Skip to main content

A Distributed and Multithreaded SLAM Architecture for Robotic Clusters and Wireless Sensor Networks

  • Chapter
  • First Online:
Cooperative Robots and Sensor Networks 2015

Part of the book series: Studies in Computational Intelligence ((SCI,volume 604))

Abstract

In this work, we propose an extremely efficient architecture for the Simultaneous Localization and Mapping (SLAM) problem. The architecture makes use of multithreading and workload distribution over a robotic cluster or a wireless sensor network (WSN) in order to parallelize the most widely used Rao-Blackwellized Particle Filter (RBPF) SLAM approach. We apply the method in common computers found in robots and sensor networks, and evaluate the tradeoffs in terms of efficiency, complexity, load balancing and SLAM performance. It is shown that a significant gain in efficiency can be obtained. Furthermore, the method enables us to raise the workload up to values that would not be possible in a single robot solution, thus gaining in localization precision and map accuracy. All the results are extracted from frequently used SLAM datasets available in the Robotics community and a real world testbed is described to show the potential of using the proposed philosophy.

This work was partially carried out in the framework of TIRAMISU project (www.fp7-tiramisu.eu). This project is funded by the European Community’s Seventh Framework Program (FP7/SEC/284747).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hadoop is a Java based framework that supports data intensive distributed applications running on large clusters of computers.

  2. 2.

    Callgrind, available in the Valgrind distribution: http://valgrind.org.

  3. 3.

    https://code.google.com/p/protobuf.

  4. 4.

    http://zeromq.org.

  5. 5.

    https://github.com/brNX/gmapping-stateful, Hybrid branch.

  6. 6.

    http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/datasets.php.

References

  1. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: AAAI National Conference on Artificial Intelligence (2002)

    Google Scholar 

  2. Agarwal, P., Tipaldi, G.D., Spinello, L., Stachniss, C., Burgard, W.: Robust map optimization using dynamic covariance scaling. In: Proceedings of the International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany, May 6–10 (2013)

    Google Scholar 

  3. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23(1), 34-46 (2007)

    Google Scholar 

  4. Marjovi, A., Choobdar, S., Marques, L.: Robotic clusters: multirobot systems as computer clusters: a topological map merging demonstration. Robot. Auton. Syst. 60(9), 1191–1204 (2012)

    Article  Google Scholar 

  5. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  6. Dissanayake, D., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229-241 (2001)

    Google Scholar 

  7. Thrun, S., Montemerlo, M.: The graphSLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25, 403–429 (2006)

    Google Scholar 

  8. Kohlbrecher, S., Meyer, J., Von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Proceedings of the International Symposium on Safety, Security and Rescue Robotics (2011)

    Google Scholar 

  9. Pedrosa, E., Lau, N., Pereira, A.: Online SLAM based on a fast scan-matching algorithm. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) Progress in Artificial Intelligence, Lecture Notes in Computer Science, vol. 8154, pp. 295–306, Springer, Berlin (2013)

    Google Scholar 

  10. Machado Santos, J., Couceiro, M.S., Portugal, D., Rocha, R.P.: A sensor fusion layer to cope with reduced visibility in SLAM. In: Journal of Intelligent and Robotic Systems (JINT), Special Issue on Autonomous Robot Systems, Springer, London (2015)

    Google Scholar 

  11. Chandrakasan, A.P., Potkonjak, M., Mehra, R., Rabaey, J., Brodersen, R.W.: Optimizing power using transformations. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 14(1), 12–31 (1995)

    Article  Google Scholar 

  12. El Hamzaoui, O., Steux, B.: A fast scan matching for grid-based laser SLAM using streaming SIMD extensions. In: Proceedings of the 11th International Conference on Control, Automation, Robotics and Vision (ICARCV 2010), Singapore, 7–10 Dec 2010

    Google Scholar 

  13. Clipp, B., Lim, J., Frahm, J., Pollefeys, M.: Parallel, real-time visual SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3961–3968, Taipei, Taiwan, Oct 2010

    Google Scholar 

  14. Par, K., Tosun, O.: Parallelization of particle filter based localization and map matching algorithms on multicore/manycore architectures. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Baden, Germany, June 2011

    Google Scholar 

  15. Miah, M.S., Bolic, M.: Parallel implementation of modified rao-blackwellised particle filter. University of Ottawa, Technical Report (2009)

    Google Scholar 

  16. Riazuelo, L., Civera, J., Montiel, J.M.M.: C\(^2\)TAM: a cloud framework for cooperative tracking and mapping. Robot. Auton. Syst 62(4), 401–413 (2014)

    Google Scholar 

  17. Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Kumar, A.S., Meng, K.D., Kit, G.W.: DAvinCi: a cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3084–3089, Anchorage, Alaska, USA (2010)

    Google Scholar 

  18. Siegwart, R., Balmer, P., Portal, C., Wannaz, C., Blank, R., Caprari, G.: RobOnWeb: a setup with mobile mini-robots on the web. In: An Introduction to Online Robots, MIT Press, In Beyond Webcams (2002)

    Google Scholar 

  19. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., et al.: Swarmanoid: a novel concept for the study of heterogenous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)

    Google Scholar 

  20. Gouveia, B.D., Portugal, D., Marques, L.: Speeding up rao-blackwellized particle filter SLAM with a multithreaded architecture. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, USA, 14–18 Sep 2014

    Google Scholar 

  21. Gouveia, B.D., Portugal, D., Marques, L.: Computation sharing in distributed robotic systems:a case study on SLAM. Proc. IEEE Trans. Autom. Sci. Eng., Spec. Issue Cloud Robot. Autom. 12(2), 398–409 (2015)

    Google Scholar 

  22. Lazaro, M., Paz, L., Piniés, P., Castellanos, J., Grisetti, G.: Multi-robot SLAM using condensed measurements. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1069–1076. Tokyo, Japan, 3–7 Nov 2013

    Google Scholar 

  23. Eich, M., Hartanto, R., Kasperski, S., Natarajan, S., Wollenberg, J.: Towards coordinated multirobot missions for lunar sample collection in an unknown environment. J. Field Robot. 31(1), 35–74 (2014)

    Article  Google Scholar 

  24. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, R.: ROS: an open-source Robot Operating System. In: International Conference on Robotics and Automation, WS on Open Source Software, Kobe, Japan (2009)

    Google Scholar 

  25. Machado Santos, J., Portugal., D., Rocha, R.P.: An evaluation of 2D SLAM techniques availabile in robot operating system. In: Proceedings of the: International Symposium on Safety, Security and Rescue Robotics, Linköping, Sweden (2013)

    Google Scholar 

  26. Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Auton. Robots 27(4) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lino Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Portugal, D., Gouveia, B.D., Marques, L. (2015). A Distributed and Multithreaded SLAM Architecture for Robotic Clusters and Wireless Sensor Networks. In: Koubâa, A., Martínez-de Dios, J. (eds) Cooperative Robots and Sensor Networks 2015. Studies in Computational Intelligence, vol 604. Springer, Cham. https://doi.org/10.1007/978-3-319-18299-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18299-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18298-8

  • Online ISBN: 978-3-319-18299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics