure 1: Hexagonal lower bound construction.

length in all cases. In order not to use more than two colors, the outer nodes have
to use different colors if we later give requests to the twoD-nodes. Similarly, the
O-nodes should have the same color if we later give a request tothe S-node in
between them. Since the prefix of length two is〈O0, O1〉 for both sequences, all
information for an algorithm to distinguish between the twosequences must be
given as advice.

We can repeat this graph pattern
⌊
n−1
3

⌋
times, as illustrated in Figure 1 withk =

⌊
n−1
3

⌋
, giving the requests to allO-nodes first.

We now define the set of sequencesS of cardinality2⌊n−1
3 ⌋ formally, i.e., we define

a sequence for each possible combination of requests to either D2j−1 andD2j or
S2j−1 andS2j for j = 1, 2, . . . ,

⌊
n−1
3

⌋
. A sequence is defined for any chosen com-

bination of the followingi-values, i.e., by choosing a tuple(i1, i2, . . . , i⌊n−1
3 ⌋) ∈

{0, 1}⌊n−1
3 ⌋. For any such choice, we define the sequence as a concatenation of the

subsequences given below. In the description of the subsequences, we use the no-
tationReq(v,m) to denote a sequence ofm requests to a nodev, and also use this
notation form = 0, denoting the empty request sequence, andm = 1, denoting
one request.

• Req(Oj , 1) for j = 0, 1, . . . ,
⌊
n−1
3

⌋

• Req(D2j−1, ij), Req(D2j , ij) for j = 1, 2, . . . ,
⌊
n−1
3

⌋

• Req(S2j−1, 1− ij), Req(S2j , 1− ij) for j = 1, 2, . . . ,
⌊
n−1
3

⌋

• Req(R,n− (3
⌊
n−1
3

⌋
+ 1))

Note that for anyij , {ij, 1− ij} = {0, 1} and we either give requests to theD-

15

nodes or theS-nodes. The possible requests toR simply gets all sequences up to a
length ofn.

The nodeO0 is given some color. After that, we have
⌊
n−1
3

⌋
independent choices

of coloring each nodeOi in the prefix of any sequence identically toOi−1 or not.
Since the prefixes are the same, all information for an algorithm to distinguish
between the different sequences must be given as advice. To specify one out of

2⌊n−1
3 ⌋ possible actions,

⌈

log 2⌊n−1
3 ⌋⌉ =

⌊
n−1
3

⌋
bits are necessary. ✷

Theorem 7 Any online algorithm for multi-coloring hexagonal graphs with com-
petitive ratio strictly smaller than54 has advice complexityΩ(n).

Proof We use the basic construction from Theorem 6. Assumep requests are given
to one of the components like this:

First, we givep
4 requests to each ofO0 andO1. Let q, 0 ≤ q ≤ p

4 , denote the
number of colors used at both nodes. Then following up by giving p

4 requests to
eachS-node results in a minimum of3p4 − q colors used, while giving the requests
to theD-nodes instead results in a minimum ofp

2 + q colors.

Note that OPT = p
2 , independent of in which of the two ways the sequence is

continued. Thus, for anyε > 0, any(54 − ε)-competitive algorithm must chooseq
such that, for some constantα, 3p

4 −q ≤
(
5
4 − ε

) p
2+α andp

2+q ≤
(
5
4 − ε

) p
2+α.

Adding these two inequalities, we obtain5p4 ≤ (54 − ε)p + 2α which is equivalent
to εp ≤ 2α. Thus, ifp is non-constant, no(54 − ε)-competitive algorithm can use
the same value ofq for both sequences.

Now assume for the sake of contradiction that for some adviceof g(n) ∈ o(n) bits,
we can obtain a ratio of54−ε. Letf(n) = 1

2
n

g(n) . Sinceg(n) ∈ o(n), f(n) ∈ ω(1).
The idea is now to repeat the construction as in the proof of Theorem 6 and give
f(n) requests to each construction (f(n) has the role ofp in the above). Since a
pair of neighboring constructions sharef(n)/4 requests, this results inn−f(n)/4

3f(n)/4 =
4n−f(n)
3f(n) ≥ n

f(n) constructions. We assume without loss of generality that all our
divisions result in integers.

