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Abstract

We consider the problem of online graph multi-coloring wétivice.
Multi-coloring is often used to model frequency allocationcellular net-
works. We give several nearly tight upper and lower boundgHe most
standard topologies of cellular networks, paths and hexalggraphs. For
the path, negative results trivially carry over to bipartiraphs, and our pos-
itive results are also valid for bipartite graphs. The adwdéven represents
information that is likely to be available, studying for iasce the data from
earlier similar periods of time.

1 Introduction

We consider the problem of graph multi-coloring, where eagtle may receive
multiple requests. Whenever a node is requested, a colarbeusssigned to the
node, and this color must be different from any color presipuassigned to that
node or to any of its neighbors. The goal is to use as few caleossible. In the
online version, the requests arrive one by one, and eaclesequst be colored
without any information about possible future requestse Tihderlying graph is
known to the online algorithm in advance.
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The problem is motivated by frequency allocation in cellulatworks. These net-
works are formed by a number of base transceiver statioh, @avhich covers
what is referred to as a cell. Due to possible interferenemghioring cells cannot
use the same frequencies. In this paper, we use classicmtdagy and refer to
these cells as nodes in a graph where nodes are connectededgeif they cor-
respond to neighboring cells in the network. Frequenciestitan be modeled as
colors. Multiple requests for frequencies can occur in agleand overall band-
width is a critical resource.

Two basic models dominate in the discussion of cellular nete; the highway and
the city model. The former is modeled by linear cellular ratws, corresponding
to paths, and the latter by hexagonal graphs. We considgurdidem of multi-
coloring such graphs.

1.1 Analyzing online algorithms

If A is a multi-coloring algorithm, we leA(I) denote the number of colors used
by A on the input sequence When! is clear from the context, we simply write
A instead ofA (7). The quality of an online algorithm is often given in termgfud
competitive ratiol[35, 26]. An online multi-coloring algtiim is c-competitiveif
there exists a constantsuch that for all input sequencésA (1) < ¢cOpPT(I) + a.
The (asymptoticcompetitive ratioof A is the infimum over all suck. Results
that can be established using= 0 are referred to astrict (or absolute). Often,

it is a little unclear when one refers to aptimal online algorithm, whether this
means that the solution produced is as good as the one prbdiftine or that no
better online algorithm can exist. For that reason, we maythe termstrictly
1-competitiveto emphasize that an algorithm is as good as an optimal offlge
rithm, andoptimalto mean that no better online algorithm exists under thengive
conditions. Throughout, we let denote the number of requests in a given input
sequence.

1.1.1 Relaxingthe concept of online

A way of relaxing the very strict and unnatural assumptiaat the algorithm has
no information about the input sequence is to give the algorsomeadvice The
possibly most famous online problem of paging, where noraetastic online
algorithm is better thak-competitive on a cache size bf can be solved optimally
with just one bit of advice per request, saying whether tqpkbe requested page
in cache until its next request [18, 5].



A recent trend in the analysis of online algorithms has beeconsider advice,
formalized under the notion @fdvice complexitystarting in [18]. Theoretically,
results along these lines give some information in the toroof the hardness
stemming from the problem being online, relaying informaticoncerning how
much we need to know about the future to perform better. Factmal appli-
cations, the assumption that absolutely nothing is knowsutthe future is of-
ten unrealistic, and though many problems must be addregiieout knowing in
which order requests arrive, quite often something is knalaut the sequence of
requests as a whole.

This realization that input is not arbitrary (uniformly om, for instance) is not
new, and work focused on locality of reference in input data tried to capture
this. Early work includes access graph results, startifig]jrand with references to
additional related work i [9], but also more distributibnzodels, such as[1], have
been developed. An entirely different approach was imitlan [11] and further

developed in[[12,18]. The idea behind the concept of acconatimogl sequences is
that for many problems requiring resources, there is a dosaection between the
resources available and the resources required for an alptifftine algorithm, as

when capacity of transportation systems are matched wigbagd demand. This
leans itself very closely up against many of the results weateport here, where
the advice needed to do better is often some informatiorrdegathe resources
required by an optimal offline algorithm.

Thus, the results in this paper could have practical apphica. The results es-
tablish which type of information is useful, how algorithistsould be designed to
exploit this information, and what the limits are for whahdze obtained.

1.1.2 Modeling advice complexity

Returning to the advice complexity modeling, some problemsd very little ad-
vice. On the other hand, complete information about thetiopthe desired output
is a trivial upper bound on the amount of advice needed to tienap The first
approach to formalizing the concept of advice measured timeber of bits per
request[[1B]. This model is well suited for some problems nehieformation is
tightly coupled with requests and the number of bits nee@edgmuest is constant.
However, for most problems, we prefer the model where we lgimmq@asure the
total advice needed throughout the execution of the algoritAs also discussed
in [5, 23], this model avoids some modeling issues presetiten‘per request”
modeling, and at the same time makes it possible to derivinsab advice re-
quirements. Thus, we use the advice model from [23], whexetiine algorithm



has access to an infinite advice tape, written by an offlinel@naith infinite com-
putation power. In other words, the online algorithm canfaskhe answer to any
guestion and read the answer from the tape. Competitivesekesined and mea-
sured as usual, and the advice complexity is simply the numwibleits read from
the tape, i.e., the maximum index of the bits read from thecacape.

As the advice tape is infinite, we need to specify how many diitadvice the
algorithm should read and if this knowledge is not impliciéivailable, it has to
be given explicitly in the advice string. For instance, if want OpT as advice
(the number of colors an optimal offline algorithm uses onvamisequence, for
instance), then we cannot merely refddg(OPT+1)] (all logs in this paper are
base 2) bits, since this would require knowing somethingiatiee value of @T.
One can use a self-delimiting encoding as introduced_in. [R@ use the variant
from [10], defined as follows: The value of a non-negativedetr X is encoded by
a bit sequence, partitioned into three consecutive pafts.|dst part isX written
in binary. The middle part gives the number of bits in the laaitt, written in
binary. The first part gives the number of bits in the middlg,paritten in unary
and terminated with a zero. These three parts requigg [log(X + 1)] + 1)] +

1, [log([log(X +1)] +1)], and[log(X + 1)] bits, respectively, adding a lower-
order term to the number of bits of information required byadgorithm. We
defineendx) to be the minimum number of bits necessary to encode a number
and note that the encoding above is a (good) upper bourthd@m).

1.2 Previousand new results

We now discuss previous work related to multi-coloring addiee complexity
and then state our results. When working with online algar&, decisions are
generally irrevocable, i.e., once a color is assigned tode nthis decision is final.
However, in some applications, local changes of colors neegllowed (reassign-
ment of frequencies). This is calleglcoloring An algorithm isd-recoloringif, in
the process of treating a request, it may recolor up to ardisté away from the
node of the request.

1.2.1 Previousresults

For multi-coloring a path, the algorithmBUCKET is %-competitive [17], and this

is optimal [14]. Even with0-recoloring allowed (that is, colors at the requested
node may be changed);BUCKET is optimal [15]. Furthermore, if-recoloring is
allowed, the algorithm GEeDYOPT is strictly 1-competitive [15].
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For multi-coloring bipartite graphs, the optimal asymmaompetitive ratio lies

between? ~ 1.428 and 8=¥5 ~ 1.433 [16].

In [13], it was shown that, for hexagonal graphs, no onlimg@eathm can be better
than %—competitive or have a better strict competitive ratio tRafhey also gave
an algorithm, F¥BRID, with an asymptotic competitive ratio of approximatély
on hexagonal graphs. Qnacolorable graphs, it is strictlﬁ;—l—competitive, and
hence, it has an optimal strict competitive ratio on hexayjgmaphs. Recolor-
ing was studied in[25]: Nal-recoloring algorithm for hexagonal graphs has an
asymptotic competitive ratio better thant ﬁ. Ford = 0, the lower bound
was improved t(ﬁ. In [36], a%—competitive2—reco|oring algorithm is given. The
best knownl-recoloring algorithm for hexagonal graphs%%rcompetitive [37].
For the offline problem of multi-coloring hexagonal graphs, polynomial time
algorithm can obtain an absolute approximation ratio bettem% [30,[32,33],
unless P= NP.

Many other problems have been considered in the advice siodeluding pag-
ing [5], disjoint path allocation[]2], and job shop schedgli[5], as well ask-
server [4], knapsack_[6], set cover [28], metrical task eyst [21], and buffer
management_[19]. Also graph coloring has been considengdinba very dif-
ferent online setting, where the graph itself is not avdddbom the beginning.
Instead, the nodes are revealed one by one and results hemeobtained for
paths [22], bipartite graph§|[3], and 3-colorable graph#.[3n [29], a coloring
problem with restrictions going beyond the immediate neagk is considered.
Furthermore, there are interesting connections betwegneadnd randomization
and sometimes results on advice complexity can be usedamafficient random
algorithms [[5| 27, 6].

1.2.2 Our results

An overview of our results is given in Tablé 1. For the patresth results are
nearly tight, even with upper bounds that also apply to bigegraphs. For hexag-
onal graphs, note that with a linear number of advice bits [fossible to be%-
competitive, and the lower bound for being better triauompetitive is close to
linear. The advice given to the algorithms is essentialfygjaproximation of) ®@T
or the maximum number of requests given to any clique in thelyr For the un-
derlying problem of frequency allocation, guessing thedaes based on previous
data may not be unrealistic.
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Table 1. Overview of our results. Recall thatdenotes the number of requests in
the input sequence. We mark the ratios that are strict byid’the ones that are
asymptotic by “a”. Note that a strict lower bound can be lathan an asymptotic
upper bound. For each bound, we indicate the number of tleeghreproving the
result. For readability, many of the bounds stated are weaalam those proven in
the paper. Moreover, the upper bounds for the path hold fprbgwartite graph.
The result of Theorein 3 in the third row of the table is valitydor neighborhood-
basedalgorithms, as defined just before Theofém 3 in Seétion 2.

2 ThePath

As explained earlier, we establish all lower bounds for patind since a path is
bipartite, all these negative results carry over to bipagraphs. Similarly, all our
(constructive) upper bounds are given for bipartite gratdstherefore also apply
to paths. We start with three lower bound results.