In order to be(54 − ε)-competitive, an online algorithm must, for each two neigh-
boringO-nodes, choose between at least two different values ofq. These are inde-
pendent decisions, and the ratio only ends up strictly better than 5

4 if the algorithm
decides correctly in every subconstruction. Thus, it needsat least n

f(n) bits of ad-
vice. However, n

f(n) =
n

1
2

n
g(n)

= 2g(n) > g(n), which is a contradiction. ✷

16

3.2 Upper bounds

We have the following trivial upper bound on the advice necessary to be optimal,
independent of the graph topology:

Theorem 8 There is a strictly1-competitive online multi-coloring algorithm with
advice complexity(n+ 1) ⌈log OPT⌉.
Proof Start by asking for the number of bits necessary to representvalues up to
OPT. Then for each request, read⌈log(OPT+1)⌉ bits telling, which color to use.
This givesenc(⌈log OPT⌉) + n ⌈log OPT⌉ < (n+ 1) ⌈log OPT⌉. ✷

In the following, we will show how two known approximation algorithms can be
converted to online algorithms with advice. In the description of the algorithms,
we let theweightof a clique denote the total number of requests to the nodes of
the clique. Note that the only maximal cliques in a hexagonalgraph are isolated
nodes, edges, or triangles. We letω denote the maximum weight of any clique in
the graph.1

A 3
2 -competitive algorithm called the Fixed Preference Allocation algorithm, FPA,

was proposed in [24]. In [31], the strategy was simplified andit was noted that
the algorithm can be converted to a1-recoloring online algorithm. We describe the
simplified offline algorithm below.

The algorithm uses three color classes,R, G, andB. The color classes represent
a partitioning of the nodes in the graph so that no two neighbors are in the same
partition. Each of the three color classes has its own set of

⌈
ω
2

⌉
colors, and each

node in a given color class uses the colors of its color class,starting with the small-
est. This set of colors is also referred to as the node’sprivatecolors. If more than
⌈
ω
2

⌉
requests are given to a node, then it borrows colors from the private colors of

one of its neighbors, taking the highest available color.R nodes can borrow colors
from G nodes,G from B, andB from R.

For completeness, we give the arguments that FPA is correct and obtains an ap-
proximation ratio of32 . Assume for the purpose of contradiction that the coloring
produced by the algorithm causes a conflict between anR node and aG node. This
means that their combined number of requests must be greaterthanω, which is a
contradiction. The same argument holds for the other color combinations. Thus,
the coloring is legal. Any optimal algorithm needs at leastω colors, so OPT ≥ ω
and the algorithm is a32 -approximation algorithm.

1The Greek letterω is traditionally used here, so we will also do that. Since there is no argument,
this should not give rise to confusion with theω(f), stemming from asymptotic notation.

17

Algorithm 3 The 3
2 -competitive algorithm, FPA, with advice.

1: Advice:
⌈
ω
2

⌉

2: RED =
{
1, 2, . . . ,

⌈
ω
2

⌉}
,

3: GREEN =
{⌈

ω
2

⌉
+ 1,

⌈
ω
2

⌉
+ 2, . . . , 2

⌈
ω
2

⌉}
,

4: BLUE =
{
2
⌈
ω
2

⌉
+ 1, 2

⌈
ω
2

⌉
+ 2, . . . , 3

⌈
ω
2

⌉}

5: Function Class(v)
6: return v’s color class:R, G, orB
7: Function Borrow(c)
8: return the next class in the wrap-around sequenceR, G, orB
9: Function Colors(c)

10: return the set of private colors of classc
11: for i = 1 to n do
12: Assume that theith request,r, is to nodev
13: if |fi−1(v)| <

⌈
ω
2

⌉
then

14: give r colormin(Colors(Class(v)) \ fi−1(v))
15: else
16: give r colormax(Colors(Borrow(Class(v))) \ fi−1(v))

Since
⌈
ω
2

⌉
≤

⌈
OPT
2

⌉
, we can give

⌈
ω
2

⌉
as advice, resulting in Algorithm 3. Note

that thef -notation used in the pseudo-code was defined in connection with Algo-
rithm 1.

Theorem 9 There is a32 -competitive online algorithm for multi-coloring hexago-
nal graphs with advice complexityenc(

⌈
OPT
2

⌉
).