2.1 Lower bounds

Theorem 1 Any strictly 1-competitive online algorithm for multi-coloring paths
of at least 10 nodes has advice complexity at lehsj(| % | + 1)].

Proof We letmn = | %] and define a se$ of m + 1 sequences, all having the
same prefix of lengt@m. The setS will have the following property: for no two
sequences i§ can their prefixes be colored in the same way while ending ingus
the optimal number of colors on the complete sequence.ifgidrom one end of

the path, we denote the nodesv,, . ...

We define the sef to consist of the sequencés I, .. ., I,,, wherel; is defined in
the following way. Firstn requests are given to each of the nodeandwv,. Then



i requests to each of andvs. To give all sequences the same length, the sequence
ends with[n — 2m — 2i] requests distributed as evenly as possible amgngs,
andvyg. Since[[n — 2m — 2i] /3] < m, the optimal number of colors will not be
influenced by this part of the sequence.

Note that @T(;) = m + ¢. In order not to use more thanr®(I;) colors forI;,
exactlyi of the colors assigned tg have to be different from the colors assigned to
v1. The prefixes of lengtm in S are identical, so all information to distinguish
between the different sequences must be given as advice.cardaality of S
ism + 1. To specify one out ofn + 1 possible actionsflog(m + 1)] bits are
necessary. |

For algorithms that ar%—competitive or better, we give the following lower bound.

Theorem 2 Consider multi-coloring paths of at least 10 nodes. Fortanry3 and
any (1 + %)—competitive algorithm A, there exists aiv € N such thatA has
advice complexity at leagt— 2 on sequences of length at ledét

Proof Forany(1 + %)—competitive algorithmA, there exists an. > 1 such that
AN <(1+ 2—117) OPT(I) + «, for any input sequenck We consider sequences of
lengthn > 2202 + 3.

Letm = | 2] and consider the same set of sequences as in the proof ofeFhidor
Recall that

OPT(I;) =m+1.
For the sequencg, let z; denote the number of colors thAtuses orw, but not
onwvi. Then,A usesm + z; colors in total forv; andvy. Onws, it can use at most
x; of the colors used at;, so the total number of colors usedvaf v9, andvs is at
leastm + 2¢ — x;. Thus,

A(L) > max {m + x;,m + 2i — x;} .

We will prove that there arg > 2°~2 sequences;,, I;,, . . . , I;, such that, for any
pairi; # i, we haver;; # x;,, or otherwiseA would not be(1 + 2—1b)—competitive

on sequences of at lea@t2 requests. This will immediately imply that must

use at leash — 2 advice bits.

Lete = o5 + 3. FromA(Iy) < (1 + ;) OPT(I;) + o andm > 2?°, we obtain
the inequalities
m+z; < (1+¢e)(m+1i)

and
m+2i—x; < (1+¢)(m+1)
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which reduce to

v <em+ (1+e¢)i 1
and .
i < x; +em @)
1—¢
Hence, by[(l)zo < em. Thus, by [2), we can have; = zo, only if i < 222
Therefore, we let; :+O andiy = L%%"; + 1]. In general, we ensure;; #
. x;.+em
by lettingi; 1 = | <—— + 1]. Thus,
X +Em
i < —4———— +1
[JERERS == +
< em + (11+ €)ij +em 1 by @
— &
_1+e - 2em 1
S S AL R

Solving this recurrence relation, we get

s () e B () (22)
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2¢e
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We letp equal the largest for whichi; < m:

p
lte )" _
1—5) 1

2e
1 p
:>2z—:m<<1—+5> (2em+1—¢)—(2em+1—¢)

dme +1—¢ (1—1—6)70
= <
1—¢

m <ipp1 < (2em+1—¢)

2me +1—¢
1—¢ 2¢e
< In([2—— ) <p-In(1l
n( 2m5—|—1—5> b n( +1—5>
= In(2 L-c <p- -2 sincel (1+a)<wz forz>—1
nl2———— — n T T T > —
2me+1—¢ Py -
1 2e . b
= In(2—=)<p- , sinceme > 2° > 1 —¢,
3 1—¢
2¢e
:>ln(\/g)<p-1_
@1< 2e
2 SP1 ¢
- 1—¢
p 4e
1_L_L 22b_26_1
20 9% b—2
& p > T4 T g2y > 2 —1

2 22b

b
= p>2"72 sincepis an integer
This completes the proof. a

For the following theorem, we define the classiefghborhood-basedlgorithms:

A multi-coloring algorithm,A, is called neighborhood-based, if there exists a con-
stantd such that, when assigning a color to a request to a node bases its
decision only on requests to nodes a distance of at m@svay fromv. Note
that, in particular, a neighborhood-based algorithm cabasee its decision on the
current value of @T.

Theorem 3 No neighborhood-based online algorithm for multi-colgrpaths with
advice complexityO(1) can be better tha@-competitive.

Proof Having an online algorithm with advice complexif}(1) gives an algorithm
a constant number of possible algorithmic behaviors; itgsialent to having
O(1) online algorithms without advice and choosing one of thesemling to the
given advice.



As shown in[[15], the family of sequences used in the proofBh&forem$§ il and 2,
can be used to prove that any online algorithm without adli@e a competitive
ratio of at Ieast%. The result is asymptotic, since the construction workd$wit
any scaling of the number of requests to each node. This nteahgor each
algorithm, there exists an infinite family of sequences xedebyn, the length of
the sequences, establishing the lower bound for each #dguori

For any neighborhood-based algoritn there is a constant such that, when
assigning a color to a request,ignores all requests given to nodes a distance of
more thand away from the requested node. For angnd any family, there is a
smallest and a largest node on the path which is requestddhamart of the path
from this smallest to the largest node defines a subpath. Wer@eame nodes

in these infinite families so that the subpaths used by tHerdiit families are
separated by unused nodes. We then form one request sequence by coritaiena
all these renamed subsequences. We scale the number oftenueach sequence
such that the value of erx is the same for each sequence.

Clearly, no matter which of th@(1) algorithms are run on this constructed family,
its performance tends to at leasOPT. m]

2.2 Upper bounds

For multi-coloring of a path, there exists a stricthcompetitivel-recoloring algo-
rithm, GREEDYOPT [15]. GREEDYOPT divides the nodes into two setgpperand
lower, such that every second node belongsipperand the remaining nodes be-
long tolower. The following invariant is maintained: After each requestch node
in lower uses consecutive colors starting with the color 1 and eade imoupper
uses consecutive colors ending with a color no larger tharoghimal number of
colors for the sequence of requests seen so far.

The algorithm for paths from [15] is easily generalized takwon bipartite graphs,
letting the nodes of one partitiord,, belong tolower and the nodes of the other
partition, U, belong toupper. Recoloring is only needed if the number of colors
used by an optimal offline algorithm is not known. Hence, g&nq OPT) advice
bits, an online algorithm can be strictlycompetitive, even if recoloring is not
allowed. We call the resulting algorithmREEDYOPTADVICE.

To describe the algorithm REEDYOPTADVICE in detail, we need some notation:
Let f;(v) denote the set of colors assigned to nedaefter the firsti requests,
starting with request 1. Also, for notational convenienee,definef,(v) = 0 for
all v. To smoothly handle initially empty sets of colors in thealthm, we define
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that if f;(v) is the empty set, themin f;(v) = max f;(v) = 0. This notation will
be used throughout the appendixREEDYOPTADVICE is listed as Algorithni 11.

Algorithm 1 The multi-coloring algorithm @EEDYOPTADVICE.
1: Assume that a bipartite graph is given by the partition ibtandU'.
2: Advice: m = OPT
3: for i =1ton do

4; Assume that théth requesty, is to nodev

5: if v € U then

6: * using the upper colors top-down */

7 if fi—1(v) =0then

8: give r colorm

9: ese

10: giver colormin f;_;(v) — 1

11: ese

12: I* v € L; using the lower colors bottom-up */
13: giver colormax f;_1(v) + 1

Theorem 4 Algorithm GREEDYOPTADVICE is correct, strictlyl-competitive, and
has advice complexitgnq OPT).

Proof We consider correctness first. Clearly, at titpghe maximum color as-

signed to a node € L is max f;(v) = | f;(v)| and the minimum color assigned to
anodev € U ismin f;(v) = OPT+1 — | f;(v)| (assumingy has received at least
one request).

Assume for the sake of contradiction that, at some tinaerequest to a nodec L
gets assigned the same cotoas a request to a neighboring nagdewhich must
belong toU. This means that = |f;(/)] andc = OPT+1 — |f;(u)|, and, ad
andu are neighbors, ©r > |f;(1)| + | fi(u)], but then &T > |f;(1)| + |fi(u)| =
c+ OPT+1 — ¢ = OPT+1. This is a contradiction, so REEDYOPTADVICE iS
correct.

It follows directly that the maximum color that REEDYOPTADVICE assigns is
OPT, implying that REEDYOPTADVICE is strictly 1-competitive.

The maximum color that an optimal offline algorithm uses.egia sequence of
lengthn, isn. Therefore, ®T < n andend OPT) advice bits are sufficient. O
We turn to nonoptimal variants of’&EDYOPTADVICE using fewer thaend OPT)
advice bits. We show how to obtain a particular competitatorof 1 + 2—1b us-

ing b + 1 + O(log log OPT) bits of advice. Thus, essentially, we are approaching
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optimality exponentially fast in the number of bits of adsic

Theorem 5 For any integeb > 1, there exists a strictlyl + 2l%l)-competitive
online algorithm for multi-coloring bipartite graphs witddvice complexityb +
enda), wherea + b is the total number of bits in the valuer®.

Proof As advice, the algorithm asks for théigh order bits of the value ex, as
well as the numbes = [log(OPT+1)] — b of low order bits, but not the value of
these bits. The algorithm knowssand can therefore just read the fibdtits, while
a needs to be encoded. Thist enda) bits are sufficient to encode the advice.

First, if OPT contains fewer than bits, this is detected by being zero. In this
case, some of thé bits may be leading zeros. By Theoréin 4, we can then be
strictly 1-competitive.

Now, assume this is not the case. Let®)= | 27| denote the value represented

by theb high order bits. Then the algorithm computes= 2¢ OpT, +2* — 1 and
runs GREEDYOPTADVICE with this m. Since T < m < OPT+2% — 1, the

algorithm is correct and uses at mostO+2¢ — 1 colors.