Proof Given
⌈
ω
2

⌉
≤

⌈
OPT
2

⌉
as advice, FPA can be used as an online algorithm

(Algorithm 3). ✷

In [30], an algorithm with an improved approximation ratio of 4
3 was introduced.

We now describe this algorithm. For completeness, we also give the arguments
that the algorithm is correct and is a43 -approximation algorithm:

The algorithm uses color classes in the same way as FPA, except that the private
color sets contain only

⌊
ω+1
3

⌋
colors each. We use the following notation. For any

nodev, we letnv denote the number of requests tov. Furthermore,bv denotes the
maximum number of colors thatv can borrow, i.e.,bv = max{0,

⌊
ω+1
3

⌋
− n′

v},
wheren′

v is the maximum number of requests to any of the neighboring nodes in
the color class thatv can borrow from.

The algorithm can be seen as working in up to three phases:

18

B

G

R

R

B

R

B u b3

b1 v1

b2 v2

0 . . . 0
︸ ︷︷ ︸

private

stop
bit
↓

1

borrow
︷ ︸︸ ︷

0 . . . 0

stop
bit
↓

1

{

1

0

↑
partition
indicator

a) b) c)

Figure 2: Illustration of the43 -approximation algorithm. a) The borrow pattern. Ar-
rows show the direction of the flow of colors in Phase 2. b) Partof a graph induced
by nodes still having unprocessed requests after Phase 2. c)The subsequence of
advice bits connected to one node. The sequence of advice bits is a merge of such
sequences.

In thefirst phase, the algorithm colorsmin{nv,
⌊
ω+1
3

⌋
} requests to each node,v,

using the node’s private colors. LetG1 be the graph induced by the nodes that still
have uncolored requests after Phase 1.

For any node,v, in G1,
⌊
ω+1
3

⌋
requests tov are colored withv’s private colors in

Phase 1. By the definition ofω, this immediately implies that any pair of neigh-
boring nodes have a total of at mostω − 2

⌊
ω+1
3

⌋
uncolored requests already after

Phase 1.

In thesecond phase, each nodev with more than
⌊
ω+1
3

⌋
requests borrowsmin{nv−⌊

ω+1
3

⌋
, bv} colors. LetG2 be the graph induced by nodes that still have uncolored

requests after Phase 2.

In [30] it is proven thatG2 is bipartite and that any pair of neighbors inG2 has a
total of at mostω− 2

⌊
ω+1
3

⌋
≤

⌊
ω+1
3

⌋
+1 uncolored requests after Phase 2. Thus,

in the third phase, the remaining requests can be colored with GREEDYOPT (see
the path section) using

⌊
ω+1
3

⌋
+ 1 additional colors.

To see thatG2 is bipartite, first note thatG1 (and henceG2) cannot contain trian-
gles. Each node in such a triangle would have received at least

⌊
ω+1
3

⌋
+1 requests,

contradicting the definition ofω.

Using the fact thatG2 does not contain triangles, we can now argue thatG2 is
acyclic and hence bipartite. Assume to the contrary thatG2 does contain a cycle,
C. Assume without loss of generality that theR, G, B coloring of the underlying
hexagonal grid is as shown in Figure 2 a) and letu be a leftmost node ofC. Then,
referring to Figure 2 b), two of the nodesv1, v2, andb3 must also be part ofC.
Note thatb3 cannot be part ofC, since then there would be a triangle after Phase1.

19

Thus,u, v1, andv2 are part of the cycle and hence receive at least
⌊
ω+1
3

⌋
+ 1

requests each.

Sinceu could not borrow enough colors from the nodes in the color class it is
allowed to borrow from, one of theb-nodes, saybj , together withu must have a
total of at least2

⌊
ω+1
3

⌋
+ 1 requests. So,bj andu must form a triangle together

with eitherv1 or v2 so that the three nodes together have received a total of at least
(2

⌊
ω+1
3

⌋
+ 1) + (

⌊
ω+1
3

⌋
+ 1) requests. This quantity is strictly larger thanω,

contradicting the definition ofω.

This ends the argument that the algorithm is correct.

Since the total number of colors used is at most3
⌊
ω+1
3

⌋
+(ω−2

⌊
ω+1
3

⌋
) ≤ 4ω+1

3 ,
the algorithm is a43 -approximation algorithm.

We now show how an online algorithm, given the right advice, can behave as
the offline 4

3 -approximation algorithm. Note that the three phases of theoffline
4
3 -approximation algorithm are characterized by the coloring strategy (using the
node’s own private colors, borrowing private colors from neighbors, or coloring a
bipartite graph). However, when requests arrive online, the nodes may not go from
one phase to the next simultaneously.

Theorem 10 There is a43 -competitive online algorithm for multi-coloring hexag-
onal graphs with advice complexity at mostn+ 2|V |.
Proof We describe the algorithm and advice resulting in a coloringwith at most
4
3 OPT colors (see Algorithm 4, where we use thef -notation defined in connection
with Algorithm 1).

Initially, each node is in Phase1. On a request, the algorithm reads an advice bit
and if it is zero, the next color from its private colors is used. If, instead, a one is
read, this is treated as a stop bit for Phase1, and this particular node enters Phase2.

The algorithm starts with empty private color sets, and addsone color to each
set whenever necessary, i.e., whenever a Phase 1 node that has already used all
its private colors receives an additional request (this includes the first request to
the node). As soon as a node leaves Phase 1, the algorithm knows that this node
received

⌊
ω+1
3

⌋
requests, which is then the final size of each private color set.

Knowing the size of the private color sets, the algorithm cancalculate the maximum
color for the complete coloring of the graph asm = 4

⌊
ω+1
3

⌋
+ 1.

In Phase 2, every zero indicates that the algorithm should borrow a color. When
another stop bit is received (which could be after no zeros atall if the borrowing
phase is empty), it moves to Phase3. In Phase 3, it reads one bit to decide which

20

partition, upper or lower, of the bipartite graph it is in, and does not need more
information after that, since it simply uses the colors3

⌊
ω+1
3

⌋
+ 1, . . . ,m, either

top-down or bottom-up.

If we allow the algorithm one bit per request, it needs at mosttwo more bits per
node, since the stop bits are the only bits that do not immediately tell the algorithm
which action to take. Thus,n+ 2|V | bits of advice suffice. ✷

This algorithm can be used in many different ways, as long as the algorithm gets
the information it needs. One other simple encoding would beto give the algorithm
the value

⌊
ω+1
3

⌋
from the beginning and only give bit-wise advice after a nodehas

used all its private colors. Since at least one color is private, this will save a total
of at least|V | bits, and result in at mostenc(

⌊
ω+1
3

⌋
)+n+ |V | bits of advice. This

variant, and others, that are incomparable to each other, depending on the values
of n, ω, and|V |, could all be used at the same time by first asking for a few bits
to decide how to proceed. Thus, one could formulate a less readable but more
accurate theorem basically taking the minimum of all the expressions. We have
chosen clarity over precision, since the other expressionsare mostly better in less
interesting cases, wheren is small compared to|V |, for instance.

3.3 Concluding Remarks

When considering advice complexity of multi-coloring on a path, we can achieve
1-competitiveness with a small amount of advice. A recoloring algorithm needs to
be1-recoloring to achieve the same. The advice is basically themaximum number
of requests to any two neighboring nodes. Thus, whether one has that global infor-
mation once and for all, or can obtain and adjust according tothe local variant of
this information gives the same result.

For multi-coloring of hexagonal graphs, there is a similar connection between re-
coloring distance and advice. The1-recoloring online version of FPA has an advice
variant and again, this advice represents information about the maximum number
of requests to neighboring nodes. With additional global information about the
bipartite induced subgraph, we can overcome the limitations of 1-recoloring algo-
rithms and be as good as any known polynomial-time approximation algorithm.

21

References

[1] S. Albers, L.M. Favrholdt, and O. Giel. On paging with locality of reference.
Journal of Computer and System Sciences, 70(2):145–175, 2005.

[2] K. Barhum, H.-J. Böckenhauer, M. Forisek, H. Gebauer, J. Hromkovič,
S. Krug, J. Smula, and B. Steffen. On the power of advice and random-
ization for the disjoint path allocation problem. InSOFSEM, volume 8327 of
LNCS, pages 89–101. Springer, 2014.