For any number: > 1, consisting ot bits, with the most significant bit being one,

2¢ < 2. Thus,2bte < 20PT, s02¢ < 2(2{”. This means that the number of

colors used by GEEDYOPTADVICE s less than ®T+297" = (1 + L1) OPT,

so the algorithm is strictly1 + 1+ )-competitive. |

Considering the lower bound of Theoréin 1 versus the uppandotiTheoreni 4,

as well as the lower bound of Theoréin 2 versus the upper bouitiemren{b,

in both cases there is a small discrepancy of a few bits, iitiaddo a low order
term. The lower bound proof of Theordmh 1 demonstrates thd néadvice to
distinguish betweel’ﬂ%J + 1 different scenarios to be optimal. It will vary with
whether or not the division by four saves one or two bits camghavithlog n, and
similar reasoning applies to Theorém 2. Thus, when statisddwer bound, we
have to subtract two bits (refer to Table 1). Using encodiiuks, to for instance
identify cases where €x has a very small value, we can also sometimes get down
to a bit less thaiog n for the upper bound. Thus, our results are nearly tight, up to
low order terms, but because of rounding, it seems difficuicqueeze the missing
few bits out of the bounds in every case. Note that for uppents, one could
perform better by distinguishing between different cases,finding out which
case to use requires extra bits, by which we lose the advaaigan.

Corallary 1 Foranys > 0, there exists a strictlyl +)-competitive deterministic
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online algorithm for multi-coloring bipartite graphs wigtdvice complexity
O(log log OPT).

Proof Except for the termb, the advice stated in Theordm 5G§log log OPT)
and OpT < n. Thus, we just need to bound the tebmFor a givens, chooseb
large enough such th@];l,—1 < e. Using this value fob in Theorenl b, we obtain
an algorithm with a strict competitive ratio of at mdst- Qb%l < 1+ e. Since, for
any givene, b is a constant, the total amount of advic&ifog log OPT). a

2.3 Cancdlations

Algorithm 2 The multi-coloring algorithm @EEDYOPTADVICECANCEL.
1: Assume that a bipartite graph is given by the partition ihtandU'.
2: Advice: m = OPT
3: for i=1ton do

4 Assume that théth requestr, is to nodev
5: if  is a color requedthen
6: if v € U then
7 * using the upper colors top-down */
8: if fi—1(v) =0then
9: give r colorm
10: ese
11 giver colormin f;_;(v) — 1
12: ese
13: /* v € L; using the lower colors bottom-up */
14: give r colormax f;_1(v) + 1
15: ese
16: [* r is a cancellation */
17: if v e U then
18: if the color ofr is different frommin f;_;(v) then
19: recolor the request that has cotoin f;_(v), giving it the
color of r
20: else
21 if the color ofr is different frommax f; 1 (v) then
22: recolor the request that has colerx f;_1(v), giving it

the color ofr

The Multi-Coloring problem is sometimes considered in tloatext of request
cancellations, i.e., a color already given to a node disapagain. We observe
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that even using the weakest form of recoloring, nantefgcoloring, where only
requests at the node where the cancellation takes place enagcblored, we can
extend the algorithm EEDYOPTADVICE, using the same advice, to a striclly
competitive algorithm. This is simply done by recoloringrabst one request per
cancellation to ensure that the invariants regarding l@mdrupper nodes are main-
tained, i.e., ensuring that the colors used at any node faromsecutive sequence
starting from one and increasing and starting fromr@nd decreasing for lower
and upper nodes, respectively. This algorithnREGDYOPTADVICECANCEL, is
listed as Algorithni 2. Note that the difference to Algoritdhs the check in line 5
as to whether the current request is a color request and tigoadof lines 15-22
handling cancellations.

3 Hexagonal Graphs

A hexagonal graph is a graph that can be obtained by placingdat) one node

in each cell of a hexagonal grid (such as the one sketchedyiméfil) and adding

an edge between any pair of nodes placed in neighboring. cBliste that any
hexagonal graph can Becolored. This is easily seen, since itis possible to use the
three colors cyclically on the cells of each row of the unglag hexagonal grid,
such that no two neighboring cells receive the same color.

3.1 Lower bounds

Theorem 6 Any online algorithm for multi-coloring hexagonal graphiwa strict
competitive ratio strictly smaller thai has advice complexity at leasts* |.

Proof First, we explain a small part of the construction that wd ugke in many
copies. We consider two sequences with the same prefix ofHengBoth se-
guences can be colored with two colors, but this requiresric) the two prefixes
of length two differently. Consider the left-most part ofjiie[1 (surrounded by
thick lines) consisting of the “double” nodé$, and D, the “outer” node%), and

0O, and the “single” node$, andS>. These nodes form the same type of con-
figuration as the nodeBs, Dy, O1, O3, S3, andSy. If a pair of outer nodes are
given some requests, they can later be “connected” by fellpwequests to either
the two double nodes or the single node between them.

First the node®), andO; get one request each. Then, eithgrand.D- or S; and
So receive one request each. The néddds used to get up to the same sequence

14



Figure 1: Hexagonal lower bound construction.

length in all cases. In order not to use more than two colbesptiter nodes have
to use different colors if we later give requests to the #xmodes. Similarly, the
O-nodes should have the same color if we later give a requéstet§-node in
between them. Since the prefix of length twa(i%, O;) for both sequences, all
information for an algorithm to distinguish between the t®aguences must be
given as advice.