[3] M. Paola Bianchi, H.-J. Böckenhauer, J. Hromkovic, andL. Keller. Online
coloring of bipartite graphs with and without advice. InCOCOON, volume
7434 ofLNCS, pages 519–530, 2012.

[4] H.-J. Böckenhauer, D. Komm, R. Královič, and R. Královič. On the advice
complexity of thek-server problem. InICALP, volume 6755 ofLNCS, pages
207–218, 2011.

[5] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On
the advice complexity of online problems. InISAAC, volume 5878 ofLNCS,
pages 331–340, 2009.

[6] H.-J. Böckenhauer, D. Komm, R. Královič, and P. Rossmanith. On the advice
complexity of the knapsack problem. InLATIN, volume 6139 ofLNCS, pages
61–72, 2012.

[7] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with
locality of reference.Journal of Computer and System Sciences, 50(2):244–
258, 1995.

[8] J. Boyar, L.M. Favrholdt, K.S. Larsen, and M.N. Nielsen.Extending the
Accommodating Function.Acta Informatica, 40(1):3–35, 2003.

[9] J. Boyar, S. Gupta, and K.S. Larsen. Access graphs results for LRU versus
FIFO under relative worst order analysis. InSWAT, volume 7357 ofLNCS,
pages 328–339. Springer, 2012.

[10] J. Boyar, S. Kamali, K.S. Larsen, and A. López-Ortiz. Online bin pack-
ing with advice. InSTACS, volume 25 ofLIPIcs, pages 174–186. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik GmbH, 2014.

[11] J. Boyar and K.S. Larsen. The Seat Reservation Problem.Algorithmica,
25(4):403–417, 1999.

22

[12] J. Boyar, K.S. Larsen, and M.N. Nielsen. The Accommodating Function:
a generalization of the competitive ratio.SIAM Journal on Computing,
31(1):233–258, 2001.

[13] J.W.-T Chan, F.Y.L. Chin, D. Ye, and Y. Zhang. Absolute and asymptotic
bounds for online frequency allocation in cellular networks. Algorithmica,
58(2):498–515, 2010.

[14] J.W.-T. Chan, F.Y.L. Chin, D. Ye, Y. Zhang, and H. Zhu. Frequency allocation
problems for linear cellular networks. InISAAC, volume 4288 ofLNCS, pages
61–70. Springer, 2006.

[15] M.G. Christ, L.M. Favrholdt, and K.S. Larsen. Online multi-coloring on the
path revisited.Acta Informatica, 50(5–6):343–357, 2013.

[16] M. Chrobak, L. Jez, and J. Sgall. Better bounds for incremental frequency al-
location in bipartite graphs.Theoretical Computer Science, 514:75–83, 2013.

[17] M. Chrobak and J. Sgall. Three results on frequency assignment in linear
cellular networks.Theoretical Computer Science, 411(1):131–137, 2010.

[18] S. Dobrev, R. Královič, and D. Pardubská. Measuringthe problem-relevant
information in input. RAIRO Theoretical Informatics and Applications,
43(3):585–613, 2009.

[19] R. Dorrigiv, M. He, and N. Zeh. On the advice complexity of buffer manage-
ment. InISAAC, volume 7676 ofLNCS, pages 136–145, 2012.

[20] P. Elias. Universal codeword sets and representationsof the integers.IEEE
Transactions on Information Theory, 21(2):194–203, 1975.

[21] Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Onlinecomputation with
advice.Theoretical Computer Science, 412(24):2642–2656, 2011.

[22] M. Forisek, L. Keller, and M. Steinová. Advice complexity of online coloring
for paths. InLATA, volume 7183 ofLNCS, pages 228–239, 2012.

[23] J. Hromkovič, R. Královič, and R. Královič. Information complexity of on-
line problems. InMFCS, volume 6281 ofLNCS, pages 24–36, 2010.

[24] J. Janssen, K. Kilakos, and O. Marcotte. Fixed preference channel assignment
for cellular telephone systems.IEEE Transactions on Vehicular Technology,
48(2):533–541, 1999.

23

[25] J. Janssen, D. Krizanc, L. Narayanan, and S.M. Shende. Distributed on-
line frequency assignment in cellular networks.Journal of Algorithms,
36(2):119–151, 2000.