We can repeat this graph pattez? | times, as illustrated in Figufé 1 with =
["T‘lj , giving the requests to alb-nodes first.

We now define the set of sequendesf cardinality2 5] formally, i.e., we define

a sequence for each possible combination of requests &r &X)_, and D; or
Spj—1andSy; forj =1,2,...,| 21| . Asequence is defined for any chosen com-
bination of the followingi-values, i.e., by choosing a tuplé, i, . . . ,z‘LanlJ) €

{0,1} L") For any such choice, we define the sequence as a concateoftie
subsequences given below. In the description of the subsegs, we use the no-
tationReq(v, m) to denote a sequence wof requests to a nodeg and also use this
notation form = 0, denoting the empty request sequence, mne 1, denoting
one request.

e Req(0;,1)for j =0,1,..., 22|
e Req(Daj_1,i;), Req(Daj,ij) for j = 1,2,..., [ 252
e Req(S2j-1,1 —14;), Req(Sa;,1 —i;) for j = 1,2,..., | 252 |
o Rea(F.n — (3125 +1)
Note that for anyi;, {i;,1 —i;} = {0,1} and we either give requests to tie
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nodes or thé-nodes. The possible requestsiRsimply gets all sequences up to a
length ofn.

The nodeO, is given some color. After that, we hayéz! | independent choices
of coloring each nod®; in the prefix of any sequence identically@_; or not.
Since the prefixes are the same, all information for an algorito distinguish
between the different sequences must be given as advicepehifys one out of

ol®5t] possible actionsﬁlogﬂ%l” = | 21 | bits are necessary. O

Theorem 7 Any online algorithm for multi-coloring hexagonal graph#twcom-
petitive ratio strictly smaller tha@ has advice complexit2(n).

Proof We use the basic construction from Theofém 6. Assuneguests are given
to one of the components like this:

First, we give§ requests to each @by andO;. Letq, 0 < g < %, denote the
number of colors used at both nodes. Then following up byngi¥i requests to
eachS-node results in a minimum c?f — g colors used, while giving the requests

to the D-nodes instead results in a minimum# ¢ colors.

Note that @T = £, independent of in which of the two ways the sequence is

continued. Thus, for any > 0, any(% — £)-competitive algorithm must chooge
such that, for some constamt?2 —g < (2 —¢) 2+aand+¢ < (5 —¢) L+
Adding these two inequalities, we obta%f-l < (% — ¢)p + 2« which is equivalent
to ep < 2a. Thus, ifp is non-constant, n()% — g)-competitive algorithm can use
the same value af for both sequences.

Now assume for the sake of contradiction that for some adfigén) € o(n) bits,
we can obtain aratio 6f —c. Let f(n) = %ﬁ Sinceg(n) € o(n), f(n) € w(1).
The idea is now to repeat the construction as in the proof eofénm 6 and give

f(n) requests to each constructiofi(f) has the role op in the above). Since a
pair of neighboring constructions shafén) /4 requests, this results _{7(;)‘)/4 =

fm)/a
4’;};7(’;()") > % constructions. We assume without loss of generality tHaial
divisions resuft in integers.

In order to be(% — g)-competitive, an online algorithm must, for each two neigh-
boring O-nodes, choose between at least two different values ©hese are inde-
pendent decisions, and the ratio only ends up strictly btehsmg if the algorithm
decides correctly in every subconstruction. Thus, it nea&dsast% bits of ad-

vice. However,% = %~ = 2g(n) > g(n), which is a contradiction. O
2

g(n)
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3.2 Upper bounds

We have the following trivial upper bound on the advice neagsto be optimal,
independent of the graph topology:

Theorem 8 There is a strictlyl-competitive online multi-coloring algorithm with
advice complexityn + 1) [log OPT].

Proof Start by asking for the number of bits necessary to represgues up to
OPT. Then for each request, reqtbg(OPT+1)] bits telling, which color to use.
This givesend [log OPT]) + n [log OPT| < (n + 1) [log OPT]. O

In the following, we will show how two known approximationgalrithms can be
converted to online algorithms with advice. In the desaipibf the algorithms,

we let theweightof a clique denote the total number of requests to the nodes of
the clique. Note that the only maximal cliques in a hexaggmnaph are isolated
nodes, edges, or triangles. We detlenote the maximum weight of any clique in
the graplﬂ

A %—competitive algorithm called the Fixed Preference Altamaalgorithm, FPA,
was proposed in [24]. I [31], the strategy was simplified @&ntlas noted that
the algorithm can be converted td-aecoloring online algorithm. We describe the
simplified offline algorithm below.

The algorithm uses three color classBs,G, andB. The color classes represent
a partitioning of the nodes in the graph so that no two neighlaoe in the same
partition. Each of the three color classes has its own setdfcolors, and each
node in a given color class uses the colors of its color clagting with the small-
est. This set of colors is also referred to as the nopligigate colors. If more than
[%} requests are given to a node, then it borrows colors fromtikatp colors of
one of its neighbors, taking the highest available cdonodes can borrow colors
from G nodesG from B, andB from R.