[26] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive
snoopy caching.Algorithmica, 3:79–119, 1988.

[27] D. Komm and R. Královič. Advice complexity and barelyrandom algorithms.
RAIRO Theoretical Informatics and Applications, 45(2):249–267, 2011.

[28] D. Komm, R. Královič, and T. Mömke. On the advice complexity of the set
cover problem. InCSR, volume 7353 ofLNCS, pages 241–252, 2012.

[29] M. P. Bianchi and H.-J. Böckenhauer and J. Hromkovič and S. Krug and B.
Steffen. On the advice complexity of the onlinel(2, 1)-coloring problem
on paths and cycles. InCOCOON, volume 7936 ofLNCS, pages 53–64.
Springer, 2013.

[30] C. McDiarmid and B.A. Reed. Channel assignment and weighted coloring.
Networks, 36(2):114–117, 2000.

[31] L. Narayanan.Channel Assignment and Graph Multicoloring, pages 71–94.
John Wiley & Sons, Inc., 2002.

[32] L. Narayanan and S.M. Shende. Static frequency assignment in cellular net-
works. Algorithmica, 29(3):396–409, 2001.

[33] L. Narayanan and S.M. Shende. Corrigendum: Static frequency assignment
in cellular networks.Algorithmica, 32(4):679, 2002.

[34] S. Seibert, A. Sprock, and W. Unger. Advice complexity of the online color-
ing problem. InCIAC, volume 7878 ofLNCS, pages 345–357, 2013.

[35] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging
rules.Communications of the ACM, 28(2):202–208, 1985.

[36] P. Sparl and J. Zerovnik. 2-local 4/3-competitive algorithm for multicoloring
hexagonal graphs.Journal of Algorithms, 55(1):29–41, 2005.

[37] R. Witkowski and J. Zerovnik. 1-local 33/24-competitive algorithm for mul-
ticoloring hexagonal graphs. InWAW, volume 6732 ofLNCS, pages 74–84,
2011.

24

Algorithm 4 Combining FPA and GREEDYOPTADVICE to a 4
3 -competitive algo-

rithm.
1: Advice: A sequenceB of bits classifying each request as to whether it should

be colored using the node’s own private colors, by borrowing, or in which
partition it falls.

2: Function Class(v)
3: return v’s color class:R, G, orB
4: Function Borrow(c)
5: return the next class in the wrap-around sequenceR, G, orB
6: Function Colors(c)
7: return the set of private colors of classc
8: Function NextBit(B)
9: return the next advice bit

10: for each nodev do
11: Phase(v) = 1
12: for i = 1 to n do
13: Assume that theith request,r, is to nodev
14: if Phase(v) = 1 then
15: if NextBit(B) = 0 then
16: if Colors(Class(v)) \ fi−1(v) = ∅ then
17: add one color to each of the three sets of private colors
18: give r colormin(Colors(Class(v)) \ fi−1(v))
19: else
20: Phase(v) = 2
21: Phase3Min = 3 |fi−1(v)|+ 1
22: Phase3Max = 4 |fi−1(v)|+ 1
23: if Phase(v) = 2 then
24: if NextBit(B) = 0 then
25: give r colormax(Colors(Borrow(Class(v))) \ fi−1(v))
26: else
27: Phase(v) = 3
28: upperv = NextBit(B) /* Store the partition ofv */
29: if Phase(v) = 3 then
30: /* Use GREEDYOPTADVICE: */
31: if upperv = 1 then
32: give r colormax({Phase3Min, . . . ,Phase3Max} \ fi−1(v))
33: else
34: give r colormin({Phase3Min, . . . ,Phase3Max} \ fi−1(v))

25

	1 Introduction
	1.1 Analyzing online algorithms
	1.1.1 Relaxing the concept of online
	1.1.2 Modeling advice complexity

	1.2 Previous and new results
	1.2.1 Previous results
	1.2.2 Our results

	2 The Path
	2.1 Lower bounds
	2.2 Upper bounds
	2.3 Cancellations

	3 Hexagonal Graphs
	3.1 Lower bounds
	3.2 Upper bounds
	3.3 Concluding Remarks