For completeness, we give the arguments that FPA is cornecbhltains an ap-
proximation ratio of%. Assume for the purpose of contradiction that the coloring
produced by the algorithm causes a conflict betweeR ande and & node. This
means that their combined number of requests must be gteater, which is a
contradiction. The same argument holds for the other caartgnations. Thus,
the coloring is legal. Any optimal algorithm needs at leastolors, so ®@T > w
and the algorithm is é—approximation algorithm.

1The Greek lettew is traditionally used here, so we will also do that. Sincedlig no argument,
this should not give rise to confusion with th€ /), stemming from asymptotic notation.
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Algorithm 3The%—competitive algorithm, FPA, with advice.

1: Advice: [¢]
Rep = {1,2,....[$]},
GREEN—{HH»(%H 72[%1},
BLuE = {2[¥] +1,2T¢] +2,...,3]¢]}

Function Class(v)

return v’s color classR, G, orB
Function Borrow(c)

return the next class in the wrap-around sequeR¢és, or B
Function Colors(c)

10: return the set of private colors of clags

11: for ¢ =1ton do

12: Assume that théth requestr, is to nodev

13: if [fi—1(v)] < [¢] then

14: give r color min(Colors(Class(v)) \ fi—1(v))

15: dse

16: give r color max(Colors(Borrow(Class(v))) \ fi—1(v))

Since[%] < [2T], we can give[% | as advice, resulting in Algorithil 3. Note
that the f-notation used in the pseudo-code was defined in conneciibnAlgo-
rithm[d.

Theorem 9 There is ai competitive online algorithm for multi-coloring hexago-
nal graphs with advice complexigng [ %£71).

Proof Given [4] < [OTPT} as advice, FPA can be used as an online algorithm

(Algorithm[3). O
In [30], an algorithm with an improved approximation ratib%awas introduced.
We now describe this algorithm. For completeness, we al® ijie arguments
that the algorithm is correct and i%aapproximation algorithm:

The algorithm uses color classes in the same way as FPA, tetkegghe private
color sets contain only2+ | colors each. We use the following notation. For any
nodev, we letn, denote the number of requestsitoFurthermorep,, denotes the
maximum number of colors that can borrow, i.e.p, = max{0, || — nl},
wheren/, is the maximum number of requests to any of the neighboriresdn
the color class that can borrow from.

The algorithm can be seen as working in up to three phases:
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Figure 2: lllustration of th%-approximation algorithm. a) The borrow pattern. Ar-
rows show the direction of the flow of colors in Phase 2. b) Batgraph induced
by nodes still having unprocessed requests after Phase Thecdubsequence of
advice bits connected to one node. The sequence of adviis litmerge of such
sequences.

In thefirst phase the algorithm colorsnin{n,,, [“T“J} requests to each node,
using the node’s private colors. L@t be the graph induced by the nodes that still
have uncolored requests after Phase 1.

For any nodey, in Gy, |41 | requests to are colored withy’s private colors in
Phase 1. By the definition of, this immediately implies that any pair of neigh-
boring nodes have a total of at mast- 2 | 2! | uncolored requests already after
Phase 1.

In thesecond phaseach node with more than 4 | requests borrowsiin{rn,,—
[“+1J b, } colors. LetG, be the graph induced by nodes that still have uncolored
requests after Phase 2.

In [30] it is proven that>s is bipartite and that any pair of neighbors@ has a
total of at mostv — 2 | -1 | < |+ | 4 1 uncolored requests after Phase 2. Thus,
in the third phase, the remaining requests can be colordd @REEDYOPT (see
the path section) usinfy+! | + 1 additional colors.

To see that7, is bipartite, first note that/; (and hencez,) cannot contain trian-
gles. Each node in such a triangle would have received dt||€3$ | + 1 requests,
contradicting the definition ab.

Using the fact that7, does not contain triangles, we can now argue thatis
acyclic and hence bipartite. Assume to the contrary thatloes contain a cycle,
C. Assume without loss of generality that tRe G, B coloring of the underlying
hexagonal grid is as shown in Figlide 2 a) andudéie a leftmost node af’. Then,
referring to Figuré 2 b), two of the nodes, v2, andbs must also be part of’.
Note thatbs cannot be part of’, since then there would be a triangle after Phiase
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Thus, u, v, andwv, are part of the cycle and hence receive at ld&st! | + 1
requests each.

Sincew could not borrow enough colors from the nodes in the colosciais
allowed to borrow from, one of the-nodes, say;, together withu must have a
total of at leas® [“T“J + 1 requests. Sad; andu must form a triangle together
with eitherv; or v9 so that the three nodes together have received a total asit le
2= ] +1) + (|2E] + 1) requests. This quantity is strictly larger than
contradicting the definition ab.

This ends the argument that the algorithm is correct.

Since the total number of colors used is at Mottt | + (w—2 [ |) < et
the algorithm is ag—approximation algorithm.

We now show how an online algorithm, given the right advican behave as
the offline %-approximation algorithm. Note that the three phases ofoffime
%—approximation algorithm are characterized by the cotpsirategy (using the
node’s own private colors, borrowing private colors fronighdors, or coloring a
bipartite graph). However, when requests arrive online nildes may not go from
one phase to the next simultaneously.

Theorem 10 There is a%—competitive online algorithm for multi-coloring hexag-
onal graphs with advice complexity at most- 2|V/|.

Proof We describe the algorithm and advice resulting in a colovitittp at most
% OpT colors (see Algorithrhl4, where we use theotation defined in connection
with Algorithm[T).

Initially, each node is in Phase On a request, the algorithm reads an advice bit
and if it is zero, the next color from its private colors is ds#, instead, a one is
read, this is treated as a stop bit for Phhsand this particular node enters Phase

The algorithm starts with empty private color sets, and amtts color to each
set whenever necessary, i.e., whenever a Phase 1 node shalréedy used all
its private colors receives an additional request (thisuches the first request to
the node). As soon as a node leaves Phase 1, the algorithns khatthis node
received | 2+ | requests, which is then the final size of each private colbr se
Knowing the size of the private color sets, the algorithmeaanulate the maximum
color for the complete coloring of the graphsmas= 4 [“T“J + 1.

In Phase 2, every zero indicates that the algorithm shoulblsoa color. When
another stop bit is received (which could be after no zeral aft the borrowing
phase is empty), it moves to Phakeln Phase 3, it reads one bit to decide which
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partition, upper or lower, of the bipartite graph it is in,dadoes not need more
information after that, since it simply uses the coldfs®L | + 1,...,m, either
top-down or bottom-up.

If we allow the algorithm one bit per request, it needs at nist more bits per
node, since the stop bits are the only bits that do not imnelgtitell the algorithm
which action to take. Thus; + 2|V/| bits of advice suffice. i

This algorithm can be used in many different ways, as londghastgorithm gets
the information it needs. One other simple encoding woultblggve the algorithm
the value[‘“T“J from the beginning and only give bit-wise advice after a nbde
used all its private colors. Since at least one color is [Eivthis will save a total
of at least V| bits, and result in at mosinq(| % |) + n + |V| bits of advice. This
variant, and others, that are incomparable to each othpendiing on the values
of n, w, and|V|, could all be used at the same time by first asking for a few bits
to decide how to proceed. Thus, one could formulate a lestabda but more
accurate theorem basically taking the minimum of all theregpions. We have
chosen clarity over precision, since the other expressaoasnostly better in less
interesting cases, whereis small compared tg/|, for instance.

3.3 Concluding Remarks

When considering advice complexity of multi-coloring onatlp we can achieve
1-competitiveness with a small amount of advice. A recolprafgorithm needs to
be 1-recoloring to achieve the same. The advice is basicallyrtiemum number
of requests to any two neighboring nodes. Thus, whether as¢hat global infor-
mation once and for all, or can obtain and adjust accordirtbedocal variant of
this information gives the same result.

For multi-coloring of hexagonal graphs, there is a similanrection between re-
coloring distance and advice. Theaecoloring online version of FPA has an advice
variant and again, this advice represents information ath@umaximum number
of requests to neighboring nodes. With additional glob&rimation about the
bipartite induced subgraph, we can overcome the limitatiafi -recoloring algo-
rithms and be as good as any known polynomial-time appradamalgorithm.
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Algorithm 4 Combining FPA and GEEDYOPTADVICE to a%—competitive algo-
rithm.
1. Advice: A sequenceB of bits classifying each request as to whether it should
be colored using the node’s own private colors, by borrowmgin which
partition it falls.

2: Function Class(v)
3: return v's color classR, G, or B
4: Function Borrow(c)
5: return the next class in the wrap-around sequeR¢é:, or B
6: Function Colors(c)
7 return the set of private colors of clags
8: Function NextBit(B)
9 return the next advice bit
10: for each node» do
11 Phasév) =1
12: for ¢ =1ton do
13: Assume that théth requestr, is to nodev
14: if Phasév) = 1 then
15: if NextBit(B) = 0 then
16: if Colors(Class(v)) \ fi—1(v) = 0 then
17: add one color to each of the three sets of private colors
18: give r color min(Colors(Class(v)) \ fi—1(v))
19: ese
20: Phasév) = 2
21: Phase3Min = 3 |f;_1(v)| + 1
22: Phase3Max = 4 |f;_1(v)| + 1
23: if Phasév) = 2 then
24: if NextBit(B) = 0 then
25: give r color max(Colors(Borrow(Class(v))) \ fi—1(v))
26: ese
27 Phasév) = 3
28: upper, = NextBit(B) /* Store the partition ob */
29: if Phasév) = 3 then
30: /* Use GREEDYOPTADVICE: */
31 if upper, = 1 then
32: give r color max({Phase3Min, ..., Phase3Max} \ fi_1(v))
33 else
34: give r color min({Phase3Min, . .., Phase3Max} \ fi—1(v))

25



	1 Introduction
	1.1 Analyzing online algorithms
	1.1.1 Relaxing the concept of online
	1.1.2 Modeling advice complexity

	1.2 Previous and new results
	1.2.1 Previous results
	1.2.2 Our results


	2 The Path
	2.1 Lower bounds
	2.2 Upper bounds
	2.3 Cancellations

	3 Hexagonal Graphs
	3.1 Lower bounds
	3.2 Upper bounds
	3.3 Concluding Remarks


